mirror of
https://github.com/UberGames/lilium-voyager.git
synced 2025-01-22 07:11:07 +00:00
120 lines
6 KiB
C
120 lines
6 KiB
C
/***********************************************************************
|
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
|
names of specific contributors, may be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "main.h"
|
|
|
|
/* Entropy constrained matrix-weighted VQ, hard-coded to 5-element vectors, for a single input data vector */
|
|
void silk_VQ_WMat_EC(
|
|
opus_int8 *ind, /* O index of best codebook vector */
|
|
opus_int32 *rate_dist_Q14, /* O best weighted quant error + mu * rate */
|
|
opus_int *gain_Q7, /* O sum of absolute LTP coefficients */
|
|
const opus_int16 *in_Q14, /* I input vector to be quantized */
|
|
const opus_int32 *W_Q18, /* I weighting matrix */
|
|
const opus_int8 *cb_Q7, /* I codebook */
|
|
const opus_uint8 *cb_gain_Q7, /* I codebook effective gain */
|
|
const opus_uint8 *cl_Q5, /* I code length for each codebook vector */
|
|
const opus_int mu_Q9, /* I tradeoff betw. weighted error and rate */
|
|
const opus_int32 max_gain_Q7, /* I maximum sum of absolute LTP coefficients */
|
|
opus_int L /* I number of vectors in codebook */
|
|
)
|
|
{
|
|
opus_int k, gain_tmp_Q7;
|
|
const opus_int8 *cb_row_Q7;
|
|
opus_int16 diff_Q14[ 5 ];
|
|
opus_int32 sum1_Q14, sum2_Q16;
|
|
|
|
/* Loop over codebook */
|
|
*rate_dist_Q14 = silk_int32_MAX;
|
|
cb_row_Q7 = cb_Q7;
|
|
for( k = 0; k < L; k++ ) {
|
|
gain_tmp_Q7 = cb_gain_Q7[k];
|
|
|
|
diff_Q14[ 0 ] = in_Q14[ 0 ] - silk_LSHIFT( cb_row_Q7[ 0 ], 7 );
|
|
diff_Q14[ 1 ] = in_Q14[ 1 ] - silk_LSHIFT( cb_row_Q7[ 1 ], 7 );
|
|
diff_Q14[ 2 ] = in_Q14[ 2 ] - silk_LSHIFT( cb_row_Q7[ 2 ], 7 );
|
|
diff_Q14[ 3 ] = in_Q14[ 3 ] - silk_LSHIFT( cb_row_Q7[ 3 ], 7 );
|
|
diff_Q14[ 4 ] = in_Q14[ 4 ] - silk_LSHIFT( cb_row_Q7[ 4 ], 7 );
|
|
|
|
/* Weighted rate */
|
|
sum1_Q14 = silk_SMULBB( mu_Q9, cl_Q5[ k ] );
|
|
|
|
/* Penalty for too large gain */
|
|
sum1_Q14 = silk_ADD_LSHIFT32( sum1_Q14, silk_max( silk_SUB32( gain_tmp_Q7, max_gain_Q7 ), 0 ), 10 );
|
|
|
|
silk_assert( sum1_Q14 >= 0 );
|
|
|
|
/* first row of W_Q18 */
|
|
sum2_Q16 = silk_SMULWB( W_Q18[ 1 ], diff_Q14[ 1 ] );
|
|
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 2 ], diff_Q14[ 2 ] );
|
|
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 3 ], diff_Q14[ 3 ] );
|
|
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 4 ], diff_Q14[ 4 ] );
|
|
sum2_Q16 = silk_LSHIFT( sum2_Q16, 1 );
|
|
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 0 ], diff_Q14[ 0 ] );
|
|
sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 0 ] );
|
|
|
|
/* second row of W_Q18 */
|
|
sum2_Q16 = silk_SMULWB( W_Q18[ 7 ], diff_Q14[ 2 ] );
|
|
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 8 ], diff_Q14[ 3 ] );
|
|
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 9 ], diff_Q14[ 4 ] );
|
|
sum2_Q16 = silk_LSHIFT( sum2_Q16, 1 );
|
|
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 6 ], diff_Q14[ 1 ] );
|
|
sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 1 ] );
|
|
|
|
/* third row of W_Q18 */
|
|
sum2_Q16 = silk_SMULWB( W_Q18[ 13 ], diff_Q14[ 3 ] );
|
|
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 14 ], diff_Q14[ 4 ] );
|
|
sum2_Q16 = silk_LSHIFT( sum2_Q16, 1 );
|
|
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 12 ], diff_Q14[ 2 ] );
|
|
sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 2 ] );
|
|
|
|
/* fourth row of W_Q18 */
|
|
sum2_Q16 = silk_SMULWB( W_Q18[ 19 ], diff_Q14[ 4 ] );
|
|
sum2_Q16 = silk_LSHIFT( sum2_Q16, 1 );
|
|
sum2_Q16 = silk_SMLAWB( sum2_Q16, W_Q18[ 18 ], diff_Q14[ 3 ] );
|
|
sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 3 ] );
|
|
|
|
/* last row of W_Q18 */
|
|
sum2_Q16 = silk_SMULWB( W_Q18[ 24 ], diff_Q14[ 4 ] );
|
|
sum1_Q14 = silk_SMLAWB( sum1_Q14, sum2_Q16, diff_Q14[ 4 ] );
|
|
|
|
silk_assert( sum1_Q14 >= 0 );
|
|
|
|
/* find best */
|
|
if( sum1_Q14 < *rate_dist_Q14 ) {
|
|
*rate_dist_Q14 = sum1_Q14;
|
|
*ind = (opus_int8)k;
|
|
*gain_Q7 = gain_tmp_Q7;
|
|
}
|
|
|
|
/* Go to next cbk vector */
|
|
cb_row_Q7 += LTP_ORDER;
|
|
}
|
|
}
|