mirror of
https://github.com/UberGames/lilium-voyager.git
synced 2024-12-14 22:20:58 +00:00
365 lines
17 KiB
C
365 lines
17 KiB
C
/***********************************************************************
|
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
|
names of specific contributors, may be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "main_FLP.h"
|
|
#include "tuning_parameters.h"
|
|
|
|
/* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */
|
|
/* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */
|
|
/* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */
|
|
/* coefficient in an array of coefficients, for monic filters. */
|
|
static inline silk_float warped_gain(
|
|
const silk_float *coefs,
|
|
silk_float lambda,
|
|
opus_int order
|
|
) {
|
|
opus_int i;
|
|
silk_float gain;
|
|
|
|
lambda = -lambda;
|
|
gain = coefs[ order - 1 ];
|
|
for( i = order - 2; i >= 0; i-- ) {
|
|
gain = lambda * gain + coefs[ i ];
|
|
}
|
|
return (silk_float)( 1.0f / ( 1.0f - lambda * gain ) );
|
|
}
|
|
|
|
/* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */
|
|
/* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */
|
|
static inline void warped_true2monic_coefs(
|
|
silk_float *coefs_syn,
|
|
silk_float *coefs_ana,
|
|
silk_float lambda,
|
|
silk_float limit,
|
|
opus_int order
|
|
) {
|
|
opus_int i, iter, ind = 0;
|
|
silk_float tmp, maxabs, chirp, gain_syn, gain_ana;
|
|
|
|
/* Convert to monic coefficients */
|
|
for( i = order - 1; i > 0; i-- ) {
|
|
coefs_syn[ i - 1 ] -= lambda * coefs_syn[ i ];
|
|
coefs_ana[ i - 1 ] -= lambda * coefs_ana[ i ];
|
|
}
|
|
gain_syn = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_syn[ 0 ] );
|
|
gain_ana = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_ana[ 0 ] );
|
|
for( i = 0; i < order; i++ ) {
|
|
coefs_syn[ i ] *= gain_syn;
|
|
coefs_ana[ i ] *= gain_ana;
|
|
}
|
|
|
|
/* Limit */
|
|
for( iter = 0; iter < 10; iter++ ) {
|
|
/* Find maximum absolute value */
|
|
maxabs = -1.0f;
|
|
for( i = 0; i < order; i++ ) {
|
|
tmp = silk_max( silk_abs_float( coefs_syn[ i ] ), silk_abs_float( coefs_ana[ i ] ) );
|
|
if( tmp > maxabs ) {
|
|
maxabs = tmp;
|
|
ind = i;
|
|
}
|
|
}
|
|
if( maxabs <= limit ) {
|
|
/* Coefficients are within range - done */
|
|
return;
|
|
}
|
|
|
|
/* Convert back to true warped coefficients */
|
|
for( i = 1; i < order; i++ ) {
|
|
coefs_syn[ i - 1 ] += lambda * coefs_syn[ i ];
|
|
coefs_ana[ i - 1 ] += lambda * coefs_ana[ i ];
|
|
}
|
|
gain_syn = 1.0f / gain_syn;
|
|
gain_ana = 1.0f / gain_ana;
|
|
for( i = 0; i < order; i++ ) {
|
|
coefs_syn[ i ] *= gain_syn;
|
|
coefs_ana[ i ] *= gain_ana;
|
|
}
|
|
|
|
/* Apply bandwidth expansion */
|
|
chirp = 0.99f - ( 0.8f + 0.1f * iter ) * ( maxabs - limit ) / ( maxabs * ( ind + 1 ) );
|
|
silk_bwexpander_FLP( coefs_syn, order, chirp );
|
|
silk_bwexpander_FLP( coefs_ana, order, chirp );
|
|
|
|
/* Convert to monic warped coefficients */
|
|
for( i = order - 1; i > 0; i-- ) {
|
|
coefs_syn[ i - 1 ] -= lambda * coefs_syn[ i ];
|
|
coefs_ana[ i - 1 ] -= lambda * coefs_ana[ i ];
|
|
}
|
|
gain_syn = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_syn[ 0 ] );
|
|
gain_ana = ( 1.0f - lambda * lambda ) / ( 1.0f + lambda * coefs_ana[ 0 ] );
|
|
for( i = 0; i < order; i++ ) {
|
|
coefs_syn[ i ] *= gain_syn;
|
|
coefs_ana[ i ] *= gain_ana;
|
|
}
|
|
}
|
|
silk_assert( 0 );
|
|
}
|
|
|
|
/* Compute noise shaping coefficients and initial gain values */
|
|
void silk_noise_shape_analysis_FLP(
|
|
silk_encoder_state_FLP *psEnc, /* I/O Encoder state FLP */
|
|
silk_encoder_control_FLP *psEncCtrl, /* I/O Encoder control FLP */
|
|
const silk_float *pitch_res, /* I LPC residual from pitch analysis */
|
|
const silk_float *x /* I Input signal [frame_length + la_shape] */
|
|
)
|
|
{
|
|
silk_shape_state_FLP *psShapeSt = &psEnc->sShape;
|
|
opus_int k, nSamples;
|
|
silk_float SNR_adj_dB, HarmBoost, HarmShapeGain, Tilt;
|
|
silk_float nrg, pre_nrg, log_energy, log_energy_prev, energy_variation;
|
|
silk_float delta, BWExp1, BWExp2, gain_mult, gain_add, strength, b, warping;
|
|
silk_float x_windowed[ SHAPE_LPC_WIN_MAX ];
|
|
silk_float auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ];
|
|
const silk_float *x_ptr, *pitch_res_ptr;
|
|
|
|
/* Point to start of first LPC analysis block */
|
|
x_ptr = x - psEnc->sCmn.la_shape;
|
|
|
|
/****************/
|
|
/* GAIN CONTROL */
|
|
/****************/
|
|
SNR_adj_dB = psEnc->sCmn.SNR_dB_Q7 * ( 1 / 128.0f );
|
|
|
|
/* Input quality is the average of the quality in the lowest two VAD bands */
|
|
psEncCtrl->input_quality = 0.5f * ( psEnc->sCmn.input_quality_bands_Q15[ 0 ] + psEnc->sCmn.input_quality_bands_Q15[ 1 ] ) * ( 1.0f / 32768.0f );
|
|
|
|
/* Coding quality level, between 0.0 and 1.0 */
|
|
psEncCtrl->coding_quality = silk_sigmoid( 0.25f * ( SNR_adj_dB - 20.0f ) );
|
|
|
|
if( psEnc->sCmn.useCBR == 0 ) {
|
|
/* Reduce coding SNR during low speech activity */
|
|
b = 1.0f - psEnc->sCmn.speech_activity_Q8 * ( 1.0f / 256.0f );
|
|
SNR_adj_dB -= BG_SNR_DECR_dB * psEncCtrl->coding_quality * ( 0.5f + 0.5f * psEncCtrl->input_quality ) * b * b;
|
|
}
|
|
|
|
if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
|
/* Reduce gains for periodic signals */
|
|
SNR_adj_dB += HARM_SNR_INCR_dB * psEnc->LTPCorr;
|
|
} else {
|
|
/* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
|
|
SNR_adj_dB += ( -0.4f * psEnc->sCmn.SNR_dB_Q7 * ( 1 / 128.0f ) + 6.0f ) * ( 1.0f - psEncCtrl->input_quality );
|
|
}
|
|
|
|
/*************************/
|
|
/* SPARSENESS PROCESSING */
|
|
/*************************/
|
|
/* Set quantizer offset */
|
|
if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
|
/* Initially set to 0; may be overruled in process_gains(..) */
|
|
psEnc->sCmn.indices.quantOffsetType = 0;
|
|
psEncCtrl->sparseness = 0.0f;
|
|
} else {
|
|
/* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
|
|
nSamples = 2 * psEnc->sCmn.fs_kHz;
|
|
energy_variation = 0.0f;
|
|
log_energy_prev = 0.0f;
|
|
pitch_res_ptr = pitch_res;
|
|
for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) {
|
|
nrg = ( silk_float )nSamples + ( silk_float )silk_energy_FLP( pitch_res_ptr, nSamples );
|
|
log_energy = silk_log2( nrg );
|
|
if( k > 0 ) {
|
|
energy_variation += silk_abs_float( log_energy - log_energy_prev );
|
|
}
|
|
log_energy_prev = log_energy;
|
|
pitch_res_ptr += nSamples;
|
|
}
|
|
psEncCtrl->sparseness = silk_sigmoid( 0.4f * ( energy_variation - 5.0f ) );
|
|
|
|
/* Set quantization offset depending on sparseness measure */
|
|
if( psEncCtrl->sparseness > SPARSENESS_THRESHOLD_QNT_OFFSET ) {
|
|
psEnc->sCmn.indices.quantOffsetType = 0;
|
|
} else {
|
|
psEnc->sCmn.indices.quantOffsetType = 1;
|
|
}
|
|
|
|
/* Increase coding SNR for sparse signals */
|
|
SNR_adj_dB += SPARSE_SNR_INCR_dB * ( psEncCtrl->sparseness - 0.5f );
|
|
}
|
|
|
|
/*******************************/
|
|
/* Control bandwidth expansion */
|
|
/*******************************/
|
|
/* More BWE for signals with high prediction gain */
|
|
strength = FIND_PITCH_WHITE_NOISE_FRACTION * psEncCtrl->predGain; /* between 0.0 and 1.0 */
|
|
BWExp1 = BWExp2 = BANDWIDTH_EXPANSION / ( 1.0f + strength * strength );
|
|
delta = LOW_RATE_BANDWIDTH_EXPANSION_DELTA * ( 1.0f - 0.75f * psEncCtrl->coding_quality );
|
|
BWExp1 -= delta;
|
|
BWExp2 += delta;
|
|
/* BWExp1 will be applied after BWExp2, so make it relative */
|
|
BWExp1 /= BWExp2;
|
|
|
|
if( psEnc->sCmn.warping_Q16 > 0 ) {
|
|
/* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
|
|
warping = (silk_float)psEnc->sCmn.warping_Q16 / 65536.0f + 0.01f * psEncCtrl->coding_quality;
|
|
} else {
|
|
warping = 0.0f;
|
|
}
|
|
|
|
/********************************************/
|
|
/* Compute noise shaping AR coefs and gains */
|
|
/********************************************/
|
|
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
|
/* Apply window: sine slope followed by flat part followed by cosine slope */
|
|
opus_int shift, slope_part, flat_part;
|
|
flat_part = psEnc->sCmn.fs_kHz * 3;
|
|
slope_part = ( psEnc->sCmn.shapeWinLength - flat_part ) / 2;
|
|
|
|
silk_apply_sine_window_FLP( x_windowed, x_ptr, 1, slope_part );
|
|
shift = slope_part;
|
|
silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(silk_float) );
|
|
shift += flat_part;
|
|
silk_apply_sine_window_FLP( x_windowed + shift, x_ptr + shift, 2, slope_part );
|
|
|
|
/* Update pointer: next LPC analysis block */
|
|
x_ptr += psEnc->sCmn.subfr_length;
|
|
|
|
if( psEnc->sCmn.warping_Q16 > 0 ) {
|
|
/* Calculate warped auto correlation */
|
|
silk_warped_autocorrelation_FLP( auto_corr, x_windowed, warping,
|
|
psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder );
|
|
} else {
|
|
/* Calculate regular auto correlation */
|
|
silk_autocorrelation_FLP( auto_corr, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1 );
|
|
}
|
|
|
|
/* Add white noise, as a fraction of energy */
|
|
auto_corr[ 0 ] += auto_corr[ 0 ] * SHAPE_WHITE_NOISE_FRACTION;
|
|
|
|
/* Convert correlations to prediction coefficients, and compute residual energy */
|
|
nrg = silk_levinsondurbin_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], auto_corr, psEnc->sCmn.shapingLPCOrder );
|
|
psEncCtrl->Gains[ k ] = ( silk_float )sqrt( nrg );
|
|
|
|
if( psEnc->sCmn.warping_Q16 > 0 ) {
|
|
/* Adjust gain for warping */
|
|
psEncCtrl->Gains[ k ] *= warped_gain( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], warping, psEnc->sCmn.shapingLPCOrder );
|
|
}
|
|
|
|
/* Bandwidth expansion for synthesis filter shaping */
|
|
silk_bwexpander_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp2 );
|
|
|
|
/* Compute noise shaping filter coefficients */
|
|
silk_memcpy(
|
|
&psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ],
|
|
&psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ],
|
|
psEnc->sCmn.shapingLPCOrder * sizeof( silk_float ) );
|
|
|
|
/* Bandwidth expansion for analysis filter shaping */
|
|
silk_bwexpander_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder, BWExp1 );
|
|
|
|
/* Ratio of prediction gains, in energy domain */
|
|
pre_nrg = silk_LPC_inverse_pred_gain_FLP( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder );
|
|
nrg = silk_LPC_inverse_pred_gain_FLP( &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ], psEnc->sCmn.shapingLPCOrder );
|
|
psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg );
|
|
|
|
/* Convert to monic warped prediction coefficients and limit absolute values */
|
|
warped_true2monic_coefs( &psEncCtrl->AR2[ k * MAX_SHAPE_LPC_ORDER ], &psEncCtrl->AR1[ k * MAX_SHAPE_LPC_ORDER ],
|
|
warping, 3.999f, psEnc->sCmn.shapingLPCOrder );
|
|
}
|
|
|
|
/*****************/
|
|
/* Gain tweaking */
|
|
/*****************/
|
|
/* Increase gains during low speech activity */
|
|
gain_mult = (silk_float)pow( 2.0f, -0.16f * SNR_adj_dB );
|
|
gain_add = (silk_float)pow( 2.0f, 0.16f * MIN_QGAIN_DB );
|
|
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
|
psEncCtrl->Gains[ k ] *= gain_mult;
|
|
psEncCtrl->Gains[ k ] += gain_add;
|
|
}
|
|
|
|
gain_mult = 1.0f + INPUT_TILT + psEncCtrl->coding_quality * HIGH_RATE_INPUT_TILT;
|
|
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
|
psEncCtrl->GainsPre[ k ] *= gain_mult;
|
|
}
|
|
|
|
/************************************************/
|
|
/* Control low-frequency shaping and noise tilt */
|
|
/************************************************/
|
|
/* Less low frequency shaping for noisy inputs */
|
|
strength = LOW_FREQ_SHAPING * ( 1.0f + LOW_QUALITY_LOW_FREQ_SHAPING_DECR * ( psEnc->sCmn.input_quality_bands_Q15[ 0 ] * ( 1.0f / 32768.0f ) - 1.0f ) );
|
|
strength *= psEnc->sCmn.speech_activity_Q8 * ( 1.0f / 256.0f );
|
|
if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
|
/* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */
|
|
/*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/
|
|
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
|
b = 0.2f / psEnc->sCmn.fs_kHz + 3.0f / psEncCtrl->pitchL[ k ];
|
|
psEncCtrl->LF_MA_shp[ k ] = -1.0f + b;
|
|
psEncCtrl->LF_AR_shp[ k ] = 1.0f - b - b * strength;
|
|
}
|
|
Tilt = - HP_NOISE_COEF -
|
|
(1 - HP_NOISE_COEF) * HARM_HP_NOISE_COEF * psEnc->sCmn.speech_activity_Q8 * ( 1.0f / 256.0f );
|
|
} else {
|
|
b = 1.3f / psEnc->sCmn.fs_kHz;
|
|
psEncCtrl->LF_MA_shp[ 0 ] = -1.0f + b;
|
|
psEncCtrl->LF_AR_shp[ 0 ] = 1.0f - b - b * strength * 0.6f;
|
|
for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) {
|
|
psEncCtrl->LF_MA_shp[ k ] = psEncCtrl->LF_MA_shp[ 0 ];
|
|
psEncCtrl->LF_AR_shp[ k ] = psEncCtrl->LF_AR_shp[ 0 ];
|
|
}
|
|
Tilt = -HP_NOISE_COEF;
|
|
}
|
|
|
|
/****************************/
|
|
/* HARMONIC SHAPING CONTROL */
|
|
/****************************/
|
|
/* Control boosting of harmonic frequencies */
|
|
HarmBoost = LOW_RATE_HARMONIC_BOOST * ( 1.0f - psEncCtrl->coding_quality ) * psEnc->LTPCorr;
|
|
|
|
/* More harmonic boost for noisy input signals */
|
|
HarmBoost += LOW_INPUT_QUALITY_HARMONIC_BOOST * ( 1.0f - psEncCtrl->input_quality );
|
|
|
|
if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
|
/* Harmonic noise shaping */
|
|
HarmShapeGain = HARMONIC_SHAPING;
|
|
|
|
/* More harmonic noise shaping for high bitrates or noisy input */
|
|
HarmShapeGain += HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING *
|
|
( 1.0f - ( 1.0f - psEncCtrl->coding_quality ) * psEncCtrl->input_quality );
|
|
|
|
/* Less harmonic noise shaping for less periodic signals */
|
|
HarmShapeGain *= ( silk_float )sqrt( psEnc->LTPCorr );
|
|
} else {
|
|
HarmShapeGain = 0.0f;
|
|
}
|
|
|
|
/*************************/
|
|
/* Smooth over subframes */
|
|
/*************************/
|
|
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
|
psShapeSt->HarmBoost_smth += SUBFR_SMTH_COEF * ( HarmBoost - psShapeSt->HarmBoost_smth );
|
|
psEncCtrl->HarmBoost[ k ] = psShapeSt->HarmBoost_smth;
|
|
psShapeSt->HarmShapeGain_smth += SUBFR_SMTH_COEF * ( HarmShapeGain - psShapeSt->HarmShapeGain_smth );
|
|
psEncCtrl->HarmShapeGain[ k ] = psShapeSt->HarmShapeGain_smth;
|
|
psShapeSt->Tilt_smth += SUBFR_SMTH_COEF * ( Tilt - psShapeSt->Tilt_smth );
|
|
psEncCtrl->Tilt[ k ] = psShapeSt->Tilt_smth;
|
|
}
|
|
}
|