mirror of
https://github.com/UberGames/lilium-voyager.git
synced 2025-01-07 09:20:46 +00:00
207 lines
11 KiB
C
207 lines
11 KiB
C
/***********************************************************************
|
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
|
names of specific contributors, may be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "main.h"
|
|
|
|
/* Delayed-decision quantizer for NLSF residuals */
|
|
opus_int32 silk_NLSF_del_dec_quant( /* O Returns RD value in Q25 */
|
|
opus_int8 indices[], /* O Quantization indices [ order ] */
|
|
const opus_int16 x_Q10[], /* I Input [ order ] */
|
|
const opus_int16 w_Q5[], /* I Weights [ order ] */
|
|
const opus_uint8 pred_coef_Q8[], /* I Backward predictor coefs [ order ] */
|
|
const opus_int16 ec_ix[], /* I Indices to entropy coding tables [ order ] */
|
|
const opus_uint8 ec_rates_Q5[], /* I Rates [] */
|
|
const opus_int quant_step_size_Q16, /* I Quantization step size */
|
|
const opus_int16 inv_quant_step_size_Q6, /* I Inverse quantization step size */
|
|
const opus_int32 mu_Q20, /* I R/D tradeoff */
|
|
const opus_int16 order /* I Number of input values */
|
|
)
|
|
{
|
|
opus_int i, j, nStates, ind_tmp, ind_min_max, ind_max_min, in_Q10, res_Q10;
|
|
opus_int pred_Q10, diff_Q10, out0_Q10, out1_Q10, rate0_Q5, rate1_Q5;
|
|
opus_int32 RD_tmp_Q25, min_Q25, min_max_Q25, max_min_Q25, pred_coef_Q16;
|
|
opus_int ind_sort[ NLSF_QUANT_DEL_DEC_STATES ];
|
|
opus_int8 ind[ NLSF_QUANT_DEL_DEC_STATES ][ MAX_LPC_ORDER ];
|
|
opus_int16 prev_out_Q10[ 2 * NLSF_QUANT_DEL_DEC_STATES ];
|
|
opus_int32 RD_Q25[ 2 * NLSF_QUANT_DEL_DEC_STATES ];
|
|
opus_int32 RD_min_Q25[ NLSF_QUANT_DEL_DEC_STATES ];
|
|
opus_int32 RD_max_Q25[ NLSF_QUANT_DEL_DEC_STATES ];
|
|
const opus_uint8 *rates_Q5;
|
|
|
|
silk_assert( (NLSF_QUANT_DEL_DEC_STATES & (NLSF_QUANT_DEL_DEC_STATES-1)) == 0 ); /* must be power of two */
|
|
|
|
nStates = 1;
|
|
RD_Q25[ 0 ] = 0;
|
|
prev_out_Q10[ 0 ] = 0;
|
|
for( i = order - 1; ; i-- ) {
|
|
rates_Q5 = &ec_rates_Q5[ ec_ix[ i ] ];
|
|
pred_coef_Q16 = silk_LSHIFT( (opus_int32)pred_coef_Q8[ i ], 8 );
|
|
in_Q10 = x_Q10[ i ];
|
|
for( j = 0; j < nStates; j++ ) {
|
|
pred_Q10 = silk_SMULWB( pred_coef_Q16, prev_out_Q10[ j ] );
|
|
res_Q10 = silk_SUB16( in_Q10, pred_Q10 );
|
|
ind_tmp = silk_SMULWB( (opus_int32)inv_quant_step_size_Q6, res_Q10 );
|
|
ind_tmp = silk_LIMIT( ind_tmp, -NLSF_QUANT_MAX_AMPLITUDE_EXT, NLSF_QUANT_MAX_AMPLITUDE_EXT-1 );
|
|
ind[ j ][ i ] = (opus_int8)ind_tmp;
|
|
|
|
/* compute outputs for ind_tmp and ind_tmp + 1 */
|
|
out0_Q10 = silk_LSHIFT( ind_tmp, 10 );
|
|
out1_Q10 = silk_ADD16( out0_Q10, 1024 );
|
|
if( ind_tmp > 0 ) {
|
|
out0_Q10 = silk_SUB16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
|
|
out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
|
|
} else if( ind_tmp == 0 ) {
|
|
out1_Q10 = silk_SUB16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
|
|
} else if( ind_tmp == -1 ) {
|
|
out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
|
|
} else {
|
|
out0_Q10 = silk_ADD16( out0_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
|
|
out1_Q10 = silk_ADD16( out1_Q10, SILK_FIX_CONST( NLSF_QUANT_LEVEL_ADJ, 10 ) );
|
|
}
|
|
out0_Q10 = silk_SMULWB( (opus_int32)out0_Q10, quant_step_size_Q16 );
|
|
out1_Q10 = silk_SMULWB( (opus_int32)out1_Q10, quant_step_size_Q16 );
|
|
out0_Q10 = silk_ADD16( out0_Q10, pred_Q10 );
|
|
out1_Q10 = silk_ADD16( out1_Q10, pred_Q10 );
|
|
prev_out_Q10[ j ] = out0_Q10;
|
|
prev_out_Q10[ j + nStates ] = out1_Q10;
|
|
|
|
/* compute RD for ind_tmp and ind_tmp + 1 */
|
|
if( ind_tmp + 1 >= NLSF_QUANT_MAX_AMPLITUDE ) {
|
|
if( ind_tmp + 1 == NLSF_QUANT_MAX_AMPLITUDE ) {
|
|
rate0_Q5 = rates_Q5[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE ];
|
|
rate1_Q5 = 280;
|
|
} else {
|
|
rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, 43, ind_tmp );
|
|
rate1_Q5 = silk_ADD16( rate0_Q5, 43 );
|
|
}
|
|
} else if( ind_tmp <= -NLSF_QUANT_MAX_AMPLITUDE ) {
|
|
if( ind_tmp == -NLSF_QUANT_MAX_AMPLITUDE ) {
|
|
rate0_Q5 = 280;
|
|
rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ];
|
|
} else {
|
|
rate0_Q5 = silk_SMLABB( 280 - 43 * NLSF_QUANT_MAX_AMPLITUDE, -43, ind_tmp );
|
|
rate1_Q5 = silk_SUB16( rate0_Q5, 43 );
|
|
}
|
|
} else {
|
|
rate0_Q5 = rates_Q5[ ind_tmp + NLSF_QUANT_MAX_AMPLITUDE ];
|
|
rate1_Q5 = rates_Q5[ ind_tmp + 1 + NLSF_QUANT_MAX_AMPLITUDE ];
|
|
}
|
|
RD_tmp_Q25 = RD_Q25[ j ];
|
|
diff_Q10 = silk_SUB16( in_Q10, out0_Q10 );
|
|
RD_Q25[ j ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate0_Q5 );
|
|
diff_Q10 = silk_SUB16( in_Q10, out1_Q10 );
|
|
RD_Q25[ j + nStates ] = silk_SMLABB( silk_MLA( RD_tmp_Q25, silk_SMULBB( diff_Q10, diff_Q10 ), w_Q5[ i ] ), mu_Q20, rate1_Q5 );
|
|
}
|
|
|
|
if( nStates <= ( NLSF_QUANT_DEL_DEC_STATES >> 1 ) ) {
|
|
/* double number of states and copy */
|
|
for( j = 0; j < nStates; j++ ) {
|
|
ind[ j + nStates ][ i ] = ind[ j ][ i ] + 1;
|
|
}
|
|
nStates = silk_LSHIFT( nStates, 1 );
|
|
for( j = nStates; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
|
|
ind[ j ][ i ] = ind[ j - nStates ][ i ];
|
|
}
|
|
} else if( i > 0 ) {
|
|
/* sort lower and upper half of RD_Q25, pairwise */
|
|
for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
|
|
if( RD_Q25[ j ] > RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] ) {
|
|
RD_max_Q25[ j ] = RD_Q25[ j ];
|
|
RD_min_Q25[ j ] = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ];
|
|
RD_Q25[ j ] = RD_min_Q25[ j ];
|
|
RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ] = RD_max_Q25[ j ];
|
|
/* swap prev_out values */
|
|
out0_Q10 = prev_out_Q10[ j ];
|
|
prev_out_Q10[ j ] = prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ];
|
|
prev_out_Q10[ j + NLSF_QUANT_DEL_DEC_STATES ] = out0_Q10;
|
|
ind_sort[ j ] = j + NLSF_QUANT_DEL_DEC_STATES;
|
|
} else {
|
|
RD_min_Q25[ j ] = RD_Q25[ j ];
|
|
RD_max_Q25[ j ] = RD_Q25[ j + NLSF_QUANT_DEL_DEC_STATES ];
|
|
ind_sort[ j ] = j;
|
|
}
|
|
}
|
|
/* compare the highest RD values of the winning half with the lowest one in the losing half, and copy if necessary */
|
|
/* afterwards ind_sort[] will contain the indices of the NLSF_QUANT_DEL_DEC_STATES winning RD values */
|
|
while( 1 ) {
|
|
min_max_Q25 = silk_int32_MAX;
|
|
max_min_Q25 = 0;
|
|
ind_min_max = 0;
|
|
ind_max_min = 0;
|
|
for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
|
|
if( min_max_Q25 > RD_max_Q25[ j ] ) {
|
|
min_max_Q25 = RD_max_Q25[ j ];
|
|
ind_min_max = j;
|
|
}
|
|
if( max_min_Q25 < RD_min_Q25[ j ] ) {
|
|
max_min_Q25 = RD_min_Q25[ j ];
|
|
ind_max_min = j;
|
|
}
|
|
}
|
|
if( min_max_Q25 >= max_min_Q25 ) {
|
|
break;
|
|
}
|
|
/* copy ind_min_max to ind_max_min */
|
|
ind_sort[ ind_max_min ] = ind_sort[ ind_min_max ] ^ NLSF_QUANT_DEL_DEC_STATES;
|
|
RD_Q25[ ind_max_min ] = RD_Q25[ ind_min_max + NLSF_QUANT_DEL_DEC_STATES ];
|
|
prev_out_Q10[ ind_max_min ] = prev_out_Q10[ ind_min_max + NLSF_QUANT_DEL_DEC_STATES ];
|
|
RD_min_Q25[ ind_max_min ] = 0;
|
|
RD_max_Q25[ ind_min_max ] = silk_int32_MAX;
|
|
silk_memcpy( ind[ ind_max_min ], ind[ ind_min_max ], MAX_LPC_ORDER * sizeof( opus_int8 ) );
|
|
}
|
|
/* increment index if it comes from the upper half */
|
|
for( j = 0; j < NLSF_QUANT_DEL_DEC_STATES; j++ ) {
|
|
ind[ j ][ i ] += silk_RSHIFT( ind_sort[ j ], NLSF_QUANT_DEL_DEC_STATES_LOG2 );
|
|
}
|
|
} else { /* i == 0 */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* last sample: find winner, copy indices and return RD value */
|
|
ind_tmp = 0;
|
|
min_Q25 = silk_int32_MAX;
|
|
for( j = 0; j < 2 * NLSF_QUANT_DEL_DEC_STATES; j++ ) {
|
|
if( min_Q25 > RD_Q25[ j ] ) {
|
|
min_Q25 = RD_Q25[ j ];
|
|
ind_tmp = j;
|
|
}
|
|
}
|
|
for( j = 0; j < order; j++ ) {
|
|
indices[ j ] = ind[ ind_tmp & ( NLSF_QUANT_DEL_DEC_STATES - 1 ) ][ j ];
|
|
silk_assert( indices[ j ] >= -NLSF_QUANT_MAX_AMPLITUDE_EXT );
|
|
silk_assert( indices[ j ] <= NLSF_QUANT_MAX_AMPLITUDE_EXT );
|
|
}
|
|
indices[ 0 ] += silk_RSHIFT( ind_tmp, NLSF_QUANT_DEL_DEC_STATES_LOG2 );
|
|
silk_assert( indices[ 0 ] <= NLSF_QUANT_MAX_AMPLITUDE_EXT );
|
|
silk_assert( min_Q25 >= 0 );
|
|
return min_Q25;
|
|
}
|