mirror of
https://github.com/UberGames/lilium-voyager.git
synced 2024-12-15 14:40:53 +00:00
429 lines
22 KiB
C
429 lines
22 KiB
C
/***********************************************************************
|
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
|
names of specific contributors, may be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "main.h"
|
|
#include "stack_alloc.h"
|
|
#include "NSQ.h"
|
|
|
|
|
|
static OPUS_INLINE void silk_nsq_scale_states(
|
|
const silk_encoder_state *psEncC, /* I Encoder State */
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
const opus_int32 x_Q3[], /* I input in Q3 */
|
|
opus_int32 x_sc_Q10[], /* O input scaled with 1/Gain */
|
|
const opus_int16 sLTP[], /* I re-whitened LTP state in Q0 */
|
|
opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
|
|
opus_int subfr, /* I subframe number */
|
|
const opus_int LTP_scale_Q14, /* I */
|
|
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
|
|
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
|
|
const opus_int signal_type /* I Signal type */
|
|
);
|
|
|
|
#if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
|
|
static OPUS_INLINE void silk_noise_shape_quantizer(
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
opus_int signalType, /* I Signal type */
|
|
const opus_int32 x_sc_Q10[], /* I */
|
|
opus_int8 pulses[], /* O */
|
|
opus_int16 xq[], /* O */
|
|
opus_int32 sLTP_Q15[], /* I/O LTP state */
|
|
const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
|
const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
|
const opus_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */
|
|
opus_int lag, /* I Pitch lag */
|
|
opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
|
opus_int Tilt_Q14, /* I Spectral tilt */
|
|
opus_int32 LF_shp_Q14, /* I */
|
|
opus_int32 Gain_Q16, /* I */
|
|
opus_int Lambda_Q10, /* I */
|
|
opus_int offset_Q10, /* I */
|
|
opus_int length, /* I Input length */
|
|
opus_int shapingLPCOrder, /* I Noise shaping AR filter order */
|
|
opus_int predictLPCOrder, /* I Prediction filter order */
|
|
int arch /* I Architecture */
|
|
);
|
|
#endif
|
|
|
|
void silk_NSQ_c
|
|
(
|
|
const silk_encoder_state *psEncC, /* I/O Encoder State */
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
SideInfoIndices *psIndices, /* I/O Quantization Indices */
|
|
const opus_int32 x_Q3[], /* I Prefiltered input signal */
|
|
opus_int8 pulses[], /* O Quantized pulse signal */
|
|
const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
|
|
const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
|
|
const opus_int16 AR2_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
|
|
const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
|
|
const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
|
|
const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
|
|
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
|
|
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
|
|
const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
|
|
const opus_int LTP_scale_Q14 /* I LTP state scaling */
|
|
)
|
|
{
|
|
opus_int k, lag, start_idx, LSF_interpolation_flag;
|
|
const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13;
|
|
opus_int16 *pxq;
|
|
VARDECL( opus_int32, sLTP_Q15 );
|
|
VARDECL( opus_int16, sLTP );
|
|
opus_int32 HarmShapeFIRPacked_Q14;
|
|
opus_int offset_Q10;
|
|
VARDECL( opus_int32, x_sc_Q10 );
|
|
SAVE_STACK;
|
|
|
|
NSQ->rand_seed = psIndices->Seed;
|
|
|
|
/* Set unvoiced lag to the previous one, overwrite later for voiced */
|
|
lag = NSQ->lagPrev;
|
|
|
|
silk_assert( NSQ->prev_gain_Q16 != 0 );
|
|
|
|
offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ];
|
|
|
|
if( psIndices->NLSFInterpCoef_Q2 == 4 ) {
|
|
LSF_interpolation_flag = 0;
|
|
} else {
|
|
LSF_interpolation_flag = 1;
|
|
}
|
|
|
|
ALLOC( sLTP_Q15,
|
|
psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 );
|
|
ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 );
|
|
ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 );
|
|
/* Set up pointers to start of sub frame */
|
|
NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length;
|
|
NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
|
|
pxq = &NSQ->xq[ psEncC->ltp_mem_length ];
|
|
for( k = 0; k < psEncC->nb_subfr; k++ ) {
|
|
A_Q12 = &PredCoef_Q12[ (( k >> 1 ) | ( 1 - LSF_interpolation_flag )) * MAX_LPC_ORDER ];
|
|
B_Q14 = <PCoef_Q14[ k * LTP_ORDER ];
|
|
AR_shp_Q13 = &AR2_Q13[ k * MAX_SHAPE_LPC_ORDER ];
|
|
|
|
/* Noise shape parameters */
|
|
silk_assert( HarmShapeGain_Q14[ k ] >= 0 );
|
|
HarmShapeFIRPacked_Q14 = silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
|
|
HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );
|
|
|
|
NSQ->rewhite_flag = 0;
|
|
if( psIndices->signalType == TYPE_VOICED ) {
|
|
/* Voiced */
|
|
lag = pitchL[ k ];
|
|
|
|
/* Re-whitening */
|
|
if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) {
|
|
/* Rewhiten with new A coefs */
|
|
start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
|
|
silk_assert( start_idx > 0 );
|
|
|
|
silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ],
|
|
A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch );
|
|
|
|
NSQ->rewhite_flag = 1;
|
|
NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
|
|
}
|
|
}
|
|
|
|
silk_nsq_scale_states( psEncC, NSQ, x_Q3, x_sc_Q10, sLTP, sLTP_Q15, k, LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType );
|
|
|
|
silk_noise_shape_quantizer( NSQ, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15, A_Q12, B_Q14,
|
|
AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], Gains_Q16[ k ], Lambda_Q10,
|
|
offset_Q10, psEncC->subfr_length, psEncC->shapingLPCOrder, psEncC->predictLPCOrder, psEncC->arch );
|
|
|
|
x_Q3 += psEncC->subfr_length;
|
|
pulses += psEncC->subfr_length;
|
|
pxq += psEncC->subfr_length;
|
|
}
|
|
|
|
/* Update lagPrev for next frame */
|
|
NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ];
|
|
|
|
/* Save quantized speech and noise shaping signals */
|
|
/* DEBUG_STORE_DATA( enc.pcm, &NSQ->xq[ psEncC->ltp_mem_length ], psEncC->frame_length * sizeof( opus_int16 ) ) */
|
|
silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) );
|
|
silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) );
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
/***********************************/
|
|
/* silk_noise_shape_quantizer */
|
|
/***********************************/
|
|
|
|
#if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
|
|
static OPUS_INLINE
|
|
#endif
|
|
void silk_noise_shape_quantizer(
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
opus_int signalType, /* I Signal type */
|
|
const opus_int32 x_sc_Q10[], /* I */
|
|
opus_int8 pulses[], /* O */
|
|
opus_int16 xq[], /* O */
|
|
opus_int32 sLTP_Q15[], /* I/O LTP state */
|
|
const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
|
const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
|
const opus_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */
|
|
opus_int lag, /* I Pitch lag */
|
|
opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
|
opus_int Tilt_Q14, /* I Spectral tilt */
|
|
opus_int32 LF_shp_Q14, /* I */
|
|
opus_int32 Gain_Q16, /* I */
|
|
opus_int Lambda_Q10, /* I */
|
|
opus_int offset_Q10, /* I */
|
|
opus_int length, /* I Input length */
|
|
opus_int shapingLPCOrder, /* I Noise shaping AR filter order */
|
|
opus_int predictLPCOrder, /* I Prediction filter order */
|
|
int arch /* I Architecture */
|
|
)
|
|
{
|
|
opus_int i;
|
|
opus_int32 LTP_pred_Q13, LPC_pred_Q10, n_AR_Q12, n_LTP_Q13;
|
|
opus_int32 n_LF_Q12, r_Q10, rr_Q10, q1_Q0, q1_Q10, q2_Q10, rd1_Q20, rd2_Q20;
|
|
opus_int32 exc_Q14, LPC_exc_Q14, xq_Q14, Gain_Q10;
|
|
opus_int32 tmp1, tmp2, sLF_AR_shp_Q14;
|
|
opus_int32 *psLPC_Q14, *shp_lag_ptr, *pred_lag_ptr;
|
|
#ifdef silk_short_prediction_create_arch_coef
|
|
opus_int32 a_Q12_arch[MAX_LPC_ORDER];
|
|
#endif
|
|
|
|
shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ];
|
|
pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ];
|
|
Gain_Q10 = silk_RSHIFT( Gain_Q16, 6 );
|
|
|
|
/* Set up short term AR state */
|
|
psLPC_Q14 = &NSQ->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 ];
|
|
|
|
#ifdef silk_short_prediction_create_arch_coef
|
|
silk_short_prediction_create_arch_coef(a_Q12_arch, a_Q12, predictLPCOrder);
|
|
#endif
|
|
|
|
for( i = 0; i < length; i++ ) {
|
|
/* Generate dither */
|
|
NSQ->rand_seed = silk_RAND( NSQ->rand_seed );
|
|
|
|
/* Short-term prediction */
|
|
LPC_pred_Q10 = silk_noise_shape_quantizer_short_prediction(psLPC_Q14, a_Q12, a_Q12_arch, predictLPCOrder, arch);
|
|
|
|
/* Long-term prediction */
|
|
if( signalType == TYPE_VOICED ) {
|
|
/* Unrolled loop */
|
|
/* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
|
|
LTP_pred_Q13 = 2;
|
|
LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ 0 ], b_Q14[ 0 ] );
|
|
LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -1 ], b_Q14[ 1 ] );
|
|
LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -2 ], b_Q14[ 2 ] );
|
|
LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -3 ], b_Q14[ 3 ] );
|
|
LTP_pred_Q13 = silk_SMLAWB( LTP_pred_Q13, pred_lag_ptr[ -4 ], b_Q14[ 4 ] );
|
|
pred_lag_ptr++;
|
|
} else {
|
|
LTP_pred_Q13 = 0;
|
|
}
|
|
|
|
/* Noise shape feedback */
|
|
silk_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */
|
|
n_AR_Q12 = silk_NSQ_noise_shape_feedback_loop(psLPC_Q14, NSQ->sAR2_Q14, AR_shp_Q13, shapingLPCOrder, arch);
|
|
|
|
n_AR_Q12 = silk_SMLAWB( n_AR_Q12, NSQ->sLF_AR_shp_Q14, Tilt_Q14 );
|
|
|
|
n_LF_Q12 = silk_SMULWB( NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - 1 ], LF_shp_Q14 );
|
|
n_LF_Q12 = silk_SMLAWT( n_LF_Q12, NSQ->sLF_AR_shp_Q14, LF_shp_Q14 );
|
|
|
|
silk_assert( lag > 0 || signalType != TYPE_VOICED );
|
|
|
|
/* Combine prediction and noise shaping signals */
|
|
tmp1 = silk_SUB32( silk_LSHIFT32( LPC_pred_Q10, 2 ), n_AR_Q12 ); /* Q12 */
|
|
tmp1 = silk_SUB32( tmp1, n_LF_Q12 ); /* Q12 */
|
|
if( lag > 0 ) {
|
|
/* Symmetric, packed FIR coefficients */
|
|
n_LTP_Q13 = silk_SMULWB( silk_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 );
|
|
n_LTP_Q13 = silk_SMLAWT( n_LTP_Q13, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 );
|
|
n_LTP_Q13 = silk_LSHIFT( n_LTP_Q13, 1 );
|
|
shp_lag_ptr++;
|
|
|
|
tmp2 = silk_SUB32( LTP_pred_Q13, n_LTP_Q13 ); /* Q13 */
|
|
tmp1 = silk_ADD_LSHIFT32( tmp2, tmp1, 1 ); /* Q13 */
|
|
tmp1 = silk_RSHIFT_ROUND( tmp1, 3 ); /* Q10 */
|
|
} else {
|
|
tmp1 = silk_RSHIFT_ROUND( tmp1, 2 ); /* Q10 */
|
|
}
|
|
|
|
r_Q10 = silk_SUB32( x_sc_Q10[ i ], tmp1 ); /* residual error Q10 */
|
|
|
|
/* Flip sign depending on dither */
|
|
if ( NSQ->rand_seed < 0 ) {
|
|
r_Q10 = -r_Q10;
|
|
}
|
|
r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 );
|
|
|
|
/* Find two quantization level candidates and measure their rate-distortion */
|
|
q1_Q10 = silk_SUB32( r_Q10, offset_Q10 );
|
|
q1_Q0 = silk_RSHIFT( q1_Q10, 10 );
|
|
if( q1_Q0 > 0 ) {
|
|
q1_Q10 = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
|
|
q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 );
|
|
q2_Q10 = silk_ADD32( q1_Q10, 1024 );
|
|
rd1_Q20 = silk_SMULBB( q1_Q10, Lambda_Q10 );
|
|
rd2_Q20 = silk_SMULBB( q2_Q10, Lambda_Q10 );
|
|
} else if( q1_Q0 == 0 ) {
|
|
q1_Q10 = offset_Q10;
|
|
q2_Q10 = silk_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
|
|
rd1_Q20 = silk_SMULBB( q1_Q10, Lambda_Q10 );
|
|
rd2_Q20 = silk_SMULBB( q2_Q10, Lambda_Q10 );
|
|
} else if( q1_Q0 == -1 ) {
|
|
q2_Q10 = offset_Q10;
|
|
q1_Q10 = silk_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 );
|
|
rd1_Q20 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
|
|
rd2_Q20 = silk_SMULBB( q2_Q10, Lambda_Q10 );
|
|
} else { /* Q1_Q0 < -1 */
|
|
q1_Q10 = silk_ADD32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 );
|
|
q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 );
|
|
q2_Q10 = silk_ADD32( q1_Q10, 1024 );
|
|
rd1_Q20 = silk_SMULBB( -q1_Q10, Lambda_Q10 );
|
|
rd2_Q20 = silk_SMULBB( -q2_Q10, Lambda_Q10 );
|
|
}
|
|
rr_Q10 = silk_SUB32( r_Q10, q1_Q10 );
|
|
rd1_Q20 = silk_SMLABB( rd1_Q20, rr_Q10, rr_Q10 );
|
|
rr_Q10 = silk_SUB32( r_Q10, q2_Q10 );
|
|
rd2_Q20 = silk_SMLABB( rd2_Q20, rr_Q10, rr_Q10 );
|
|
|
|
if( rd2_Q20 < rd1_Q20 ) {
|
|
q1_Q10 = q2_Q10;
|
|
}
|
|
|
|
pulses[ i ] = (opus_int8)silk_RSHIFT_ROUND( q1_Q10, 10 );
|
|
|
|
/* Excitation */
|
|
exc_Q14 = silk_LSHIFT( q1_Q10, 4 );
|
|
if ( NSQ->rand_seed < 0 ) {
|
|
exc_Q14 = -exc_Q14;
|
|
}
|
|
|
|
/* Add predictions */
|
|
LPC_exc_Q14 = silk_ADD_LSHIFT32( exc_Q14, LTP_pred_Q13, 1 );
|
|
xq_Q14 = silk_ADD_LSHIFT32( LPC_exc_Q14, LPC_pred_Q10, 4 );
|
|
|
|
/* Scale XQ back to normal level before saving */
|
|
xq[ i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( xq_Q14, Gain_Q10 ), 8 ) );
|
|
|
|
/* Update states */
|
|
psLPC_Q14++;
|
|
*psLPC_Q14 = xq_Q14;
|
|
sLF_AR_shp_Q14 = silk_SUB_LSHIFT32( xq_Q14, n_AR_Q12, 2 );
|
|
NSQ->sLF_AR_shp_Q14 = sLF_AR_shp_Q14;
|
|
|
|
NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx ] = silk_SUB_LSHIFT32( sLF_AR_shp_Q14, n_LF_Q12, 2 );
|
|
sLTP_Q15[ NSQ->sLTP_buf_idx ] = silk_LSHIFT( LPC_exc_Q14, 1 );
|
|
NSQ->sLTP_shp_buf_idx++;
|
|
NSQ->sLTP_buf_idx++;
|
|
|
|
/* Make dither dependent on quantized signal */
|
|
NSQ->rand_seed = silk_ADD32_ovflw( NSQ->rand_seed, pulses[ i ] );
|
|
}
|
|
|
|
/* Update LPC synth buffer */
|
|
silk_memcpy( NSQ->sLPC_Q14, &NSQ->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
|
|
}
|
|
|
|
static OPUS_INLINE void silk_nsq_scale_states(
|
|
const silk_encoder_state *psEncC, /* I Encoder State */
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
const opus_int32 x_Q3[], /* I input in Q3 */
|
|
opus_int32 x_sc_Q10[], /* O input scaled with 1/Gain */
|
|
const opus_int16 sLTP[], /* I re-whitened LTP state in Q0 */
|
|
opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
|
|
opus_int subfr, /* I subframe number */
|
|
const opus_int LTP_scale_Q14, /* I */
|
|
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
|
|
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
|
|
const opus_int signal_type /* I Signal type */
|
|
)
|
|
{
|
|
opus_int i, lag;
|
|
opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q23;
|
|
|
|
lag = pitchL[ subfr ];
|
|
inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 );
|
|
silk_assert( inv_gain_Q31 != 0 );
|
|
|
|
/* Calculate gain adjustment factor */
|
|
if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) {
|
|
gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 );
|
|
} else {
|
|
gain_adj_Q16 = (opus_int32)1 << 16;
|
|
}
|
|
|
|
/* Scale input */
|
|
inv_gain_Q23 = silk_RSHIFT_ROUND( inv_gain_Q31, 8 );
|
|
for( i = 0; i < psEncC->subfr_length; i++ ) {
|
|
x_sc_Q10[ i ] = silk_SMULWW( x_Q3[ i ], inv_gain_Q23 );
|
|
}
|
|
|
|
/* Save inverse gain */
|
|
NSQ->prev_gain_Q16 = Gains_Q16[ subfr ];
|
|
|
|
/* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */
|
|
if( NSQ->rewhite_flag ) {
|
|
if( subfr == 0 ) {
|
|
/* Do LTP downscaling */
|
|
inv_gain_Q31 = silk_LSHIFT( silk_SMULWB( inv_gain_Q31, LTP_scale_Q14 ), 2 );
|
|
}
|
|
for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
|
|
silk_assert( i < MAX_FRAME_LENGTH );
|
|
sLTP_Q15[ i ] = silk_SMULWB( inv_gain_Q31, sLTP[ i ] );
|
|
}
|
|
}
|
|
|
|
/* Adjust for changing gain */
|
|
if( gain_adj_Q16 != (opus_int32)1 << 16 ) {
|
|
/* Scale long-term shaping state */
|
|
for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i++ ) {
|
|
NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] );
|
|
}
|
|
|
|
/* Scale long-term prediction state */
|
|
if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) {
|
|
for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) {
|
|
sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] );
|
|
}
|
|
}
|
|
|
|
NSQ->sLF_AR_shp_Q14 = silk_SMULWW( gain_adj_Q16, NSQ->sLF_AR_shp_Q14 );
|
|
|
|
/* Scale short-term prediction and shaping states */
|
|
for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) {
|
|
NSQ->sLPC_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLPC_Q14[ i ] );
|
|
}
|
|
for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) {
|
|
NSQ->sAR2_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sAR2_Q14[ i ] );
|
|
}
|
|
}
|
|
}
|