mirror of
https://github.com/UberGames/lilium-voyager.git
synced 2025-01-05 16:30:51 +00:00
2906 lines
85 KiB
C
2906 lines
85 KiB
C
/* Copyright (c) 2007-2008 CSIRO
|
|
Copyright (c) 2007-2010 Xiph.Org Foundation
|
|
Copyright (c) 2008 Gregory Maxwell
|
|
Written by Jean-Marc Valin and Gregory Maxwell */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#define CELT_C
|
|
|
|
#include "os_support.h"
|
|
#include "mdct.h"
|
|
#include <math.h>
|
|
#include "celt.h"
|
|
#include "pitch.h"
|
|
#include "bands.h"
|
|
#include "modes.h"
|
|
#include "entcode.h"
|
|
#include "quant_bands.h"
|
|
#include "rate.h"
|
|
#include "stack_alloc.h"
|
|
#include "mathops.h"
|
|
#include "float_cast.h"
|
|
#include <stdarg.h>
|
|
#include "celt_lpc.h"
|
|
#include "vq.h"
|
|
|
|
#ifndef OPUS_VERSION
|
|
#define OPUS_VERSION "unknown"
|
|
#endif
|
|
|
|
#ifdef CUSTOM_MODES
|
|
#define OPUS_CUSTOM_NOSTATIC
|
|
#else
|
|
#define OPUS_CUSTOM_NOSTATIC static inline
|
|
#endif
|
|
|
|
static const unsigned char trim_icdf[11] = {126, 124, 119, 109, 87, 41, 19, 9, 4, 2, 0};
|
|
/* Probs: NONE: 21.875%, LIGHT: 6.25%, NORMAL: 65.625%, AGGRESSIVE: 6.25% */
|
|
static const unsigned char spread_icdf[4] = {25, 23, 2, 0};
|
|
|
|
static const unsigned char tapset_icdf[3]={2,1,0};
|
|
|
|
#ifdef CUSTOM_MODES
|
|
static const unsigned char toOpusTable[20] = {
|
|
0xE0, 0xE8, 0xF0, 0xF8,
|
|
0xC0, 0xC8, 0xD0, 0xD8,
|
|
0xA0, 0xA8, 0xB0, 0xB8,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x80, 0x88, 0x90, 0x98,
|
|
};
|
|
|
|
static const unsigned char fromOpusTable[16] = {
|
|
0x80, 0x88, 0x90, 0x98,
|
|
0x40, 0x48, 0x50, 0x58,
|
|
0x20, 0x28, 0x30, 0x38,
|
|
0x00, 0x08, 0x10, 0x18
|
|
};
|
|
|
|
static inline int toOpus(unsigned char c)
|
|
{
|
|
int ret=0;
|
|
if (c<0xA0)
|
|
ret = toOpusTable[c>>3];
|
|
if (ret == 0)
|
|
return -1;
|
|
else
|
|
return ret|(c&0x7);
|
|
}
|
|
|
|
static inline int fromOpus(unsigned char c)
|
|
{
|
|
if (c<0x80)
|
|
return -1;
|
|
else
|
|
return fromOpusTable[(c>>3)-16] | (c&0x7);
|
|
}
|
|
#endif /* CUSTOM_MODES */
|
|
|
|
#define COMBFILTER_MAXPERIOD 1024
|
|
#define COMBFILTER_MINPERIOD 15
|
|
|
|
static int resampling_factor(opus_int32 rate)
|
|
{
|
|
int ret;
|
|
switch (rate)
|
|
{
|
|
case 48000:
|
|
ret = 1;
|
|
break;
|
|
case 24000:
|
|
ret = 2;
|
|
break;
|
|
case 16000:
|
|
ret = 3;
|
|
break;
|
|
case 12000:
|
|
ret = 4;
|
|
break;
|
|
case 8000:
|
|
ret = 6;
|
|
break;
|
|
default:
|
|
#ifndef CUSTOM_MODES
|
|
celt_assert(0);
|
|
#endif
|
|
ret = 0;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/** Encoder state
|
|
@brief Encoder state
|
|
*/
|
|
struct OpusCustomEncoder {
|
|
const OpusCustomMode *mode; /**< Mode used by the encoder */
|
|
int overlap;
|
|
int channels;
|
|
int stream_channels;
|
|
|
|
int force_intra;
|
|
int clip;
|
|
int disable_pf;
|
|
int complexity;
|
|
int upsample;
|
|
int start, end;
|
|
|
|
opus_int32 bitrate;
|
|
int vbr;
|
|
int signalling;
|
|
int constrained_vbr; /* If zero, VBR can do whatever it likes with the rate */
|
|
int loss_rate;
|
|
int lsb_depth;
|
|
|
|
/* Everything beyond this point gets cleared on a reset */
|
|
#define ENCODER_RESET_START rng
|
|
|
|
opus_uint32 rng;
|
|
int spread_decision;
|
|
opus_val32 delayedIntra;
|
|
int tonal_average;
|
|
int lastCodedBands;
|
|
int hf_average;
|
|
int tapset_decision;
|
|
|
|
int prefilter_period;
|
|
opus_val16 prefilter_gain;
|
|
int prefilter_tapset;
|
|
#ifdef RESYNTH
|
|
int prefilter_period_old;
|
|
opus_val16 prefilter_gain_old;
|
|
int prefilter_tapset_old;
|
|
#endif
|
|
int consec_transient;
|
|
|
|
opus_val32 preemph_memE[2];
|
|
opus_val32 preemph_memD[2];
|
|
|
|
/* VBR-related parameters */
|
|
opus_int32 vbr_reservoir;
|
|
opus_int32 vbr_drift;
|
|
opus_int32 vbr_offset;
|
|
opus_int32 vbr_count;
|
|
|
|
#ifdef RESYNTH
|
|
celt_sig syn_mem[2][2*MAX_PERIOD];
|
|
#endif
|
|
|
|
celt_sig in_mem[1]; /* Size = channels*mode->overlap */
|
|
/* celt_sig prefilter_mem[], Size = channels*COMBFILTER_MAXPERIOD */
|
|
/* opus_val16 oldBandE[], Size = channels*mode->nbEBands */
|
|
/* opus_val16 oldLogE[], Size = channels*mode->nbEBands */
|
|
/* opus_val16 oldLogE2[], Size = channels*mode->nbEBands */
|
|
#ifdef RESYNTH
|
|
/* opus_val16 overlap_mem[], Size = channels*overlap */
|
|
#endif
|
|
};
|
|
|
|
int celt_encoder_get_size(int channels)
|
|
{
|
|
CELTMode *mode = opus_custom_mode_create(48000, 960, NULL);
|
|
return opus_custom_encoder_get_size(mode, channels);
|
|
}
|
|
|
|
OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int channels)
|
|
{
|
|
int size = sizeof(struct CELTEncoder)
|
|
+ (channels*mode->overlap-1)*sizeof(celt_sig) /* celt_sig in_mem[channels*mode->overlap]; */
|
|
+ channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) /* celt_sig prefilter_mem[channels*COMBFILTER_MAXPERIOD]; */
|
|
+ 3*channels*mode->nbEBands*sizeof(opus_val16); /* opus_val16 oldBandE[channels*mode->nbEBands]; */
|
|
/* opus_val16 oldLogE[channels*mode->nbEBands]; */
|
|
/* opus_val16 oldLogE2[channels*mode->nbEBands]; */
|
|
#ifdef RESYNTH
|
|
size += channels*mode->overlap*sizeof(celt_sig); /* celt_sig overlap_mem[channels*mode->nbEBands]; */
|
|
#endif
|
|
return size;
|
|
}
|
|
|
|
#ifdef CUSTOM_MODES
|
|
CELTEncoder *opus_custom_encoder_create(const CELTMode *mode, int channels, int *error)
|
|
{
|
|
int ret;
|
|
CELTEncoder *st = (CELTEncoder *)opus_alloc(opus_custom_encoder_get_size(mode, channels));
|
|
/* init will handle the NULL case */
|
|
ret = opus_custom_encoder_init(st, mode, channels);
|
|
if (ret != OPUS_OK)
|
|
{
|
|
opus_custom_encoder_destroy(st);
|
|
st = NULL;
|
|
}
|
|
if (error)
|
|
*error = ret;
|
|
return st;
|
|
}
|
|
#endif /* CUSTOM_MODES */
|
|
|
|
int celt_encoder_init(CELTEncoder *st, opus_int32 sampling_rate, int channels)
|
|
{
|
|
int ret;
|
|
ret = opus_custom_encoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels);
|
|
if (ret != OPUS_OK)
|
|
return ret;
|
|
st->upsample = resampling_factor(sampling_rate);
|
|
return OPUS_OK;
|
|
}
|
|
|
|
OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_init(CELTEncoder *st, const CELTMode *mode, int channels)
|
|
{
|
|
if (channels < 0 || channels > 2)
|
|
return OPUS_BAD_ARG;
|
|
|
|
if (st==NULL || mode==NULL)
|
|
return OPUS_ALLOC_FAIL;
|
|
|
|
OPUS_CLEAR((char*)st, opus_custom_encoder_get_size(mode, channels));
|
|
|
|
st->mode = mode;
|
|
st->overlap = mode->overlap;
|
|
st->stream_channels = st->channels = channels;
|
|
|
|
st->upsample = 1;
|
|
st->start = 0;
|
|
st->end = st->mode->effEBands;
|
|
st->signalling = 1;
|
|
|
|
st->constrained_vbr = 1;
|
|
st->clip = 1;
|
|
|
|
st->bitrate = OPUS_BITRATE_MAX;
|
|
st->vbr = 0;
|
|
st->force_intra = 0;
|
|
st->complexity = 5;
|
|
st->lsb_depth=24;
|
|
|
|
opus_custom_encoder_ctl(st, OPUS_RESET_STATE);
|
|
|
|
return OPUS_OK;
|
|
}
|
|
|
|
#ifdef CUSTOM_MODES
|
|
void opus_custom_encoder_destroy(CELTEncoder *st)
|
|
{
|
|
opus_free(st);
|
|
}
|
|
#endif /* CUSTOM_MODES */
|
|
|
|
static inline opus_val16 SIG2WORD16(celt_sig x)
|
|
{
|
|
#ifdef FIXED_POINT
|
|
x = PSHR32(x, SIG_SHIFT);
|
|
x = MAX32(x, -32768);
|
|
x = MIN32(x, 32767);
|
|
return EXTRACT16(x);
|
|
#else
|
|
return (opus_val16)x;
|
|
#endif
|
|
}
|
|
|
|
static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int C,
|
|
int overlap)
|
|
{
|
|
int i;
|
|
VARDECL(opus_val16, tmp);
|
|
opus_val32 mem0=0,mem1=0;
|
|
int is_transient = 0;
|
|
int block;
|
|
int N;
|
|
VARDECL(opus_val16, bins);
|
|
SAVE_STACK;
|
|
ALLOC(tmp, len, opus_val16);
|
|
|
|
block = overlap/2;
|
|
N=len/block;
|
|
ALLOC(bins, N, opus_val16);
|
|
if (C==1)
|
|
{
|
|
for (i=0;i<len;i++)
|
|
tmp[i] = SHR32(in[i],SIG_SHIFT);
|
|
} else {
|
|
for (i=0;i<len;i++)
|
|
tmp[i] = SHR32(ADD32(in[i],in[i+len]), SIG_SHIFT+1);
|
|
}
|
|
|
|
/* High-pass filter: (1 - 2*z^-1 + z^-2) / (1 - z^-1 + .5*z^-2) */
|
|
for (i=0;i<len;i++)
|
|
{
|
|
opus_val32 x,y;
|
|
x = tmp[i];
|
|
y = ADD32(mem0, x);
|
|
#ifdef FIXED_POINT
|
|
mem0 = mem1 + y - SHL32(x,1);
|
|
mem1 = x - SHR32(y,1);
|
|
#else
|
|
mem0 = mem1 + y - 2*x;
|
|
mem1 = x - .5f*y;
|
|
#endif
|
|
tmp[i] = EXTRACT16(SHR32(y,2));
|
|
}
|
|
/* First few samples are bad because we don't propagate the memory */
|
|
for (i=0;i<12;i++)
|
|
tmp[i] = 0;
|
|
|
|
for (i=0;i<N;i++)
|
|
{
|
|
int j;
|
|
opus_val16 max_abs=0;
|
|
for (j=0;j<block;j++)
|
|
max_abs = MAX16(max_abs, ABS16(tmp[i*block+j]));
|
|
bins[i] = max_abs;
|
|
}
|
|
for (i=0;i<N;i++)
|
|
{
|
|
int j;
|
|
int conseq=0;
|
|
opus_val16 t1, t2, t3;
|
|
|
|
t1 = MULT16_16_Q15(QCONST16(.15f, 15), bins[i]);
|
|
t2 = MULT16_16_Q15(QCONST16(.4f, 15), bins[i]);
|
|
t3 = MULT16_16_Q15(QCONST16(.15f, 15), bins[i]);
|
|
for (j=0;j<i;j++)
|
|
{
|
|
if (bins[j] < t1)
|
|
conseq++;
|
|
if (bins[j] < t2)
|
|
conseq++;
|
|
else
|
|
conseq = 0;
|
|
}
|
|
if (conseq>=3)
|
|
is_transient=1;
|
|
conseq = 0;
|
|
for (j=i+1;j<N;j++)
|
|
{
|
|
if (bins[j] < t3)
|
|
conseq++;
|
|
else
|
|
conseq = 0;
|
|
}
|
|
if (conseq>=7)
|
|
is_transient=1;
|
|
}
|
|
RESTORE_STACK;
|
|
#ifdef FUZZING
|
|
is_transient = rand()&0x1;
|
|
#endif
|
|
return is_transient;
|
|
}
|
|
|
|
/** Apply window and compute the MDCT for all sub-frames and
|
|
all channels in a frame */
|
|
static void compute_mdcts(const CELTMode *mode, int shortBlocks, celt_sig * OPUS_RESTRICT in, celt_sig * OPUS_RESTRICT out, int C, int LM)
|
|
{
|
|
if (C==1 && !shortBlocks)
|
|
{
|
|
const int overlap = OVERLAP(mode);
|
|
clt_mdct_forward(&mode->mdct, in, out, mode->window, overlap, mode->maxLM-LM, 1);
|
|
} else {
|
|
const int overlap = OVERLAP(mode);
|
|
int N = mode->shortMdctSize<<LM;
|
|
int B = 1;
|
|
int b, c;
|
|
if (shortBlocks)
|
|
{
|
|
N = mode->shortMdctSize;
|
|
B = shortBlocks;
|
|
}
|
|
c=0; do {
|
|
for (b=0;b<B;b++)
|
|
{
|
|
/* Interleaving the sub-frames while doing the MDCTs */
|
|
clt_mdct_forward(&mode->mdct, in+c*(B*N+overlap)+b*N, &out[b+c*N*B], mode->window, overlap, shortBlocks ? mode->maxLM : mode->maxLM-LM, B);
|
|
}
|
|
} while (++c<C);
|
|
}
|
|
}
|
|
|
|
/** Compute the IMDCT and apply window for all sub-frames and
|
|
all channels in a frame */
|
|
static void compute_inv_mdcts(const CELTMode *mode, int shortBlocks, celt_sig *X,
|
|
celt_sig * OPUS_RESTRICT out_mem[],
|
|
celt_sig * OPUS_RESTRICT overlap_mem[], int C, int LM)
|
|
{
|
|
int c;
|
|
const int N = mode->shortMdctSize<<LM;
|
|
const int overlap = OVERLAP(mode);
|
|
VARDECL(opus_val32, x);
|
|
SAVE_STACK;
|
|
|
|
ALLOC(x, N+overlap, opus_val32);
|
|
c=0; do {
|
|
int j;
|
|
int b;
|
|
int N2 = N;
|
|
int B = 1;
|
|
|
|
if (shortBlocks)
|
|
{
|
|
N2 = mode->shortMdctSize;
|
|
B = shortBlocks;
|
|
}
|
|
/* Prevents problems from the imdct doing the overlap-add */
|
|
OPUS_CLEAR(x, overlap);
|
|
|
|
for (b=0;b<B;b++)
|
|
{
|
|
/* IMDCT on the interleaved the sub-frames */
|
|
clt_mdct_backward(&mode->mdct, &X[b+c*N2*B], x+N2*b, mode->window, overlap, shortBlocks ? mode->maxLM : mode->maxLM-LM, B);
|
|
}
|
|
|
|
for (j=0;j<overlap;j++)
|
|
out_mem[c][j] = x[j] + overlap_mem[c][j];
|
|
for (;j<N;j++)
|
|
out_mem[c][j] = x[j];
|
|
for (j=0;j<overlap;j++)
|
|
overlap_mem[c][j] = x[N+j];
|
|
} while (++c<C);
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
static void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsample, const opus_val16 *coef, celt_sig *mem)
|
|
{
|
|
int c;
|
|
int count=0;
|
|
c=0; do {
|
|
int j;
|
|
celt_sig * OPUS_RESTRICT x;
|
|
opus_val16 * OPUS_RESTRICT y;
|
|
celt_sig m = mem[c];
|
|
x =in[c];
|
|
y = pcm+c;
|
|
for (j=0;j<N;j++)
|
|
{
|
|
celt_sig tmp = *x + m;
|
|
m = MULT16_32_Q15(coef[0], tmp)
|
|
- MULT16_32_Q15(coef[1], *x);
|
|
tmp = SHL32(MULT16_32_Q15(coef[3], tmp), 2);
|
|
x++;
|
|
/* Technically the store could be moved outside of the if because
|
|
the stores we don't want will just be overwritten */
|
|
if (count==0)
|
|
*y = SCALEOUT(SIG2WORD16(tmp));
|
|
if (++count==downsample)
|
|
{
|
|
y+=C;
|
|
count=0;
|
|
}
|
|
}
|
|
mem[c] = m;
|
|
} while (++c<C);
|
|
}
|
|
|
|
static void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N,
|
|
opus_val16 g0, opus_val16 g1, int tapset0, int tapset1,
|
|
const opus_val16 *window, int overlap)
|
|
{
|
|
int i;
|
|
/* printf ("%d %d %f %f\n", T0, T1, g0, g1); */
|
|
opus_val16 g00, g01, g02, g10, g11, g12;
|
|
static const opus_val16 gains[3][3] = {
|
|
{QCONST16(0.3066406250f, 15), QCONST16(0.2170410156f, 15), QCONST16(0.1296386719f, 15)},
|
|
{QCONST16(0.4638671875f, 15), QCONST16(0.2680664062f, 15), QCONST16(0.f, 15)},
|
|
{QCONST16(0.7998046875f, 15), QCONST16(0.1000976562f, 15), QCONST16(0.f, 15)}};
|
|
g00 = MULT16_16_Q15(g0, gains[tapset0][0]);
|
|
g01 = MULT16_16_Q15(g0, gains[tapset0][1]);
|
|
g02 = MULT16_16_Q15(g0, gains[tapset0][2]);
|
|
g10 = MULT16_16_Q15(g1, gains[tapset1][0]);
|
|
g11 = MULT16_16_Q15(g1, gains[tapset1][1]);
|
|
g12 = MULT16_16_Q15(g1, gains[tapset1][2]);
|
|
for (i=0;i<overlap;i++)
|
|
{
|
|
opus_val16 f;
|
|
f = MULT16_16_Q15(window[i],window[i]);
|
|
y[i] = x[i]
|
|
+ MULT16_32_Q15(MULT16_16_Q15((Q15ONE-f),g00),x[i-T0])
|
|
+ MULT16_32_Q15(MULT16_16_Q15((Q15ONE-f),g01),x[i-T0-1])
|
|
+ MULT16_32_Q15(MULT16_16_Q15((Q15ONE-f),g01),x[i-T0+1])
|
|
+ MULT16_32_Q15(MULT16_16_Q15((Q15ONE-f),g02),x[i-T0-2])
|
|
+ MULT16_32_Q15(MULT16_16_Q15((Q15ONE-f),g02),x[i-T0+2])
|
|
+ MULT16_32_Q15(MULT16_16_Q15(f,g10),x[i-T1])
|
|
+ MULT16_32_Q15(MULT16_16_Q15(f,g11),x[i-T1-1])
|
|
+ MULT16_32_Q15(MULT16_16_Q15(f,g11),x[i-T1+1])
|
|
+ MULT16_32_Q15(MULT16_16_Q15(f,g12),x[i-T1-2])
|
|
+ MULT16_32_Q15(MULT16_16_Q15(f,g12),x[i-T1+2]);
|
|
|
|
}
|
|
for (i=overlap;i<N;i++)
|
|
y[i] = x[i]
|
|
+ MULT16_32_Q15(g10,x[i-T1])
|
|
+ MULT16_32_Q15(g11,x[i-T1-1])
|
|
+ MULT16_32_Q15(g11,x[i-T1+1])
|
|
+ MULT16_32_Q15(g12,x[i-T1-2])
|
|
+ MULT16_32_Q15(g12,x[i-T1+2]);
|
|
}
|
|
|
|
static const signed char tf_select_table[4][8] = {
|
|
{0, -1, 0, -1, 0,-1, 0,-1},
|
|
{0, -1, 0, -2, 1, 0, 1,-1},
|
|
{0, -2, 0, -3, 2, 0, 1,-1},
|
|
{0, -2, 0, -3, 3, 0, 1,-1},
|
|
};
|
|
|
|
static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, int width)
|
|
{
|
|
int i, j;
|
|
static const opus_val16 sqrtM_1[4] = {Q15ONE, QCONST16(.70710678f,15), QCONST16(0.5f,15), QCONST16(0.35355339f,15)};
|
|
opus_val32 L1;
|
|
opus_val16 bias;
|
|
L1=0;
|
|
for (i=0;i<1<<LM;i++)
|
|
{
|
|
opus_val32 L2 = 0;
|
|
for (j=0;j<N>>LM;j++)
|
|
L2 = MAC16_16(L2, tmp[(j<<LM)+i], tmp[(j<<LM)+i]);
|
|
L1 += celt_sqrt(L2);
|
|
}
|
|
L1 = MULT16_32_Q15(sqrtM_1[LM], L1);
|
|
if (width==1)
|
|
bias = QCONST16(.12f,15)*LM;
|
|
else if (width==2)
|
|
bias = QCONST16(.05f,15)*LM;
|
|
else
|
|
bias = QCONST16(.02f,15)*LM;
|
|
L1 = MAC16_32_Q15(L1, bias, L1);
|
|
return L1;
|
|
}
|
|
|
|
static int tf_analysis(const CELTMode *m, int len, int C, int isTransient,
|
|
int *tf_res, int nbCompressedBytes, celt_norm *X, int N0, int LM,
|
|
int start, int *tf_sum)
|
|
{
|
|
int i;
|
|
VARDECL(int, metric);
|
|
int cost0;
|
|
int cost1;
|
|
VARDECL(int, path0);
|
|
VARDECL(int, path1);
|
|
VARDECL(celt_norm, tmp);
|
|
int lambda;
|
|
int tf_select=0;
|
|
SAVE_STACK;
|
|
|
|
if (nbCompressedBytes<15*C || start!=0)
|
|
{
|
|
*tf_sum = 0;
|
|
for (i=0;i<len;i++)
|
|
tf_res[i] = isTransient;
|
|
return 0;
|
|
}
|
|
if (nbCompressedBytes<40)
|
|
lambda = 12;
|
|
else if (nbCompressedBytes<60)
|
|
lambda = 6;
|
|
else if (nbCompressedBytes<100)
|
|
lambda = 4;
|
|
else
|
|
lambda = 3;
|
|
|
|
ALLOC(metric, len, int);
|
|
ALLOC(tmp, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm);
|
|
ALLOC(path0, len, int);
|
|
ALLOC(path1, len, int);
|
|
|
|
*tf_sum = 0;
|
|
for (i=0;i<len;i++)
|
|
{
|
|
int j, k, N;
|
|
opus_val32 L1, best_L1;
|
|
int best_level=0;
|
|
N = (m->eBands[i+1]-m->eBands[i])<<LM;
|
|
for (j=0;j<N;j++)
|
|
tmp[j] = X[j+(m->eBands[i]<<LM)];
|
|
/* Just add the right channel if we're in stereo */
|
|
if (C==2)
|
|
for (j=0;j<N;j++)
|
|
tmp[j] = ADD16(SHR16(tmp[j], 1),SHR16(X[N0+j+(m->eBands[i]<<LM)], 1));
|
|
L1 = l1_metric(tmp, N, isTransient ? LM : 0, N>>LM);
|
|
best_L1 = L1;
|
|
/*printf ("%f ", L1);*/
|
|
for (k=0;k<LM;k++)
|
|
{
|
|
int B;
|
|
|
|
if (isTransient)
|
|
B = (LM-k-1);
|
|
else
|
|
B = k+1;
|
|
|
|
if (isTransient)
|
|
haar1(tmp, N>>(LM-k), 1<<(LM-k));
|
|
else
|
|
haar1(tmp, N>>k, 1<<k);
|
|
|
|
L1 = l1_metric(tmp, N, B, N>>LM);
|
|
|
|
if (L1 < best_L1)
|
|
{
|
|
best_L1 = L1;
|
|
best_level = k+1;
|
|
}
|
|
}
|
|
/*printf ("%d ", isTransient ? LM-best_level : best_level);*/
|
|
if (isTransient)
|
|
metric[i] = best_level;
|
|
else
|
|
metric[i] = -best_level;
|
|
*tf_sum += metric[i];
|
|
}
|
|
/*printf("\n");*/
|
|
/* NOTE: Future optimized implementations could detect extreme transients and set
|
|
tf_select = 1 but so far we have not found a reliable way of making this useful */
|
|
tf_select = 0;
|
|
|
|
cost0 = 0;
|
|
cost1 = isTransient ? 0 : lambda;
|
|
/* Viterbi forward pass */
|
|
for (i=1;i<len;i++)
|
|
{
|
|
int curr0, curr1;
|
|
int from0, from1;
|
|
|
|
from0 = cost0;
|
|
from1 = cost1 + lambda;
|
|
if (from0 < from1)
|
|
{
|
|
curr0 = from0;
|
|
path0[i]= 0;
|
|
} else {
|
|
curr0 = from1;
|
|
path0[i]= 1;
|
|
}
|
|
|
|
from0 = cost0 + lambda;
|
|
from1 = cost1;
|
|
if (from0 < from1)
|
|
{
|
|
curr1 = from0;
|
|
path1[i]= 0;
|
|
} else {
|
|
curr1 = from1;
|
|
path1[i]= 1;
|
|
}
|
|
cost0 = curr0 + abs(metric[i]-tf_select_table[LM][4*isTransient+2*tf_select+0]);
|
|
cost1 = curr1 + abs(metric[i]-tf_select_table[LM][4*isTransient+2*tf_select+1]);
|
|
}
|
|
tf_res[len-1] = cost0 < cost1 ? 0 : 1;
|
|
/* Viterbi backward pass to check the decisions */
|
|
for (i=len-2;i>=0;i--)
|
|
{
|
|
if (tf_res[i+1] == 1)
|
|
tf_res[i] = path1[i+1];
|
|
else
|
|
tf_res[i] = path0[i+1];
|
|
}
|
|
RESTORE_STACK;
|
|
#ifdef FUZZING
|
|
tf_select = rand()&0x1;
|
|
tf_res[0] = rand()&0x1;
|
|
for (i=1;i<len;i++)
|
|
tf_res[i] = tf_res[i-1] ^ ((rand()&0xF) == 0);
|
|
#endif
|
|
return tf_select;
|
|
}
|
|
|
|
static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM, int tf_select, ec_enc *enc)
|
|
{
|
|
int curr, i;
|
|
int tf_select_rsv;
|
|
int tf_changed;
|
|
int logp;
|
|
opus_uint32 budget;
|
|
opus_uint32 tell;
|
|
budget = enc->storage*8;
|
|
tell = ec_tell(enc);
|
|
logp = isTransient ? 2 : 4;
|
|
/* Reserve space to code the tf_select decision. */
|
|
tf_select_rsv = LM>0 && tell+logp+1 <= budget;
|
|
budget -= tf_select_rsv;
|
|
curr = tf_changed = 0;
|
|
for (i=start;i<end;i++)
|
|
{
|
|
if (tell+logp<=budget)
|
|
{
|
|
ec_enc_bit_logp(enc, tf_res[i] ^ curr, logp);
|
|
tell = ec_tell(enc);
|
|
curr = tf_res[i];
|
|
tf_changed |= curr;
|
|
}
|
|
else
|
|
tf_res[i] = curr;
|
|
logp = isTransient ? 4 : 5;
|
|
}
|
|
/* Only code tf_select if it would actually make a difference. */
|
|
if (tf_select_rsv &&
|
|
tf_select_table[LM][4*isTransient+0+tf_changed]!=
|
|
tf_select_table[LM][4*isTransient+2+tf_changed])
|
|
ec_enc_bit_logp(enc, tf_select, 1);
|
|
else
|
|
tf_select = 0;
|
|
for (i=start;i<end;i++)
|
|
tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]];
|
|
/*printf("%d %d ", isTransient, tf_select); for(i=0;i<end;i++)printf("%d ", tf_res[i]);printf("\n");*/
|
|
}
|
|
|
|
static void tf_decode(int start, int end, int isTransient, int *tf_res, int LM, ec_dec *dec)
|
|
{
|
|
int i, curr, tf_select;
|
|
int tf_select_rsv;
|
|
int tf_changed;
|
|
int logp;
|
|
opus_uint32 budget;
|
|
opus_uint32 tell;
|
|
|
|
budget = dec->storage*8;
|
|
tell = ec_tell(dec);
|
|
logp = isTransient ? 2 : 4;
|
|
tf_select_rsv = LM>0 && tell+logp+1<=budget;
|
|
budget -= tf_select_rsv;
|
|
tf_changed = curr = 0;
|
|
for (i=start;i<end;i++)
|
|
{
|
|
if (tell+logp<=budget)
|
|
{
|
|
curr ^= ec_dec_bit_logp(dec, logp);
|
|
tell = ec_tell(dec);
|
|
tf_changed |= curr;
|
|
}
|
|
tf_res[i] = curr;
|
|
logp = isTransient ? 4 : 5;
|
|
}
|
|
tf_select = 0;
|
|
if (tf_select_rsv &&
|
|
tf_select_table[LM][4*isTransient+0+tf_changed] !=
|
|
tf_select_table[LM][4*isTransient+2+tf_changed])
|
|
{
|
|
tf_select = ec_dec_bit_logp(dec, 1);
|
|
}
|
|
for (i=start;i<end;i++)
|
|
{
|
|
tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]];
|
|
}
|
|
}
|
|
|
|
static void init_caps(const CELTMode *m,int *cap,int LM,int C)
|
|
{
|
|
int i;
|
|
for (i=0;i<m->nbEBands;i++)
|
|
{
|
|
int N;
|
|
N=(m->eBands[i+1]-m->eBands[i])<<LM;
|
|
cap[i] = (m->cache.caps[m->nbEBands*(2*LM+C-1)+i]+64)*C*N>>2;
|
|
}
|
|
}
|
|
|
|
static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X,
|
|
const opus_val16 *bandLogE, int end, int LM, int C, int N0)
|
|
{
|
|
int i;
|
|
opus_val32 diff=0;
|
|
int c;
|
|
int trim_index = 5;
|
|
if (C==2)
|
|
{
|
|
opus_val16 sum = 0; /* Q10 */
|
|
/* Compute inter-channel correlation for low frequencies */
|
|
for (i=0;i<8;i++)
|
|
{
|
|
int j;
|
|
opus_val32 partial = 0;
|
|
for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
|
|
partial = MAC16_16(partial, X[j], X[N0+j]);
|
|
sum = ADD16(sum, EXTRACT16(SHR32(partial, 18)));
|
|
}
|
|
sum = MULT16_16_Q15(QCONST16(1.f/8, 15), sum);
|
|
/*printf ("%f\n", sum);*/
|
|
if (sum > QCONST16(.995f,10))
|
|
trim_index-=4;
|
|
else if (sum > QCONST16(.92f,10))
|
|
trim_index-=3;
|
|
else if (sum > QCONST16(.85f,10))
|
|
trim_index-=2;
|
|
else if (sum > QCONST16(.8f,10))
|
|
trim_index-=1;
|
|
}
|
|
|
|
/* Estimate spectral tilt */
|
|
c=0; do {
|
|
for (i=0;i<end-1;i++)
|
|
{
|
|
diff += bandLogE[i+c*m->nbEBands]*(opus_int32)(2+2*i-m->nbEBands);
|
|
}
|
|
} while (++c<C);
|
|
/* We divide by two here to avoid making the tilt larger for stereo as a
|
|
result of a bug in the loop above */
|
|
diff /= 2*C*(end-1);
|
|
/*printf("%f\n", diff);*/
|
|
if (diff > QCONST16(2.f, DB_SHIFT))
|
|
trim_index--;
|
|
if (diff > QCONST16(8.f, DB_SHIFT))
|
|
trim_index--;
|
|
if (diff < -QCONST16(4.f, DB_SHIFT))
|
|
trim_index++;
|
|
if (diff < -QCONST16(10.f, DB_SHIFT))
|
|
trim_index++;
|
|
|
|
if (trim_index<0)
|
|
trim_index = 0;
|
|
if (trim_index>10)
|
|
trim_index = 10;
|
|
#ifdef FUZZING
|
|
trim_index = rand()%11;
|
|
#endif
|
|
return trim_index;
|
|
}
|
|
|
|
static int stereo_analysis(const CELTMode *m, const celt_norm *X,
|
|
int LM, int N0)
|
|
{
|
|
int i;
|
|
int thetas;
|
|
opus_val32 sumLR = EPSILON, sumMS = EPSILON;
|
|
|
|
/* Use the L1 norm to model the entropy of the L/R signal vs the M/S signal */
|
|
for (i=0;i<13;i++)
|
|
{
|
|
int j;
|
|
for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++)
|
|
{
|
|
opus_val32 L, R, M, S;
|
|
/* We cast to 32-bit first because of the -32768 case */
|
|
L = EXTEND32(X[j]);
|
|
R = EXTEND32(X[N0+j]);
|
|
M = ADD32(L, R);
|
|
S = SUB32(L, R);
|
|
sumLR = ADD32(sumLR, ADD32(ABS32(L), ABS32(R)));
|
|
sumMS = ADD32(sumMS, ADD32(ABS32(M), ABS32(S)));
|
|
}
|
|
}
|
|
sumMS = MULT16_32_Q15(QCONST16(0.707107f, 15), sumMS);
|
|
thetas = 13;
|
|
/* We don't need thetas for lower bands with LM<=1 */
|
|
if (LM<=1)
|
|
thetas -= 8;
|
|
return MULT16_32_Q15((m->eBands[13]<<(LM+1))+thetas, sumMS)
|
|
> MULT16_32_Q15(m->eBands[13]<<(LM+1), sumLR);
|
|
}
|
|
|
|
int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes, ec_enc *enc)
|
|
{
|
|
int i, c, N;
|
|
opus_int32 bits;
|
|
ec_enc _enc;
|
|
VARDECL(celt_sig, in);
|
|
VARDECL(celt_sig, freq);
|
|
VARDECL(celt_norm, X);
|
|
VARDECL(celt_ener, bandE);
|
|
VARDECL(opus_val16, bandLogE);
|
|
VARDECL(int, fine_quant);
|
|
VARDECL(opus_val16, error);
|
|
VARDECL(int, pulses);
|
|
VARDECL(int, cap);
|
|
VARDECL(int, offsets);
|
|
VARDECL(int, fine_priority);
|
|
VARDECL(int, tf_res);
|
|
VARDECL(unsigned char, collapse_masks);
|
|
celt_sig *prefilter_mem;
|
|
opus_val16 *oldBandE, *oldLogE, *oldLogE2;
|
|
int shortBlocks=0;
|
|
int isTransient=0;
|
|
const int CC = st->channels;
|
|
const int C = st->stream_channels;
|
|
int LM, M;
|
|
int tf_select;
|
|
int nbFilledBytes, nbAvailableBytes;
|
|
int effEnd;
|
|
int codedBands;
|
|
int tf_sum;
|
|
int alloc_trim;
|
|
int pitch_index=COMBFILTER_MINPERIOD;
|
|
opus_val16 gain1 = 0;
|
|
int intensity=0;
|
|
int dual_stereo=0;
|
|
int effectiveBytes;
|
|
opus_val16 pf_threshold;
|
|
int dynalloc_logp;
|
|
opus_int32 vbr_rate;
|
|
opus_int32 total_bits;
|
|
opus_int32 total_boost;
|
|
opus_int32 balance;
|
|
opus_int32 tell;
|
|
int prefilter_tapset=0;
|
|
int pf_on;
|
|
int anti_collapse_rsv;
|
|
int anti_collapse_on=0;
|
|
int silence=0;
|
|
ALLOC_STACK;
|
|
|
|
if (nbCompressedBytes<2 || pcm==NULL)
|
|
return OPUS_BAD_ARG;
|
|
|
|
frame_size *= st->upsample;
|
|
for (LM=0;LM<=st->mode->maxLM;LM++)
|
|
if (st->mode->shortMdctSize<<LM==frame_size)
|
|
break;
|
|
if (LM>st->mode->maxLM)
|
|
return OPUS_BAD_ARG;
|
|
M=1<<LM;
|
|
N = M*st->mode->shortMdctSize;
|
|
|
|
prefilter_mem = st->in_mem+CC*(st->overlap);
|
|
oldBandE = (opus_val16*)(st->in_mem+CC*(st->overlap+COMBFILTER_MAXPERIOD));
|
|
oldLogE = oldBandE + CC*st->mode->nbEBands;
|
|
oldLogE2 = oldLogE + CC*st->mode->nbEBands;
|
|
|
|
if (enc==NULL)
|
|
{
|
|
tell=1;
|
|
nbFilledBytes=0;
|
|
} else {
|
|
tell=ec_tell(enc);
|
|
nbFilledBytes=(tell+4)>>3;
|
|
}
|
|
|
|
#ifdef CUSTOM_MODES
|
|
if (st->signalling && enc==NULL)
|
|
{
|
|
int tmp = (st->mode->effEBands-st->end)>>1;
|
|
st->end = IMAX(1, st->mode->effEBands-tmp);
|
|
compressed[0] = tmp<<5;
|
|
compressed[0] |= LM<<3;
|
|
compressed[0] |= (C==2)<<2;
|
|
/* Convert "standard mode" to Opus header */
|
|
if (st->mode->Fs==48000 && st->mode->shortMdctSize==120)
|
|
{
|
|
int c0 = toOpus(compressed[0]);
|
|
if (c0<0)
|
|
return OPUS_BAD_ARG;
|
|
compressed[0] = c0;
|
|
}
|
|
compressed++;
|
|
nbCompressedBytes--;
|
|
}
|
|
#else
|
|
celt_assert(st->signalling==0);
|
|
#endif
|
|
|
|
/* Can't produce more than 1275 output bytes */
|
|
nbCompressedBytes = IMIN(nbCompressedBytes,1275);
|
|
nbAvailableBytes = nbCompressedBytes - nbFilledBytes;
|
|
|
|
if (st->vbr && st->bitrate!=OPUS_BITRATE_MAX)
|
|
{
|
|
opus_int32 den=st->mode->Fs>>BITRES;
|
|
vbr_rate=(st->bitrate*frame_size+(den>>1))/den;
|
|
#ifdef CUSTOM_MODES
|
|
if (st->signalling)
|
|
vbr_rate -= 8<<BITRES;
|
|
#endif
|
|
effectiveBytes = vbr_rate>>(3+BITRES);
|
|
} else {
|
|
opus_int32 tmp;
|
|
vbr_rate = 0;
|
|
tmp = st->bitrate*frame_size;
|
|
if (tell>1)
|
|
tmp += tell;
|
|
if (st->bitrate!=OPUS_BITRATE_MAX)
|
|
nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes,
|
|
(tmp+4*st->mode->Fs)/(8*st->mode->Fs)-!!st->signalling));
|
|
effectiveBytes = nbCompressedBytes;
|
|
}
|
|
|
|
if (enc==NULL)
|
|
{
|
|
ec_enc_init(&_enc, compressed, nbCompressedBytes);
|
|
enc = &_enc;
|
|
}
|
|
|
|
if (vbr_rate>0)
|
|
{
|
|
/* Computes the max bit-rate allowed in VBR mode to avoid violating the
|
|
target rate and buffering.
|
|
We must do this up front so that bust-prevention logic triggers
|
|
correctly if we don't have enough bits. */
|
|
if (st->constrained_vbr)
|
|
{
|
|
opus_int32 vbr_bound;
|
|
opus_int32 max_allowed;
|
|
/* We could use any multiple of vbr_rate as bound (depending on the
|
|
delay).
|
|
This is clamped to ensure we use at least two bytes if the encoder
|
|
was entirely empty, but to allow 0 in hybrid mode. */
|
|
vbr_bound = vbr_rate;
|
|
max_allowed = IMIN(IMAX(tell==1?2:0,
|
|
(vbr_rate+vbr_bound-st->vbr_reservoir)>>(BITRES+3)),
|
|
nbAvailableBytes);
|
|
if(max_allowed < nbAvailableBytes)
|
|
{
|
|
nbCompressedBytes = nbFilledBytes+max_allowed;
|
|
nbAvailableBytes = max_allowed;
|
|
ec_enc_shrink(enc, nbCompressedBytes);
|
|
}
|
|
}
|
|
}
|
|
total_bits = nbCompressedBytes*8;
|
|
|
|
effEnd = st->end;
|
|
if (effEnd > st->mode->effEBands)
|
|
effEnd = st->mode->effEBands;
|
|
|
|
ALLOC(in, CC*(N+st->overlap), celt_sig);
|
|
|
|
/* Find pitch period and gain */
|
|
{
|
|
VARDECL(celt_sig, _pre);
|
|
celt_sig *pre[2];
|
|
SAVE_STACK;
|
|
ALLOC(_pre, CC*(N+COMBFILTER_MAXPERIOD), celt_sig);
|
|
|
|
pre[0] = _pre;
|
|
pre[1] = _pre + (N+COMBFILTER_MAXPERIOD);
|
|
|
|
silence = 1;
|
|
c=0; do {
|
|
int count = 0;
|
|
const opus_val16 * OPUS_RESTRICT pcmp = pcm+c;
|
|
celt_sig * OPUS_RESTRICT inp = in+c*(N+st->overlap)+st->overlap;
|
|
|
|
for (i=0;i<N;i++)
|
|
{
|
|
celt_sig x, tmp;
|
|
|
|
x = SCALEIN(*pcmp);
|
|
#ifndef FIXED_POINT
|
|
if (!(x==x))
|
|
x = 0;
|
|
if (st->clip)
|
|
x = MAX32(-65536.f, MIN32(65536.f,x));
|
|
#endif
|
|
if (++count==st->upsample)
|
|
{
|
|
count=0;
|
|
pcmp+=CC;
|
|
} else {
|
|
x = 0;
|
|
}
|
|
/* Apply pre-emphasis */
|
|
tmp = MULT16_16(st->mode->preemph[2], x);
|
|
*inp = tmp + st->preemph_memE[c];
|
|
st->preemph_memE[c] = MULT16_32_Q15(st->mode->preemph[1], *inp)
|
|
- MULT16_32_Q15(st->mode->preemph[0], tmp);
|
|
silence = silence && *inp == 0;
|
|
inp++;
|
|
}
|
|
OPUS_COPY(pre[c], prefilter_mem+c*COMBFILTER_MAXPERIOD, COMBFILTER_MAXPERIOD);
|
|
OPUS_COPY(pre[c]+COMBFILTER_MAXPERIOD, in+c*(N+st->overlap)+st->overlap, N);
|
|
} while (++c<CC);
|
|
|
|
#ifdef FUZZING
|
|
if ((rand()&0x3F)==0)
|
|
silence = 1;
|
|
#endif
|
|
if (tell==1)
|
|
ec_enc_bit_logp(enc, silence, 15);
|
|
else
|
|
silence=0;
|
|
if (silence)
|
|
{
|
|
/*In VBR mode there is no need to send more than the minimum. */
|
|
if (vbr_rate>0)
|
|
{
|
|
effectiveBytes=nbCompressedBytes=IMIN(nbCompressedBytes, nbFilledBytes+2);
|
|
total_bits=nbCompressedBytes*8;
|
|
nbAvailableBytes=2;
|
|
ec_enc_shrink(enc, nbCompressedBytes);
|
|
}
|
|
/* Pretend we've filled all the remaining bits with zeros
|
|
(that's what the initialiser did anyway) */
|
|
tell = nbCompressedBytes*8;
|
|
enc->nbits_total+=tell-ec_tell(enc);
|
|
}
|
|
if (nbAvailableBytes>12*C && st->start==0 && !silence && !st->disable_pf && st->complexity >= 5)
|
|
{
|
|
VARDECL(opus_val16, pitch_buf);
|
|
ALLOC(pitch_buf, (COMBFILTER_MAXPERIOD+N)>>1, opus_val16);
|
|
|
|
pitch_downsample(pre, pitch_buf, COMBFILTER_MAXPERIOD+N, CC);
|
|
pitch_search(pitch_buf+(COMBFILTER_MAXPERIOD>>1), pitch_buf, N,
|
|
COMBFILTER_MAXPERIOD-COMBFILTER_MINPERIOD, &pitch_index);
|
|
pitch_index = COMBFILTER_MAXPERIOD-pitch_index;
|
|
|
|
gain1 = remove_doubling(pitch_buf, COMBFILTER_MAXPERIOD, COMBFILTER_MINPERIOD,
|
|
N, &pitch_index, st->prefilter_period, st->prefilter_gain);
|
|
if (pitch_index > COMBFILTER_MAXPERIOD-2)
|
|
pitch_index = COMBFILTER_MAXPERIOD-2;
|
|
gain1 = MULT16_16_Q15(QCONST16(.7f,15),gain1);
|
|
if (st->loss_rate>2)
|
|
gain1 = HALF32(gain1);
|
|
if (st->loss_rate>4)
|
|
gain1 = HALF32(gain1);
|
|
if (st->loss_rate>8)
|
|
gain1 = 0;
|
|
prefilter_tapset = st->tapset_decision;
|
|
} else {
|
|
gain1 = 0;
|
|
}
|
|
|
|
/* Gain threshold for enabling the prefilter/postfilter */
|
|
pf_threshold = QCONST16(.2f,15);
|
|
|
|
/* Adjusting the threshold based on rate and continuity */
|
|
if (abs(pitch_index-st->prefilter_period)*10>pitch_index)
|
|
pf_threshold += QCONST16(.2f,15);
|
|
if (nbAvailableBytes<25)
|
|
pf_threshold += QCONST16(.1f,15);
|
|
if (nbAvailableBytes<35)
|
|
pf_threshold += QCONST16(.1f,15);
|
|
if (st->prefilter_gain > QCONST16(.4f,15))
|
|
pf_threshold -= QCONST16(.1f,15);
|
|
if (st->prefilter_gain > QCONST16(.55f,15))
|
|
pf_threshold -= QCONST16(.1f,15);
|
|
|
|
/* Hard threshold at 0.2 */
|
|
pf_threshold = MAX16(pf_threshold, QCONST16(.2f,15));
|
|
if (gain1<pf_threshold)
|
|
{
|
|
if(st->start==0 && tell+16<=total_bits)
|
|
ec_enc_bit_logp(enc, 0, 1);
|
|
gain1 = 0;
|
|
pf_on = 0;
|
|
} else {
|
|
/*This block is not gated by a total bits check only because
|
|
of the nbAvailableBytes check above.*/
|
|
int qg;
|
|
int octave;
|
|
|
|
if (ABS16(gain1-st->prefilter_gain)<QCONST16(.1f,15))
|
|
gain1=st->prefilter_gain;
|
|
|
|
#ifdef FIXED_POINT
|
|
qg = ((gain1+1536)>>10)/3-1;
|
|
#else
|
|
qg = (int)floor(.5f+gain1*32/3)-1;
|
|
#endif
|
|
qg = IMAX(0, IMIN(7, qg));
|
|
ec_enc_bit_logp(enc, 1, 1);
|
|
pitch_index += 1;
|
|
octave = EC_ILOG(pitch_index)-5;
|
|
ec_enc_uint(enc, octave, 6);
|
|
ec_enc_bits(enc, pitch_index-(16<<octave), 4+octave);
|
|
pitch_index -= 1;
|
|
ec_enc_bits(enc, qg, 3);
|
|
if (ec_tell(enc)+2<=total_bits)
|
|
ec_enc_icdf(enc, prefilter_tapset, tapset_icdf, 2);
|
|
else
|
|
prefilter_tapset = 0;
|
|
gain1 = QCONST16(0.09375f,15)*(qg+1);
|
|
pf_on = 1;
|
|
}
|
|
/*printf("%d %f\n", pitch_index, gain1);*/
|
|
|
|
c=0; do {
|
|
int offset = st->mode->shortMdctSize-st->mode->overlap;
|
|
st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD);
|
|
OPUS_COPY(in+c*(N+st->overlap), st->in_mem+c*(st->overlap), st->overlap);
|
|
if (offset)
|
|
comb_filter(in+c*(N+st->overlap)+st->overlap, pre[c]+COMBFILTER_MAXPERIOD,
|
|
st->prefilter_period, st->prefilter_period, offset, -st->prefilter_gain, -st->prefilter_gain,
|
|
st->prefilter_tapset, st->prefilter_tapset, NULL, 0);
|
|
|
|
comb_filter(in+c*(N+st->overlap)+st->overlap+offset, pre[c]+COMBFILTER_MAXPERIOD+offset,
|
|
st->prefilter_period, pitch_index, N-offset, -st->prefilter_gain, -gain1,
|
|
st->prefilter_tapset, prefilter_tapset, st->mode->window, st->mode->overlap);
|
|
OPUS_COPY(st->in_mem+c*(st->overlap), in+c*(N+st->overlap)+N, st->overlap);
|
|
|
|
if (N>COMBFILTER_MAXPERIOD)
|
|
{
|
|
OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, pre[c]+N, COMBFILTER_MAXPERIOD);
|
|
} else {
|
|
OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, prefilter_mem+c*COMBFILTER_MAXPERIOD+N, COMBFILTER_MAXPERIOD-N);
|
|
OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD+COMBFILTER_MAXPERIOD-N, pre[c]+COMBFILTER_MAXPERIOD, N);
|
|
}
|
|
} while (++c<CC);
|
|
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
isTransient = 0;
|
|
shortBlocks = 0;
|
|
if (LM>0 && ec_tell(enc)+3<=total_bits)
|
|
{
|
|
if (st->complexity > 1)
|
|
{
|
|
isTransient = transient_analysis(in, N+st->overlap, CC,
|
|
st->overlap);
|
|
if (isTransient)
|
|
shortBlocks = M;
|
|
}
|
|
ec_enc_bit_logp(enc, isTransient, 3);
|
|
}
|
|
|
|
ALLOC(freq, CC*N, celt_sig); /**< Interleaved signal MDCTs */
|
|
ALLOC(bandE,st->mode->nbEBands*CC, celt_ener);
|
|
ALLOC(bandLogE,st->mode->nbEBands*CC, opus_val16);
|
|
/* Compute MDCTs */
|
|
compute_mdcts(st->mode, shortBlocks, in, freq, CC, LM);
|
|
|
|
if (CC==2&&C==1)
|
|
{
|
|
for (i=0;i<N;i++)
|
|
freq[i] = ADD32(HALF32(freq[i]), HALF32(freq[N+i]));
|
|
}
|
|
if (st->upsample != 1)
|
|
{
|
|
c=0; do
|
|
{
|
|
int bound = N/st->upsample;
|
|
for (i=0;i<bound;i++)
|
|
freq[c*N+i] *= st->upsample;
|
|
for (;i<N;i++)
|
|
freq[c*N+i] = 0;
|
|
} while (++c<C);
|
|
}
|
|
ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */
|
|
|
|
compute_band_energies(st->mode, freq, bandE, effEnd, C, M);
|
|
|
|
amp2Log2(st->mode, effEnd, st->end, bandE, bandLogE, C);
|
|
|
|
/* Band normalisation */
|
|
normalise_bands(st->mode, freq, X, bandE, effEnd, C, M);
|
|
|
|
ALLOC(tf_res, st->mode->nbEBands, int);
|
|
tf_select = tf_analysis(st->mode, effEnd, C, isTransient, tf_res, effectiveBytes, X, N, LM, st->start, &tf_sum);
|
|
for (i=effEnd;i<st->end;i++)
|
|
tf_res[i] = tf_res[effEnd-1];
|
|
|
|
ALLOC(error, C*st->mode->nbEBands, opus_val16);
|
|
quant_coarse_energy(st->mode, st->start, st->end, effEnd, bandLogE,
|
|
oldBandE, total_bits, error, enc,
|
|
C, LM, nbAvailableBytes, st->force_intra,
|
|
&st->delayedIntra, st->complexity >= 4, st->loss_rate);
|
|
|
|
tf_encode(st->start, st->end, isTransient, tf_res, LM, tf_select, enc);
|
|
|
|
if (ec_tell(enc)+4<=total_bits)
|
|
{
|
|
if (shortBlocks || st->complexity < 3
|
|
|| nbAvailableBytes < 10*C || st->start!=0)
|
|
{
|
|
if (st->complexity == 0)
|
|
st->spread_decision = SPREAD_NONE;
|
|
else
|
|
st->spread_decision = SPREAD_NORMAL;
|
|
} else {
|
|
st->spread_decision = spreading_decision(st->mode, X,
|
|
&st->tonal_average, st->spread_decision, &st->hf_average,
|
|
&st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M);
|
|
}
|
|
ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5);
|
|
}
|
|
|
|
ALLOC(cap, st->mode->nbEBands, int);
|
|
ALLOC(offsets, st->mode->nbEBands, int);
|
|
|
|
init_caps(st->mode,cap,LM,C);
|
|
for (i=0;i<st->mode->nbEBands;i++)
|
|
offsets[i] = 0;
|
|
/* Dynamic allocation code */
|
|
/* Make sure that dynamic allocation can't make us bust the budget */
|
|
if (effectiveBytes > 50 && LM>=1)
|
|
{
|
|
int t1, t2;
|
|
if (LM <= 1)
|
|
{
|
|
t1 = 3;
|
|
t2 = 5;
|
|
} else {
|
|
t1 = 2;
|
|
t2 = 4;
|
|
}
|
|
for (i=st->start+1;i<st->end-1;i++)
|
|
{
|
|
opus_val32 d2;
|
|
d2 = 2*bandLogE[i]-bandLogE[i-1]-bandLogE[i+1];
|
|
if (C==2)
|
|
d2 = HALF32(d2 + 2*bandLogE[i+st->mode->nbEBands]-
|
|
bandLogE[i-1+st->mode->nbEBands]-bandLogE[i+1+st->mode->nbEBands]);
|
|
#ifdef FUZZING
|
|
if((rand()&0xF)==0)
|
|
{
|
|
offsets[i] += 1;
|
|
if((rand()&0x3)==0)
|
|
offsets[i] += 1+(rand()&0x3);
|
|
}
|
|
#else
|
|
if (d2 > SHL16(t1,DB_SHIFT))
|
|
offsets[i] += 1;
|
|
if (d2 > SHL16(t2,DB_SHIFT))
|
|
offsets[i] += 1;
|
|
#endif
|
|
}
|
|
}
|
|
dynalloc_logp = 6;
|
|
total_bits<<=BITRES;
|
|
total_boost = 0;
|
|
tell = ec_tell_frac(enc);
|
|
for (i=st->start;i<st->end;i++)
|
|
{
|
|
int width, quanta;
|
|
int dynalloc_loop_logp;
|
|
int boost;
|
|
int j;
|
|
width = C*(st->mode->eBands[i+1]-st->mode->eBands[i])<<LM;
|
|
/* quanta is 6 bits, but no more than 1 bit/sample
|
|
and no less than 1/8 bit/sample */
|
|
quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width));
|
|
dynalloc_loop_logp = dynalloc_logp;
|
|
boost = 0;
|
|
for (j = 0; tell+(dynalloc_loop_logp<<BITRES) < total_bits-total_boost
|
|
&& boost < cap[i]; j++)
|
|
{
|
|
int flag;
|
|
flag = j<offsets[i];
|
|
ec_enc_bit_logp(enc, flag, dynalloc_loop_logp);
|
|
tell = ec_tell_frac(enc);
|
|
if (!flag)
|
|
break;
|
|
boost += quanta;
|
|
total_boost += quanta;
|
|
dynalloc_loop_logp = 1;
|
|
}
|
|
/* Making dynalloc more likely */
|
|
if (j)
|
|
dynalloc_logp = IMAX(2, dynalloc_logp-1);
|
|
offsets[i] = boost;
|
|
}
|
|
alloc_trim = 5;
|
|
if (tell+(6<<BITRES) <= total_bits - total_boost)
|
|
{
|
|
alloc_trim = alloc_trim_analysis(st->mode, X, bandLogE,
|
|
st->end, LM, C, N);
|
|
ec_enc_icdf(enc, alloc_trim, trim_icdf, 7);
|
|
tell = ec_tell_frac(enc);
|
|
}
|
|
|
|
/* Variable bitrate */
|
|
if (vbr_rate>0)
|
|
{
|
|
opus_val16 alpha;
|
|
opus_int32 delta;
|
|
/* The target rate in 8th bits per frame */
|
|
opus_int32 target;
|
|
opus_int32 min_allowed;
|
|
int lm_diff = st->mode->maxLM - LM;
|
|
|
|
/* Don't attempt to use more than 510 kb/s, even for frames smaller than 20 ms.
|
|
The CELT allocator will just not be able to use more than that anyway. */
|
|
nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM));
|
|
target = vbr_rate + (st->vbr_offset>>lm_diff) - ((40*C+20)<<BITRES);
|
|
|
|
/* Shortblocks get a large boost in bitrate, but since they
|
|
are uncommon long blocks are not greatly affected */
|
|
if (shortBlocks || tf_sum < -2*(st->end-st->start))
|
|
target = 7*target/4;
|
|
else if (tf_sum < -(st->end-st->start))
|
|
target = 3*target/2;
|
|
else if (M > 1)
|
|
target-=(target+14)/28;
|
|
|
|
/* The current offset is removed from the target and the space used
|
|
so far is added*/
|
|
target=target+tell;
|
|
|
|
/* In VBR mode the frame size must not be reduced so much that it would
|
|
result in the encoder running out of bits.
|
|
The margin of 2 bytes ensures that none of the bust-prevention logic
|
|
in the decoder will have triggered so far. */
|
|
min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2 - nbFilledBytes;
|
|
|
|
nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3);
|
|
nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes);
|
|
nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes) - nbFilledBytes;
|
|
|
|
/* By how much did we "miss" the target on that frame */
|
|
delta = target - vbr_rate;
|
|
|
|
target=nbAvailableBytes<<(BITRES+3);
|
|
|
|
/*If the frame is silent we don't adjust our drift, otherwise
|
|
the encoder will shoot to very high rates after hitting a
|
|
span of silence, but we do allow the bitres to refill.
|
|
This means that we'll undershoot our target in CVBR/VBR modes
|
|
on files with lots of silence. */
|
|
if(silence)
|
|
{
|
|
nbAvailableBytes = 2;
|
|
target = 2*8<<BITRES;
|
|
delta = 0;
|
|
}
|
|
|
|
if (st->vbr_count < 970)
|
|
{
|
|
st->vbr_count++;
|
|
alpha = celt_rcp(SHL32(EXTEND32(st->vbr_count+20),16));
|
|
} else
|
|
alpha = QCONST16(.001f,15);
|
|
/* How many bits have we used in excess of what we're allowed */
|
|
if (st->constrained_vbr)
|
|
st->vbr_reservoir += target - vbr_rate;
|
|
/*printf ("%d\n", st->vbr_reservoir);*/
|
|
|
|
/* Compute the offset we need to apply in order to reach the target */
|
|
st->vbr_drift += (opus_int32)MULT16_32_Q15(alpha,(delta*(1<<lm_diff))-st->vbr_offset-st->vbr_drift);
|
|
st->vbr_offset = -st->vbr_drift;
|
|
/*printf ("%d\n", st->vbr_drift);*/
|
|
|
|
if (st->constrained_vbr && st->vbr_reservoir < 0)
|
|
{
|
|
/* We're under the min value -- increase rate */
|
|
int adjust = (-st->vbr_reservoir)/(8<<BITRES);
|
|
/* Unless we're just coding silence */
|
|
nbAvailableBytes += silence?0:adjust;
|
|
st->vbr_reservoir = 0;
|
|
/*printf ("+%d\n", adjust);*/
|
|
}
|
|
nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes);
|
|
/* This moves the raw bits to take into account the new compressed size */
|
|
ec_enc_shrink(enc, nbCompressedBytes);
|
|
}
|
|
if (C==2)
|
|
{
|
|
int effectiveRate;
|
|
|
|
/* Always use MS for 2.5 ms frames until we can do a better analysis */
|
|
if (LM!=0)
|
|
dual_stereo = stereo_analysis(st->mode, X, LM, N);
|
|
|
|
/* Account for coarse energy */
|
|
effectiveRate = (8*effectiveBytes - 80)>>LM;
|
|
|
|
/* effectiveRate in kb/s */
|
|
effectiveRate = 2*effectiveRate/5;
|
|
if (effectiveRate<35)
|
|
intensity = 8;
|
|
else if (effectiveRate<50)
|
|
intensity = 12;
|
|
else if (effectiveRate<68)
|
|
intensity = 16;
|
|
else if (effectiveRate<84)
|
|
intensity = 18;
|
|
else if (effectiveRate<102)
|
|
intensity = 19;
|
|
else if (effectiveRate<130)
|
|
intensity = 20;
|
|
else
|
|
intensity = 100;
|
|
intensity = IMIN(st->end,IMAX(st->start, intensity));
|
|
}
|
|
|
|
/* Bit allocation */
|
|
ALLOC(fine_quant, st->mode->nbEBands, int);
|
|
ALLOC(pulses, st->mode->nbEBands, int);
|
|
ALLOC(fine_priority, st->mode->nbEBands, int);
|
|
|
|
/* bits = packet size - where we are - safety*/
|
|
bits = (((opus_int32)nbCompressedBytes*8)<<BITRES) - ec_tell_frac(enc) - 1;
|
|
anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0;
|
|
bits -= anti_collapse_rsv;
|
|
codedBands = compute_allocation(st->mode, st->start, st->end, offsets, cap,
|
|
alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses,
|
|
fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands);
|
|
st->lastCodedBands = codedBands;
|
|
|
|
quant_fine_energy(st->mode, st->start, st->end, oldBandE, error, fine_quant, enc, C);
|
|
|
|
#ifdef MEASURE_NORM_MSE
|
|
float X0[3000];
|
|
float bandE0[60];
|
|
c=0; do
|
|
for (i=0;i<N;i++)
|
|
X0[i+c*N] = X[i+c*N];
|
|
while (++c<C);
|
|
for (i=0;i<C*st->mode->nbEBands;i++)
|
|
bandE0[i] = bandE[i];
|
|
#endif
|
|
|
|
/* Residual quantisation */
|
|
ALLOC(collapse_masks, C*st->mode->nbEBands, unsigned char);
|
|
quant_all_bands(1, st->mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks,
|
|
bandE, pulses, shortBlocks, st->spread_decision, dual_stereo, intensity, tf_res,
|
|
nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv, balance, enc, LM, codedBands, &st->rng);
|
|
|
|
if (anti_collapse_rsv > 0)
|
|
{
|
|
anti_collapse_on = st->consec_transient<2;
|
|
#ifdef FUZZING
|
|
anti_collapse_on = rand()&0x1;
|
|
#endif
|
|
ec_enc_bits(enc, anti_collapse_on, 1);
|
|
}
|
|
quant_energy_finalise(st->mode, st->start, st->end, oldBandE, error, fine_quant, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C);
|
|
|
|
if (silence)
|
|
{
|
|
for (i=0;i<C*st->mode->nbEBands;i++)
|
|
oldBandE[i] = -QCONST16(28.f,DB_SHIFT);
|
|
}
|
|
|
|
#ifdef RESYNTH
|
|
/* Re-synthesis of the coded audio if required */
|
|
{
|
|
celt_sig *out_mem[2];
|
|
celt_sig *overlap_mem[2];
|
|
|
|
log2Amp(st->mode, st->start, st->end, bandE, oldBandE, C);
|
|
if (silence)
|
|
{
|
|
for (i=0;i<C*st->mode->nbEBands;i++)
|
|
bandE[i] = 0;
|
|
}
|
|
|
|
#ifdef MEASURE_NORM_MSE
|
|
measure_norm_mse(st->mode, X, X0, bandE, bandE0, M, N, C);
|
|
#endif
|
|
if (anti_collapse_on)
|
|
{
|
|
anti_collapse(st->mode, X, collapse_masks, LM, C, N,
|
|
st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng);
|
|
}
|
|
|
|
/* Synthesis */
|
|
denormalise_bands(st->mode, X, freq, bandE, effEnd, C, M);
|
|
|
|
OPUS_MOVE(st->syn_mem[0], st->syn_mem[0]+N, MAX_PERIOD);
|
|
if (CC==2)
|
|
OPUS_MOVE(st->syn_mem[1], st->syn_mem[1]+N, MAX_PERIOD);
|
|
|
|
c=0; do
|
|
for (i=0;i<M*st->mode->eBands[st->start];i++)
|
|
freq[c*N+i] = 0;
|
|
while (++c<C);
|
|
c=0; do
|
|
for (i=M*st->mode->eBands[st->end];i<N;i++)
|
|
freq[c*N+i] = 0;
|
|
while (++c<C);
|
|
|
|
if (CC==2&&C==1)
|
|
{
|
|
for (i=0;i<N;i++)
|
|
freq[N+i] = freq[i];
|
|
}
|
|
|
|
out_mem[0] = st->syn_mem[0]+MAX_PERIOD;
|
|
if (CC==2)
|
|
out_mem[1] = st->syn_mem[1]+MAX_PERIOD;
|
|
|
|
overlap_mem[0] = (celt_sig*)(oldLogE2 + CC*st->mode->nbEBands);
|
|
if (CC==2)
|
|
overlap_mem[1] = overlap_mem[0] + st->overlap;
|
|
|
|
compute_inv_mdcts(st->mode, shortBlocks, freq, out_mem, overlap_mem, CC, LM);
|
|
|
|
c=0; do {
|
|
st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD);
|
|
st->prefilter_period_old=IMAX(st->prefilter_period_old, COMBFILTER_MINPERIOD);
|
|
comb_filter(out_mem[c], out_mem[c], st->prefilter_period_old, st->prefilter_period, st->mode->shortMdctSize,
|
|
st->prefilter_gain_old, st->prefilter_gain, st->prefilter_tapset_old, st->prefilter_tapset,
|
|
st->mode->window, st->overlap);
|
|
if (LM!=0)
|
|
comb_filter(out_mem[c]+st->mode->shortMdctSize, out_mem[c]+st->mode->shortMdctSize, st->prefilter_period, pitch_index, N-st->mode->shortMdctSize,
|
|
st->prefilter_gain, gain1, st->prefilter_tapset, prefilter_tapset,
|
|
st->mode->window, st->mode->overlap);
|
|
} while (++c<CC);
|
|
|
|
deemphasis(out_mem, (opus_val16*)pcm, N, CC, st->upsample, st->mode->preemph, st->preemph_memD);
|
|
st->prefilter_period_old = st->prefilter_period;
|
|
st->prefilter_gain_old = st->prefilter_gain;
|
|
st->prefilter_tapset_old = st->prefilter_tapset;
|
|
}
|
|
#endif
|
|
|
|
st->prefilter_period = pitch_index;
|
|
st->prefilter_gain = gain1;
|
|
st->prefilter_tapset = prefilter_tapset;
|
|
#ifdef RESYNTH
|
|
if (LM!=0)
|
|
{
|
|
st->prefilter_period_old = st->prefilter_period;
|
|
st->prefilter_gain_old = st->prefilter_gain;
|
|
st->prefilter_tapset_old = st->prefilter_tapset;
|
|
}
|
|
#endif
|
|
|
|
if (CC==2&&C==1) {
|
|
for (i=0;i<st->mode->nbEBands;i++)
|
|
oldBandE[st->mode->nbEBands+i]=oldBandE[i];
|
|
}
|
|
|
|
if (!isTransient)
|
|
{
|
|
for (i=0;i<CC*st->mode->nbEBands;i++)
|
|
oldLogE2[i] = oldLogE[i];
|
|
for (i=0;i<CC*st->mode->nbEBands;i++)
|
|
oldLogE[i] = oldBandE[i];
|
|
} else {
|
|
for (i=0;i<CC*st->mode->nbEBands;i++)
|
|
oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]);
|
|
}
|
|
/* In case start or end were to change */
|
|
c=0; do
|
|
{
|
|
for (i=0;i<st->start;i++)
|
|
{
|
|
oldBandE[c*st->mode->nbEBands+i]=0;
|
|
oldLogE[c*st->mode->nbEBands+i]=oldLogE2[c*st->mode->nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
|
|
}
|
|
for (i=st->end;i<st->mode->nbEBands;i++)
|
|
{
|
|
oldBandE[c*st->mode->nbEBands+i]=0;
|
|
oldLogE[c*st->mode->nbEBands+i]=oldLogE2[c*st->mode->nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
|
|
}
|
|
} while (++c<CC);
|
|
|
|
if (isTransient)
|
|
st->consec_transient++;
|
|
else
|
|
st->consec_transient=0;
|
|
st->rng = enc->rng;
|
|
|
|
/* If there's any room left (can only happen for very high rates),
|
|
it's already filled with zeros */
|
|
ec_enc_done(enc);
|
|
|
|
#ifdef CUSTOM_MODES
|
|
if (st->signalling)
|
|
nbCompressedBytes++;
|
|
#endif
|
|
|
|
RESTORE_STACK;
|
|
if (ec_get_error(enc))
|
|
return OPUS_INTERNAL_ERROR;
|
|
else
|
|
return nbCompressedBytes;
|
|
}
|
|
|
|
|
|
#ifdef CUSTOM_MODES
|
|
|
|
#ifdef FIXED_POINT
|
|
int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
|
|
{
|
|
return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL);
|
|
}
|
|
|
|
#ifndef DISABLE_FLOAT_API
|
|
int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
|
|
{
|
|
int j, ret, C, N;
|
|
VARDECL(opus_int16, in);
|
|
ALLOC_STACK;
|
|
|
|
if (pcm==NULL)
|
|
return OPUS_BAD_ARG;
|
|
|
|
C = st->channels;
|
|
N = frame_size;
|
|
ALLOC(in, C*N, opus_int16);
|
|
|
|
for (j=0;j<C*N;j++)
|
|
in[j] = FLOAT2INT16(pcm[j]);
|
|
|
|
ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL);
|
|
#ifdef RESYNTH
|
|
for (j=0;j<C*N;j++)
|
|
((float*)pcm)[j]=in[j]*(1.f/32768.f);
|
|
#endif
|
|
RESTORE_STACK;
|
|
return ret;
|
|
}
|
|
#endif /* DISABLE_FLOAT_API */
|
|
#else
|
|
|
|
int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
|
|
{
|
|
int j, ret, C, N;
|
|
VARDECL(celt_sig, in);
|
|
ALLOC_STACK;
|
|
|
|
if (pcm==NULL)
|
|
return OPUS_BAD_ARG;
|
|
|
|
C=st->channels;
|
|
N=frame_size;
|
|
ALLOC(in, C*N, celt_sig);
|
|
for (j=0;j<C*N;j++) {
|
|
in[j] = SCALEOUT(pcm[j]);
|
|
}
|
|
|
|
ret = celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL);
|
|
#ifdef RESYNTH
|
|
for (j=0;j<C*N;j++)
|
|
((opus_int16*)pcm)[j] = FLOAT2INT16(in[j]);
|
|
#endif
|
|
RESTORE_STACK;
|
|
return ret;
|
|
}
|
|
|
|
int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm, int frame_size, unsigned char *compressed, int nbCompressedBytes)
|
|
{
|
|
return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes, NULL);
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif /* CUSTOM_MODES */
|
|
|
|
int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, request);
|
|
switch (request)
|
|
{
|
|
case OPUS_SET_COMPLEXITY_REQUEST:
|
|
{
|
|
int value = va_arg(ap, opus_int32);
|
|
if (value<0 || value>10)
|
|
goto bad_arg;
|
|
st->complexity = value;
|
|
}
|
|
break;
|
|
case CELT_SET_START_BAND_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
if (value<0 || value>=st->mode->nbEBands)
|
|
goto bad_arg;
|
|
st->start = value;
|
|
}
|
|
break;
|
|
case CELT_SET_END_BAND_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
if (value<1 || value>st->mode->nbEBands)
|
|
goto bad_arg;
|
|
st->end = value;
|
|
}
|
|
break;
|
|
case CELT_SET_PREDICTION_REQUEST:
|
|
{
|
|
int value = va_arg(ap, opus_int32);
|
|
if (value<0 || value>2)
|
|
goto bad_arg;
|
|
st->disable_pf = value<=1;
|
|
st->force_intra = value==0;
|
|
}
|
|
break;
|
|
case OPUS_SET_PACKET_LOSS_PERC_REQUEST:
|
|
{
|
|
int value = va_arg(ap, opus_int32);
|
|
if (value<0 || value>100)
|
|
goto bad_arg;
|
|
st->loss_rate = value;
|
|
}
|
|
break;
|
|
case OPUS_SET_VBR_CONSTRAINT_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
st->constrained_vbr = value;
|
|
}
|
|
break;
|
|
case OPUS_SET_VBR_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
st->vbr = value;
|
|
}
|
|
break;
|
|
case OPUS_SET_BITRATE_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
if (value<=500 && value!=OPUS_BITRATE_MAX)
|
|
goto bad_arg;
|
|
value = IMIN(value, 260000*st->channels);
|
|
st->bitrate = value;
|
|
}
|
|
break;
|
|
case CELT_SET_CHANNELS_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
if (value<1 || value>2)
|
|
goto bad_arg;
|
|
st->stream_channels = value;
|
|
}
|
|
break;
|
|
case OPUS_SET_LSB_DEPTH_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
if (value<8 || value>24)
|
|
goto bad_arg;
|
|
st->lsb_depth=value;
|
|
}
|
|
break;
|
|
case OPUS_GET_LSB_DEPTH_REQUEST:
|
|
{
|
|
opus_int32 *value = va_arg(ap, opus_int32*);
|
|
*value=st->lsb_depth;
|
|
}
|
|
break;
|
|
case OPUS_RESET_STATE:
|
|
{
|
|
int i;
|
|
opus_val16 *oldBandE, *oldLogE, *oldLogE2;
|
|
oldBandE = (opus_val16*)(st->in_mem+st->channels*(st->overlap+COMBFILTER_MAXPERIOD));
|
|
oldLogE = oldBandE + st->channels*st->mode->nbEBands;
|
|
oldLogE2 = oldLogE + st->channels*st->mode->nbEBands;
|
|
OPUS_CLEAR((char*)&st->ENCODER_RESET_START,
|
|
opus_custom_encoder_get_size(st->mode, st->channels)-
|
|
((char*)&st->ENCODER_RESET_START - (char*)st));
|
|
for (i=0;i<st->channels*st->mode->nbEBands;i++)
|
|
oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT);
|
|
st->vbr_offset = 0;
|
|
st->delayedIntra = 1;
|
|
st->spread_decision = SPREAD_NORMAL;
|
|
st->tonal_average = 256;
|
|
st->hf_average = 0;
|
|
st->tapset_decision = 0;
|
|
}
|
|
break;
|
|
#ifdef CUSTOM_MODES
|
|
case CELT_SET_INPUT_CLIPPING_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
st->clip = value;
|
|
}
|
|
break;
|
|
#endif
|
|
case CELT_SET_SIGNALLING_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
st->signalling = value;
|
|
}
|
|
break;
|
|
case CELT_GET_MODE_REQUEST:
|
|
{
|
|
const CELTMode ** value = va_arg(ap, const CELTMode**);
|
|
if (value==0)
|
|
goto bad_arg;
|
|
*value=st->mode;
|
|
}
|
|
break;
|
|
case OPUS_GET_FINAL_RANGE_REQUEST:
|
|
{
|
|
opus_uint32 * value = va_arg(ap, opus_uint32 *);
|
|
if (value==0)
|
|
goto bad_arg;
|
|
*value=st->rng;
|
|
}
|
|
break;
|
|
default:
|
|
goto bad_request;
|
|
}
|
|
va_end(ap);
|
|
return OPUS_OK;
|
|
bad_arg:
|
|
va_end(ap);
|
|
return OPUS_BAD_ARG;
|
|
bad_request:
|
|
va_end(ap);
|
|
return OPUS_UNIMPLEMENTED;
|
|
}
|
|
|
|
/**********************************************************************/
|
|
/* */
|
|
/* DECODER */
|
|
/* */
|
|
/**********************************************************************/
|
|
#define DECODE_BUFFER_SIZE 2048
|
|
|
|
/** Decoder state
|
|
@brief Decoder state
|
|
*/
|
|
struct OpusCustomDecoder {
|
|
const OpusCustomMode *mode;
|
|
int overlap;
|
|
int channels;
|
|
int stream_channels;
|
|
|
|
int downsample;
|
|
int start, end;
|
|
int signalling;
|
|
|
|
/* Everything beyond this point gets cleared on a reset */
|
|
#define DECODER_RESET_START rng
|
|
|
|
opus_uint32 rng;
|
|
int error;
|
|
int last_pitch_index;
|
|
int loss_count;
|
|
int postfilter_period;
|
|
int postfilter_period_old;
|
|
opus_val16 postfilter_gain;
|
|
opus_val16 postfilter_gain_old;
|
|
int postfilter_tapset;
|
|
int postfilter_tapset_old;
|
|
|
|
celt_sig preemph_memD[2];
|
|
|
|
celt_sig _decode_mem[1]; /* Size = channels*(DECODE_BUFFER_SIZE+mode->overlap) */
|
|
/* opus_val16 lpc[], Size = channels*LPC_ORDER */
|
|
/* opus_val16 oldEBands[], Size = 2*mode->nbEBands */
|
|
/* opus_val16 oldLogE[], Size = 2*mode->nbEBands */
|
|
/* opus_val16 oldLogE2[], Size = 2*mode->nbEBands */
|
|
/* opus_val16 backgroundLogE[], Size = 2*mode->nbEBands */
|
|
};
|
|
|
|
int celt_decoder_get_size(int channels)
|
|
{
|
|
const CELTMode *mode = opus_custom_mode_create(48000, 960, NULL);
|
|
return opus_custom_decoder_get_size(mode, channels);
|
|
}
|
|
|
|
OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_get_size(const CELTMode *mode, int channels)
|
|
{
|
|
int size = sizeof(struct CELTDecoder)
|
|
+ (channels*(DECODE_BUFFER_SIZE+mode->overlap)-1)*sizeof(celt_sig)
|
|
+ channels*LPC_ORDER*sizeof(opus_val16)
|
|
+ 4*2*mode->nbEBands*sizeof(opus_val16);
|
|
return size;
|
|
}
|
|
|
|
#ifdef CUSTOM_MODES
|
|
CELTDecoder *opus_custom_decoder_create(const CELTMode *mode, int channels, int *error)
|
|
{
|
|
int ret;
|
|
CELTDecoder *st = (CELTDecoder *)opus_alloc(opus_custom_decoder_get_size(mode, channels));
|
|
ret = opus_custom_decoder_init(st, mode, channels);
|
|
if (ret != OPUS_OK)
|
|
{
|
|
opus_custom_decoder_destroy(st);
|
|
st = NULL;
|
|
}
|
|
if (error)
|
|
*error = ret;
|
|
return st;
|
|
}
|
|
#endif /* CUSTOM_MODES */
|
|
|
|
int celt_decoder_init(CELTDecoder *st, opus_int32 sampling_rate, int channels)
|
|
{
|
|
int ret;
|
|
ret = opus_custom_decoder_init(st, opus_custom_mode_create(48000, 960, NULL), channels);
|
|
if (ret != OPUS_OK)
|
|
return ret;
|
|
st->downsample = resampling_factor(sampling_rate);
|
|
if (st->downsample==0)
|
|
return OPUS_BAD_ARG;
|
|
else
|
|
return OPUS_OK;
|
|
}
|
|
|
|
OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_init(CELTDecoder *st, const CELTMode *mode, int channels)
|
|
{
|
|
if (channels < 0 || channels > 2)
|
|
return OPUS_BAD_ARG;
|
|
|
|
if (st==NULL)
|
|
return OPUS_ALLOC_FAIL;
|
|
|
|
OPUS_CLEAR((char*)st, opus_custom_decoder_get_size(mode, channels));
|
|
|
|
st->mode = mode;
|
|
st->overlap = mode->overlap;
|
|
st->stream_channels = st->channels = channels;
|
|
|
|
st->downsample = 1;
|
|
st->start = 0;
|
|
st->end = st->mode->effEBands;
|
|
st->signalling = 1;
|
|
|
|
st->loss_count = 0;
|
|
|
|
opus_custom_decoder_ctl(st, OPUS_RESET_STATE);
|
|
|
|
return OPUS_OK;
|
|
}
|
|
|
|
#ifdef CUSTOM_MODES
|
|
void opus_custom_decoder_destroy(CELTDecoder *st)
|
|
{
|
|
opus_free(st);
|
|
}
|
|
#endif /* CUSTOM_MODES */
|
|
|
|
static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, opus_val16 * OPUS_RESTRICT pcm, int N, int LM)
|
|
{
|
|
int c;
|
|
int pitch_index;
|
|
opus_val16 fade = Q15ONE;
|
|
int i, len;
|
|
const int C = st->channels;
|
|
int offset;
|
|
celt_sig *out_mem[2];
|
|
celt_sig *decode_mem[2];
|
|
celt_sig *overlap_mem[2];
|
|
opus_val16 *lpc;
|
|
opus_val32 *out_syn[2];
|
|
opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE;
|
|
const OpusCustomMode *mode;
|
|
int nbEBands;
|
|
int overlap;
|
|
const opus_int16 *eBands;
|
|
SAVE_STACK;
|
|
|
|
mode = st->mode;
|
|
nbEBands = mode->nbEBands;
|
|
overlap = mode->overlap;
|
|
eBands = mode->eBands;
|
|
|
|
c=0; do {
|
|
decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+st->overlap);
|
|
out_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE-MAX_PERIOD;
|
|
overlap_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE;
|
|
} while (++c<C);
|
|
lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*C);
|
|
oldBandE = lpc+C*LPC_ORDER;
|
|
oldLogE = oldBandE + 2*nbEBands;
|
|
oldLogE2 = oldLogE + 2*nbEBands;
|
|
backgroundLogE = oldLogE2 + 2*nbEBands;
|
|
|
|
c=0; do {
|
|
out_syn[c] = out_mem[c]+MAX_PERIOD-N;
|
|
} while (++c<C);
|
|
|
|
len = N+overlap;
|
|
|
|
if (st->loss_count >= 5 || st->start!=0)
|
|
{
|
|
/* Noise-based PLC/CNG */
|
|
VARDECL(celt_sig, freq);
|
|
VARDECL(celt_norm, X);
|
|
VARDECL(celt_ener, bandE);
|
|
opus_uint32 seed;
|
|
int effEnd;
|
|
|
|
effEnd = st->end;
|
|
if (effEnd > mode->effEBands)
|
|
effEnd = mode->effEBands;
|
|
|
|
ALLOC(freq, C*N, celt_sig); /**< Interleaved signal MDCTs */
|
|
ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */
|
|
ALLOC(bandE, nbEBands*C, celt_ener);
|
|
|
|
if (st->loss_count >= 5)
|
|
log2Amp(mode, st->start, st->end, bandE, backgroundLogE, C);
|
|
else {
|
|
/* Energy decay */
|
|
opus_val16 decay = st->loss_count==0 ? QCONST16(1.5f, DB_SHIFT) : QCONST16(.5f, DB_SHIFT);
|
|
c=0; do
|
|
{
|
|
for (i=st->start;i<st->end;i++)
|
|
oldBandE[c*nbEBands+i] -= decay;
|
|
} while (++c<C);
|
|
log2Amp(mode, st->start, st->end, bandE, oldBandE, C);
|
|
}
|
|
seed = st->rng;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<(st->mode->eBands[st->start]<<LM);i++)
|
|
X[c*N+i] = 0;
|
|
for (i=st->start;i<mode->effEBands;i++)
|
|
{
|
|
int j;
|
|
int boffs;
|
|
int blen;
|
|
boffs = N*c+(eBands[i]<<LM);
|
|
blen = (eBands[i+1]-eBands[i])<<LM;
|
|
for (j=0;j<blen;j++)
|
|
{
|
|
seed = celt_lcg_rand(seed);
|
|
X[boffs+j] = (celt_norm)((opus_int32)seed>>20);
|
|
}
|
|
renormalise_vector(X+boffs, blen, Q15ONE);
|
|
}
|
|
for (i=(st->mode->eBands[st->end]<<LM);i<N;i++)
|
|
X[c*N+i] = 0;
|
|
}
|
|
st->rng = seed;
|
|
|
|
denormalise_bands(mode, X, freq, bandE, mode->effEBands, C, 1<<LM);
|
|
|
|
c=0; do
|
|
for (i=0;i<st->mode->eBands[st->start]<<LM;i++)
|
|
freq[c*N+i] = 0;
|
|
while (++c<C);
|
|
c=0; do {
|
|
int bound = eBands[effEnd]<<LM;
|
|
if (st->downsample!=1)
|
|
bound = IMIN(bound, N/st->downsample);
|
|
for (i=bound;i<N;i++)
|
|
freq[c*N+i] = 0;
|
|
} while (++c<C);
|
|
c=0; do {
|
|
OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap);
|
|
} while (++c<C);
|
|
compute_inv_mdcts(mode, 0, freq, out_syn, overlap_mem, C, LM);
|
|
} else {
|
|
/* Pitch-based PLC */
|
|
VARDECL(opus_val32, etmp);
|
|
|
|
if (st->loss_count == 0)
|
|
{
|
|
opus_val16 pitch_buf[DECODE_BUFFER_SIZE>>1];
|
|
/* Corresponds to a min pitch of 67 Hz. It's possible to save CPU in this
|
|
search by using only part of the decode buffer */
|
|
int poffset = 720;
|
|
pitch_downsample(decode_mem, pitch_buf, DECODE_BUFFER_SIZE, C);
|
|
/* Max pitch is 100 samples (480 Hz) */
|
|
pitch_search(pitch_buf+((poffset)>>1), pitch_buf, DECODE_BUFFER_SIZE-poffset,
|
|
poffset-100, &pitch_index);
|
|
pitch_index = poffset-pitch_index;
|
|
st->last_pitch_index = pitch_index;
|
|
} else {
|
|
pitch_index = st->last_pitch_index;
|
|
fade = QCONST16(.8f,15);
|
|
}
|
|
|
|
ALLOC(etmp, overlap, opus_val32);
|
|
c=0; do {
|
|
opus_val16 exc[MAX_PERIOD];
|
|
opus_val32 ac[LPC_ORDER+1];
|
|
opus_val16 decay;
|
|
opus_val16 attenuation;
|
|
opus_val32 S1=0;
|
|
opus_val16 mem[LPC_ORDER]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
|
|
opus_val32 *e = out_syn[c];
|
|
|
|
|
|
offset = MAX_PERIOD-pitch_index;
|
|
for (i=0;i<MAX_PERIOD;i++)
|
|
exc[i] = ROUND16(out_mem[c][i], SIG_SHIFT);
|
|
|
|
/* Compute LPC coefficients for the last MAX_PERIOD samples before the loss so we can
|
|
work in the excitation-filter domain */
|
|
if (st->loss_count == 0)
|
|
{
|
|
_celt_autocorr(exc, ac, mode->window, overlap,
|
|
LPC_ORDER, MAX_PERIOD);
|
|
|
|
/* Noise floor -40 dB */
|
|
#ifdef FIXED_POINT
|
|
ac[0] += SHR32(ac[0],13);
|
|
#else
|
|
ac[0] *= 1.0001f;
|
|
#endif
|
|
/* Lag windowing */
|
|
for (i=1;i<=LPC_ORDER;i++)
|
|
{
|
|
/*ac[i] *= exp(-.5*(2*M_PI*.002*i)*(2*M_PI*.002*i));*/
|
|
#ifdef FIXED_POINT
|
|
ac[i] -= MULT16_32_Q15(2*i*i, ac[i]);
|
|
#else
|
|
ac[i] -= ac[i]*(.008f*i)*(.008f*i);
|
|
#endif
|
|
}
|
|
|
|
_celt_lpc(lpc+c*LPC_ORDER, ac, LPC_ORDER);
|
|
}
|
|
/* Samples just before the beginning of exc */
|
|
for (i=0;i<LPC_ORDER;i++)
|
|
mem[i] = ROUND16(out_mem[c][-1-i], SIG_SHIFT);
|
|
/* Compute the excitation for MAX_PERIOD samples before the loss */
|
|
celt_fir(exc, lpc+c*LPC_ORDER, exc, MAX_PERIOD, LPC_ORDER, mem);
|
|
|
|
/* Check if the waveform is decaying (and if so how fast)
|
|
We do this to avoid adding energy when concealing in a segment
|
|
with decaying energy */
|
|
{
|
|
opus_val32 E1=1, E2=1;
|
|
int period;
|
|
if (pitch_index <= MAX_PERIOD/2)
|
|
period = pitch_index;
|
|
else
|
|
period = MAX_PERIOD/2;
|
|
for (i=0;i<period;i++)
|
|
{
|
|
E1 += SHR32(MULT16_16(exc[MAX_PERIOD-period+i],exc[MAX_PERIOD-period+i]),8);
|
|
E2 += SHR32(MULT16_16(exc[MAX_PERIOD-2*period+i],exc[MAX_PERIOD-2*period+i]),8);
|
|
}
|
|
if (E1 > E2)
|
|
E1 = E2;
|
|
decay = celt_sqrt(frac_div32(SHR32(E1,1),E2));
|
|
attenuation = decay;
|
|
}
|
|
|
|
/* Move memory one frame to the left */
|
|
OPUS_MOVE(decode_mem[c], decode_mem[c]+N, DECODE_BUFFER_SIZE-N+overlap);
|
|
|
|
/* Extrapolate excitation with the right period, taking decay into account */
|
|
for (i=0;i<len;i++)
|
|
{
|
|
opus_val16 tmp;
|
|
if (offset+i >= MAX_PERIOD)
|
|
{
|
|
offset -= pitch_index;
|
|
attenuation = MULT16_16_Q15(attenuation, decay);
|
|
}
|
|
e[i] = SHL32(EXTEND32(MULT16_16_Q15(attenuation, exc[offset+i])), SIG_SHIFT);
|
|
/* Compute the energy of the previously decoded signal whose
|
|
excitation we're copying */
|
|
tmp = ROUND16(out_mem[c][-N+offset+i],SIG_SHIFT);
|
|
S1 += SHR32(MULT16_16(tmp,tmp),8);
|
|
}
|
|
|
|
/* Copy the last decoded samples (prior to the overlap region) to
|
|
synthesis filter memory so we can have a continuous signal. */
|
|
for (i=0;i<LPC_ORDER;i++)
|
|
mem[i] = ROUND16(out_mem[c][MAX_PERIOD-N-1-i], SIG_SHIFT);
|
|
/* Apply the fading if not the first loss */
|
|
for (i=0;i<len;i++)
|
|
e[i] = MULT16_32_Q15(fade, e[i]);
|
|
/* Synthesis filter -- back in the signal domain */
|
|
celt_iir(e, lpc+c*LPC_ORDER, e, len, LPC_ORDER, mem);
|
|
|
|
/* Check if the synthesis energy is higher than expected, which can
|
|
happen with the signal changes during our window. If so, attenuate. */
|
|
{
|
|
opus_val32 S2=0;
|
|
for (i=0;i<len;i++)
|
|
{
|
|
opus_val16 tmp = ROUND16(e[i],SIG_SHIFT);
|
|
S2 += SHR32(MULT16_16(tmp,tmp),8);
|
|
}
|
|
/* This checks for an "explosion" in the synthesis */
|
|
#ifdef FIXED_POINT
|
|
if (!(S1 > SHR32(S2,2)))
|
|
#else
|
|
/* Float test is written this way to catch NaNs at the same time */
|
|
if (!(S1 > 0.2f*S2))
|
|
#endif
|
|
{
|
|
for (i=0;i<len;i++)
|
|
e[i] = 0;
|
|
} else if (S1 < S2)
|
|
{
|
|
opus_val16 ratio = celt_sqrt(frac_div32(SHR32(S1,1)+1,S2+1));
|
|
for (i=0;i<overlap;i++)
|
|
{
|
|
opus_val16 tmp_g = Q15ONE - MULT16_16_Q15(mode->window[i], Q15ONE-ratio);
|
|
e[i] = MULT16_32_Q15(tmp_g, e[i]);
|
|
}
|
|
for (i=overlap;i<len;i++)
|
|
e[i] = MULT16_32_Q15(ratio, e[i]);
|
|
}
|
|
}
|
|
|
|
/* Apply pre-filter to the MDCT overlap for the next frame because the
|
|
post-filter will be re-applied in the decoder after the MDCT overlap */
|
|
comb_filter(etmp, out_mem[c]+MAX_PERIOD, st->postfilter_period, st->postfilter_period, st->overlap,
|
|
-st->postfilter_gain, -st->postfilter_gain, st->postfilter_tapset, st->postfilter_tapset,
|
|
NULL, 0);
|
|
|
|
/* Simulate TDAC on the concealed audio so that it blends with the
|
|
MDCT of next frames. */
|
|
for (i=0;i<overlap/2;i++)
|
|
{
|
|
opus_val32 tmp;
|
|
tmp = MULT16_32_Q15(mode->window[i], etmp[overlap-1-i]) +
|
|
MULT16_32_Q15(mode->window[overlap-i-1], etmp[i ]);
|
|
out_mem[c][MAX_PERIOD+i] = MULT16_32_Q15(mode->window[overlap-i-1], tmp);
|
|
out_mem[c][MAX_PERIOD+overlap-i-1] = MULT16_32_Q15(mode->window[i], tmp);
|
|
}
|
|
} while (++c<C);
|
|
}
|
|
|
|
deemphasis(out_syn, pcm, N, C, st->downsample, mode->preemph, st->preemph_memD);
|
|
|
|
st->loss_count++;
|
|
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_val16 * OPUS_RESTRICT pcm, int frame_size, ec_dec *dec)
|
|
{
|
|
int c, i, N;
|
|
int spread_decision;
|
|
opus_int32 bits;
|
|
ec_dec _dec;
|
|
VARDECL(celt_sig, freq);
|
|
VARDECL(celt_norm, X);
|
|
VARDECL(celt_ener, bandE);
|
|
VARDECL(int, fine_quant);
|
|
VARDECL(int, pulses);
|
|
VARDECL(int, cap);
|
|
VARDECL(int, offsets);
|
|
VARDECL(int, fine_priority);
|
|
VARDECL(int, tf_res);
|
|
VARDECL(unsigned char, collapse_masks);
|
|
celt_sig *out_mem[2];
|
|
celt_sig *decode_mem[2];
|
|
celt_sig *overlap_mem[2];
|
|
celt_sig *out_syn[2];
|
|
opus_val16 *lpc;
|
|
opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE;
|
|
|
|
int shortBlocks;
|
|
int isTransient;
|
|
int intra_ener;
|
|
const int CC = st->channels;
|
|
int LM, M;
|
|
int effEnd;
|
|
int codedBands;
|
|
int alloc_trim;
|
|
int postfilter_pitch;
|
|
opus_val16 postfilter_gain;
|
|
int intensity=0;
|
|
int dual_stereo=0;
|
|
opus_int32 total_bits;
|
|
opus_int32 balance;
|
|
opus_int32 tell;
|
|
int dynalloc_logp;
|
|
int postfilter_tapset;
|
|
int anti_collapse_rsv;
|
|
int anti_collapse_on=0;
|
|
int silence;
|
|
int C = st->stream_channels;
|
|
ALLOC_STACK;
|
|
|
|
frame_size *= st->downsample;
|
|
|
|
c=0; do {
|
|
decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+st->overlap);
|
|
out_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE-MAX_PERIOD;
|
|
overlap_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE;
|
|
} while (++c<CC);
|
|
lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*CC);
|
|
oldBandE = lpc+CC*LPC_ORDER;
|
|
oldLogE = oldBandE + 2*st->mode->nbEBands;
|
|
oldLogE2 = oldLogE + 2*st->mode->nbEBands;
|
|
backgroundLogE = oldLogE2 + 2*st->mode->nbEBands;
|
|
|
|
#ifdef CUSTOM_MODES
|
|
if (st->signalling && data!=NULL)
|
|
{
|
|
int data0=data[0];
|
|
/* Convert "standard mode" to Opus header */
|
|
if (st->mode->Fs==48000 && st->mode->shortMdctSize==120)
|
|
{
|
|
data0 = fromOpus(data0);
|
|
if (data0<0)
|
|
return OPUS_INVALID_PACKET;
|
|
}
|
|
st->end = IMAX(1, st->mode->effEBands-2*(data0>>5));
|
|
LM = (data0>>3)&0x3;
|
|
C = 1 + ((data0>>2)&0x1);
|
|
data++;
|
|
len--;
|
|
if (LM>st->mode->maxLM)
|
|
return OPUS_INVALID_PACKET;
|
|
if (frame_size < st->mode->shortMdctSize<<LM)
|
|
return OPUS_BUFFER_TOO_SMALL;
|
|
else
|
|
frame_size = st->mode->shortMdctSize<<LM;
|
|
} else {
|
|
#else
|
|
{
|
|
#endif
|
|
for (LM=0;LM<=st->mode->maxLM;LM++)
|
|
if (st->mode->shortMdctSize<<LM==frame_size)
|
|
break;
|
|
if (LM>st->mode->maxLM)
|
|
return OPUS_BAD_ARG;
|
|
}
|
|
M=1<<LM;
|
|
|
|
if (len<0 || len>1275 || pcm==NULL)
|
|
return OPUS_BAD_ARG;
|
|
|
|
N = M*st->mode->shortMdctSize;
|
|
|
|
effEnd = st->end;
|
|
if (effEnd > st->mode->effEBands)
|
|
effEnd = st->mode->effEBands;
|
|
|
|
if (data == NULL || len<=1)
|
|
{
|
|
celt_decode_lost(st, pcm, N, LM);
|
|
RESTORE_STACK;
|
|
return frame_size/st->downsample;
|
|
}
|
|
|
|
ALLOC(freq, IMAX(CC,C)*N, celt_sig); /**< Interleaved signal MDCTs */
|
|
ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */
|
|
ALLOC(bandE, st->mode->nbEBands*C, celt_ener);
|
|
c=0; do
|
|
for (i=0;i<M*st->mode->eBands[st->start];i++)
|
|
X[c*N+i] = 0;
|
|
while (++c<C);
|
|
c=0; do
|
|
for (i=M*st->mode->eBands[effEnd];i<N;i++)
|
|
X[c*N+i] = 0;
|
|
while (++c<C);
|
|
|
|
if (dec == NULL)
|
|
{
|
|
ec_dec_init(&_dec,(unsigned char*)data,len);
|
|
dec = &_dec;
|
|
}
|
|
|
|
if (C==1)
|
|
{
|
|
for (i=0;i<st->mode->nbEBands;i++)
|
|
oldBandE[i]=MAX16(oldBandE[i],oldBandE[st->mode->nbEBands+i]);
|
|
}
|
|
|
|
total_bits = len*8;
|
|
tell = ec_tell(dec);
|
|
|
|
if (tell >= total_bits)
|
|
silence = 1;
|
|
else if (tell==1)
|
|
silence = ec_dec_bit_logp(dec, 15);
|
|
else
|
|
silence = 0;
|
|
if (silence)
|
|
{
|
|
/* Pretend we've read all the remaining bits */
|
|
tell = len*8;
|
|
dec->nbits_total+=tell-ec_tell(dec);
|
|
}
|
|
|
|
postfilter_gain = 0;
|
|
postfilter_pitch = 0;
|
|
postfilter_tapset = 0;
|
|
if (st->start==0 && tell+16 <= total_bits)
|
|
{
|
|
if(ec_dec_bit_logp(dec, 1))
|
|
{
|
|
int qg, octave;
|
|
octave = ec_dec_uint(dec, 6);
|
|
postfilter_pitch = (16<<octave)+ec_dec_bits(dec, 4+octave)-1;
|
|
qg = ec_dec_bits(dec, 3);
|
|
if (ec_tell(dec)+2<=total_bits)
|
|
postfilter_tapset = ec_dec_icdf(dec, tapset_icdf, 2);
|
|
postfilter_gain = QCONST16(.09375f,15)*(qg+1);
|
|
}
|
|
tell = ec_tell(dec);
|
|
}
|
|
|
|
if (LM > 0 && tell+3 <= total_bits)
|
|
{
|
|
isTransient = ec_dec_bit_logp(dec, 3);
|
|
tell = ec_tell(dec);
|
|
}
|
|
else
|
|
isTransient = 0;
|
|
|
|
if (isTransient)
|
|
shortBlocks = M;
|
|
else
|
|
shortBlocks = 0;
|
|
|
|
/* Decode the global flags (first symbols in the stream) */
|
|
intra_ener = tell+3<=total_bits ? ec_dec_bit_logp(dec, 3) : 0;
|
|
/* Get band energies */
|
|
unquant_coarse_energy(st->mode, st->start, st->end, oldBandE,
|
|
intra_ener, dec, C, LM);
|
|
|
|
ALLOC(tf_res, st->mode->nbEBands, int);
|
|
tf_decode(st->start, st->end, isTransient, tf_res, LM, dec);
|
|
|
|
tell = ec_tell(dec);
|
|
spread_decision = SPREAD_NORMAL;
|
|
if (tell+4 <= total_bits)
|
|
spread_decision = ec_dec_icdf(dec, spread_icdf, 5);
|
|
|
|
ALLOC(pulses, st->mode->nbEBands, int);
|
|
ALLOC(cap, st->mode->nbEBands, int);
|
|
ALLOC(offsets, st->mode->nbEBands, int);
|
|
ALLOC(fine_priority, st->mode->nbEBands, int);
|
|
|
|
init_caps(st->mode,cap,LM,C);
|
|
|
|
dynalloc_logp = 6;
|
|
total_bits<<=BITRES;
|
|
tell = ec_tell_frac(dec);
|
|
for (i=st->start;i<st->end;i++)
|
|
{
|
|
int width, quanta;
|
|
int dynalloc_loop_logp;
|
|
int boost;
|
|
width = C*(st->mode->eBands[i+1]-st->mode->eBands[i])<<LM;
|
|
/* quanta is 6 bits, but no more than 1 bit/sample
|
|
and no less than 1/8 bit/sample */
|
|
quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width));
|
|
dynalloc_loop_logp = dynalloc_logp;
|
|
boost = 0;
|
|
while (tell+(dynalloc_loop_logp<<BITRES) < total_bits && boost < cap[i])
|
|
{
|
|
int flag;
|
|
flag = ec_dec_bit_logp(dec, dynalloc_loop_logp);
|
|
tell = ec_tell_frac(dec);
|
|
if (!flag)
|
|
break;
|
|
boost += quanta;
|
|
total_bits -= quanta;
|
|
dynalloc_loop_logp = 1;
|
|
}
|
|
offsets[i] = boost;
|
|
/* Making dynalloc more likely */
|
|
if (boost>0)
|
|
dynalloc_logp = IMAX(2, dynalloc_logp-1);
|
|
}
|
|
|
|
ALLOC(fine_quant, st->mode->nbEBands, int);
|
|
alloc_trim = tell+(6<<BITRES) <= total_bits ?
|
|
ec_dec_icdf(dec, trim_icdf, 7) : 5;
|
|
|
|
bits = (((opus_int32)len*8)<<BITRES) - ec_tell_frac(dec) - 1;
|
|
anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES) : 0;
|
|
bits -= anti_collapse_rsv;
|
|
codedBands = compute_allocation(st->mode, st->start, st->end, offsets, cap,
|
|
alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses,
|
|
fine_quant, fine_priority, C, LM, dec, 0, 0);
|
|
|
|
unquant_fine_energy(st->mode, st->start, st->end, oldBandE, fine_quant, dec, C);
|
|
|
|
/* Decode fixed codebook */
|
|
ALLOC(collapse_masks, C*st->mode->nbEBands, unsigned char);
|
|
quant_all_bands(0, st->mode, st->start, st->end, X, C==2 ? X+N : NULL, collapse_masks,
|
|
NULL, pulses, shortBlocks, spread_decision, dual_stereo, intensity, tf_res,
|
|
len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->rng);
|
|
|
|
if (anti_collapse_rsv > 0)
|
|
{
|
|
anti_collapse_on = ec_dec_bits(dec, 1);
|
|
}
|
|
|
|
unquant_energy_finalise(st->mode, st->start, st->end, oldBandE,
|
|
fine_quant, fine_priority, len*8-ec_tell(dec), dec, C);
|
|
|
|
if (anti_collapse_on)
|
|
anti_collapse(st->mode, X, collapse_masks, LM, C, N,
|
|
st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng);
|
|
|
|
log2Amp(st->mode, st->start, st->end, bandE, oldBandE, C);
|
|
|
|
if (silence)
|
|
{
|
|
for (i=0;i<C*st->mode->nbEBands;i++)
|
|
{
|
|
bandE[i] = 0;
|
|
oldBandE[i] = -QCONST16(28.f,DB_SHIFT);
|
|
}
|
|
}
|
|
/* Synthesis */
|
|
denormalise_bands(st->mode, X, freq, bandE, effEnd, C, M);
|
|
|
|
OPUS_MOVE(decode_mem[0], decode_mem[0]+N, DECODE_BUFFER_SIZE-N);
|
|
if (CC==2)
|
|
OPUS_MOVE(decode_mem[1], decode_mem[1]+N, DECODE_BUFFER_SIZE-N);
|
|
|
|
c=0; do
|
|
for (i=0;i<M*st->mode->eBands[st->start];i++)
|
|
freq[c*N+i] = 0;
|
|
while (++c<C);
|
|
c=0; do {
|
|
int bound = M*st->mode->eBands[effEnd];
|
|
if (st->downsample!=1)
|
|
bound = IMIN(bound, N/st->downsample);
|
|
for (i=bound;i<N;i++)
|
|
freq[c*N+i] = 0;
|
|
} while (++c<C);
|
|
|
|
out_syn[0] = out_mem[0]+MAX_PERIOD-N;
|
|
if (CC==2)
|
|
out_syn[1] = out_mem[1]+MAX_PERIOD-N;
|
|
|
|
if (CC==2&&C==1)
|
|
{
|
|
for (i=0;i<N;i++)
|
|
freq[N+i] = freq[i];
|
|
}
|
|
if (CC==1&&C==2)
|
|
{
|
|
for (i=0;i<N;i++)
|
|
freq[i] = HALF32(ADD32(freq[i],freq[N+i]));
|
|
}
|
|
|
|
/* Compute inverse MDCTs */
|
|
compute_inv_mdcts(st->mode, shortBlocks, freq, out_syn, overlap_mem, CC, LM);
|
|
|
|
c=0; do {
|
|
st->postfilter_period=IMAX(st->postfilter_period, COMBFILTER_MINPERIOD);
|
|
st->postfilter_period_old=IMAX(st->postfilter_period_old, COMBFILTER_MINPERIOD);
|
|
comb_filter(out_syn[c], out_syn[c], st->postfilter_period_old, st->postfilter_period, st->mode->shortMdctSize,
|
|
st->postfilter_gain_old, st->postfilter_gain, st->postfilter_tapset_old, st->postfilter_tapset,
|
|
st->mode->window, st->overlap);
|
|
if (LM!=0)
|
|
comb_filter(out_syn[c]+st->mode->shortMdctSize, out_syn[c]+st->mode->shortMdctSize, st->postfilter_period, postfilter_pitch, N-st->mode->shortMdctSize,
|
|
st->postfilter_gain, postfilter_gain, st->postfilter_tapset, postfilter_tapset,
|
|
st->mode->window, st->mode->overlap);
|
|
|
|
} while (++c<CC);
|
|
st->postfilter_period_old = st->postfilter_period;
|
|
st->postfilter_gain_old = st->postfilter_gain;
|
|
st->postfilter_tapset_old = st->postfilter_tapset;
|
|
st->postfilter_period = postfilter_pitch;
|
|
st->postfilter_gain = postfilter_gain;
|
|
st->postfilter_tapset = postfilter_tapset;
|
|
if (LM!=0)
|
|
{
|
|
st->postfilter_period_old = st->postfilter_period;
|
|
st->postfilter_gain_old = st->postfilter_gain;
|
|
st->postfilter_tapset_old = st->postfilter_tapset;
|
|
}
|
|
|
|
if (C==1) {
|
|
for (i=0;i<st->mode->nbEBands;i++)
|
|
oldBandE[st->mode->nbEBands+i]=oldBandE[i];
|
|
}
|
|
|
|
/* In case start or end were to change */
|
|
if (!isTransient)
|
|
{
|
|
for (i=0;i<2*st->mode->nbEBands;i++)
|
|
oldLogE2[i] = oldLogE[i];
|
|
for (i=0;i<2*st->mode->nbEBands;i++)
|
|
oldLogE[i] = oldBandE[i];
|
|
for (i=0;i<2*st->mode->nbEBands;i++)
|
|
backgroundLogE[i] = MIN16(backgroundLogE[i] + M*QCONST16(0.001f,DB_SHIFT), oldBandE[i]);
|
|
} else {
|
|
for (i=0;i<2*st->mode->nbEBands;i++)
|
|
oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]);
|
|
}
|
|
c=0; do
|
|
{
|
|
for (i=0;i<st->start;i++)
|
|
{
|
|
oldBandE[c*st->mode->nbEBands+i]=0;
|
|
oldLogE[c*st->mode->nbEBands+i]=oldLogE2[c*st->mode->nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
|
|
}
|
|
for (i=st->end;i<st->mode->nbEBands;i++)
|
|
{
|
|
oldBandE[c*st->mode->nbEBands+i]=0;
|
|
oldLogE[c*st->mode->nbEBands+i]=oldLogE2[c*st->mode->nbEBands+i]=-QCONST16(28.f,DB_SHIFT);
|
|
}
|
|
} while (++c<2);
|
|
st->rng = dec->rng;
|
|
|
|
deemphasis(out_syn, pcm, N, CC, st->downsample, st->mode->preemph, st->preemph_memD);
|
|
st->loss_count = 0;
|
|
RESTORE_STACK;
|
|
if (ec_tell(dec) > 8*len)
|
|
return OPUS_INTERNAL_ERROR;
|
|
if(ec_get_error(dec))
|
|
st->error = 1;
|
|
return frame_size/st->downsample;
|
|
}
|
|
|
|
|
|
#ifdef CUSTOM_MODES
|
|
|
|
#ifdef FIXED_POINT
|
|
int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size)
|
|
{
|
|
return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL);
|
|
}
|
|
|
|
#ifndef DISABLE_FLOAT_API
|
|
int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size)
|
|
{
|
|
int j, ret, C, N;
|
|
VARDECL(opus_int16, out);
|
|
ALLOC_STACK;
|
|
|
|
if (pcm==NULL)
|
|
return OPUS_BAD_ARG;
|
|
|
|
C = st->channels;
|
|
N = frame_size;
|
|
|
|
ALLOC(out, C*N, opus_int16);
|
|
ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL);
|
|
if (ret>0)
|
|
for (j=0;j<C*ret;j++)
|
|
pcm[j]=out[j]*(1.f/32768.f);
|
|
|
|
RESTORE_STACK;
|
|
return ret;
|
|
}
|
|
#endif /* DISABLE_FLOAT_API */
|
|
|
|
#else
|
|
|
|
int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, float * OPUS_RESTRICT pcm, int frame_size)
|
|
{
|
|
return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL);
|
|
}
|
|
|
|
int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size)
|
|
{
|
|
int j, ret, C, N;
|
|
VARDECL(celt_sig, out);
|
|
ALLOC_STACK;
|
|
|
|
if (pcm==NULL)
|
|
return OPUS_BAD_ARG;
|
|
|
|
C = st->channels;
|
|
N = frame_size;
|
|
ALLOC(out, C*N, celt_sig);
|
|
|
|
ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL);
|
|
|
|
if (ret>0)
|
|
for (j=0;j<C*ret;j++)
|
|
pcm[j] = FLOAT2INT16 (out[j]);
|
|
|
|
RESTORE_STACK;
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
#endif /* CUSTOM_MODES */
|
|
|
|
int opus_custom_decoder_ctl(CELTDecoder * OPUS_RESTRICT st, int request, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, request);
|
|
switch (request)
|
|
{
|
|
case CELT_SET_START_BAND_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
if (value<0 || value>=st->mode->nbEBands)
|
|
goto bad_arg;
|
|
st->start = value;
|
|
}
|
|
break;
|
|
case CELT_SET_END_BAND_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
if (value<1 || value>st->mode->nbEBands)
|
|
goto bad_arg;
|
|
st->end = value;
|
|
}
|
|
break;
|
|
case CELT_SET_CHANNELS_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
if (value<1 || value>2)
|
|
goto bad_arg;
|
|
st->stream_channels = value;
|
|
}
|
|
break;
|
|
case CELT_GET_AND_CLEAR_ERROR_REQUEST:
|
|
{
|
|
opus_int32 *value = va_arg(ap, opus_int32*);
|
|
if (value==NULL)
|
|
goto bad_arg;
|
|
*value=st->error;
|
|
st->error = 0;
|
|
}
|
|
break;
|
|
case OPUS_GET_LOOKAHEAD_REQUEST:
|
|
{
|
|
opus_int32 *value = va_arg(ap, opus_int32*);
|
|
if (value==NULL)
|
|
goto bad_arg;
|
|
*value = st->overlap/st->downsample;
|
|
}
|
|
break;
|
|
case OPUS_RESET_STATE:
|
|
{
|
|
int i;
|
|
opus_val16 *lpc, *oldBandE, *oldLogE, *oldLogE2;
|
|
lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*st->channels);
|
|
oldBandE = lpc+st->channels*LPC_ORDER;
|
|
oldLogE = oldBandE + 2*st->mode->nbEBands;
|
|
oldLogE2 = oldLogE + 2*st->mode->nbEBands;
|
|
OPUS_CLEAR((char*)&st->DECODER_RESET_START,
|
|
opus_custom_decoder_get_size(st->mode, st->channels)-
|
|
((char*)&st->DECODER_RESET_START - (char*)st));
|
|
for (i=0;i<2*st->mode->nbEBands;i++)
|
|
oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT);
|
|
}
|
|
break;
|
|
case OPUS_GET_PITCH_REQUEST:
|
|
{
|
|
opus_int32 *value = va_arg(ap, opus_int32*);
|
|
if (value==NULL)
|
|
goto bad_arg;
|
|
*value = st->postfilter_period;
|
|
}
|
|
break;
|
|
case CELT_GET_MODE_REQUEST:
|
|
{
|
|
const CELTMode ** value = va_arg(ap, const CELTMode**);
|
|
if (value==0)
|
|
goto bad_arg;
|
|
*value=st->mode;
|
|
}
|
|
break;
|
|
case CELT_SET_SIGNALLING_REQUEST:
|
|
{
|
|
opus_int32 value = va_arg(ap, opus_int32);
|
|
st->signalling = value;
|
|
}
|
|
break;
|
|
case OPUS_GET_FINAL_RANGE_REQUEST:
|
|
{
|
|
opus_uint32 * value = va_arg(ap, opus_uint32 *);
|
|
if (value==0)
|
|
goto bad_arg;
|
|
*value=st->rng;
|
|
}
|
|
break;
|
|
default:
|
|
goto bad_request;
|
|
}
|
|
va_end(ap);
|
|
return OPUS_OK;
|
|
bad_arg:
|
|
va_end(ap);
|
|
return OPUS_BAD_ARG;
|
|
bad_request:
|
|
va_end(ap);
|
|
return OPUS_UNIMPLEMENTED;
|
|
}
|
|
|
|
|
|
|
|
const char *opus_strerror(int error)
|
|
{
|
|
static const char * const error_strings[8] = {
|
|
"success",
|
|
"invalid argument",
|
|
"buffer too small",
|
|
"internal error",
|
|
"corrupted stream",
|
|
"request not implemented",
|
|
"invalid state",
|
|
"memory allocation failed"
|
|
};
|
|
if (error > 0 || error < -7)
|
|
return "unknown error";
|
|
else
|
|
return error_strings[-error];
|
|
}
|
|
|
|
const char *opus_get_version_string(void)
|
|
{
|
|
return "libopus " OPUS_VERSION
|
|
#ifdef FIXED_POINT
|
|
"-fixed"
|
|
#endif
|
|
#ifdef FUZZING
|
|
"-fuzzing"
|
|
#endif
|
|
;
|
|
}
|