lilium-voyager/code/rend2/tr_backend.c
2012-10-26 03:56:45 +00:00

1912 lines
47 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include "tr_local.h"
backEndData_t *backEndData[SMP_FRAMES];
backEndState_t backEnd;
static float s_flipMatrix[16] = {
// convert from our coordinate system (looking down X)
// to OpenGL's coordinate system (looking down -Z)
0, 0, -1, 0,
-1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 0, 1
};
/*
** GL_Bind2
*/
void GL_Bind2( image_t *image, GLenum type ) {
int texnum;
if ( !image ) {
ri.Printf( PRINT_WARNING, "GL_Bind2: NULL image\n" );
texnum = tr.defaultImage->texnum;
} else {
texnum = image->texnum;
}
if ( r_nobind->integer && tr.dlightImage ) { // performance evaluation option
texnum = tr.dlightImage->texnum;
}
if ( glState.currenttextures[glState.currenttmu] != texnum ) {
image->frameUsed = tr.frameCount;
glState.currenttextures[glState.currenttmu] = texnum;
qglBindTexture (type, texnum);
}
}
/*
** GL_Bind2
*/
void GL_Bind( image_t *image )
{
GL_Bind2( image, GL_TEXTURE_2D );
}
/*
** GL_BindCubemap
*/
void GL_BindCubemap( image_t *image )
{
GL_Bind2( image, GL_TEXTURE_CUBE_MAP );
}
/*
** GL_SelectTexture
*/
void GL_SelectTexture( int unit )
{
if ( glState.currenttmu == unit )
{
return;
}
if (!(unit >= 0 && unit <= 31))
ri.Error( ERR_DROP, "GL_SelectTexture: unit = %i", unit );
qglActiveTextureARB( GL_TEXTURE0_ARB + unit );
glState.currenttmu = unit;
}
/*
** GL_BindMultitexture
*/
void GL_BindMultitexture( image_t *image0, GLuint env0, image_t *image1, GLuint env1 ) {
int texnum0, texnum1;
texnum0 = image0->texnum;
texnum1 = image1->texnum;
if ( r_nobind->integer && tr.dlightImage ) { // performance evaluation option
texnum0 = texnum1 = tr.dlightImage->texnum;
}
if ( glState.currenttextures[1] != texnum1 ) {
GL_SelectTexture( 1 );
image1->frameUsed = tr.frameCount;
glState.currenttextures[1] = texnum1;
qglBindTexture( GL_TEXTURE_2D, texnum1 );
}
if ( glState.currenttextures[0] != texnum0 ) {
GL_SelectTexture( 0 );
image0->frameUsed = tr.frameCount;
glState.currenttextures[0] = texnum0;
qglBindTexture( GL_TEXTURE_2D, texnum0 );
}
}
/*
** GL_BindToTMU
*/
void GL_BindToTMU( image_t *image, int tmu )
{
int texnum;
int oldtmu = glState.currenttmu;
if (!image)
texnum = 0;
else
texnum = image->texnum;
if ( glState.currenttextures[tmu] != texnum ) {
GL_SelectTexture( tmu );
if (image)
image->frameUsed = tr.frameCount;
glState.currenttextures[tmu] = texnum;
qglBindTexture( GL_TEXTURE_2D, texnum );
GL_SelectTexture( oldtmu );
}
}
/*
** GL_Cull
*/
void GL_Cull( int cullType ) {
#ifdef REACTION
// Makro - flip culling if needed
qboolean flip = (backEnd.currentEntity != NULL && backEnd.currentEntity->mirrored != qfalse && cullType != CT_TWO_SIDED);
cullType ^= flip; // this assumes CT_BACK_SIDED and CT_FRONT_SIDED are 0 or 1
#endif
if ( glState.faceCulling == cullType ) {
return;
}
glState.faceCulling = cullType;
if ( cullType == CT_TWO_SIDED )
{
qglDisable( GL_CULL_FACE );
}
else
{
qboolean cullFront;
qglEnable( GL_CULL_FACE );
cullFront = (cullType == CT_FRONT_SIDED);
if ( backEnd.viewParms.isMirror )
{
cullFront = !cullFront;
}
qglCullFace( cullFront ? GL_FRONT : GL_BACK );
}
}
/*
** GL_TexEnv
*/
void GL_TexEnv( int env )
{
if ( env == glState.texEnv[glState.currenttmu] )
{
return;
}
glState.texEnv[glState.currenttmu] = env;
switch ( env )
{
case GL_MODULATE:
qglTexEnvf( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE );
break;
case GL_REPLACE:
qglTexEnvf( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE );
break;
case GL_DECAL:
qglTexEnvf( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL );
break;
case GL_ADD:
qglTexEnvf( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_ADD );
break;
default:
ri.Error( ERR_DROP, "GL_TexEnv: invalid env '%d' passed", env );
break;
}
}
/*
** GL_State
**
** This routine is responsible for setting the most commonly changed state
** in Q3.
*/
void GL_State( unsigned long stateBits )
{
unsigned long diff = stateBits ^ glState.glStateBits;
if ( !diff )
{
return;
}
//
// check depthFunc bits
//
if ( diff & GLS_DEPTHFUNC_BITS )
{
if ( stateBits & GLS_DEPTHFUNC_EQUAL )
{
qglDepthFunc( GL_EQUAL );
}
else if ( stateBits & GLS_DEPTHFUNC_GREATER)
{
qglDepthFunc( GL_GREATER );
}
else
{
qglDepthFunc( GL_LEQUAL );
}
}
//
// check blend bits
//
if ( diff & ( GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS ) )
{
GLenum srcFactor, dstFactor;
if ( stateBits & ( GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS ) )
{
switch ( stateBits & GLS_SRCBLEND_BITS )
{
case GLS_SRCBLEND_ZERO:
srcFactor = GL_ZERO;
break;
case GLS_SRCBLEND_ONE:
srcFactor = GL_ONE;
break;
case GLS_SRCBLEND_DST_COLOR:
srcFactor = GL_DST_COLOR;
break;
case GLS_SRCBLEND_ONE_MINUS_DST_COLOR:
srcFactor = GL_ONE_MINUS_DST_COLOR;
break;
case GLS_SRCBLEND_SRC_ALPHA:
srcFactor = GL_SRC_ALPHA;
break;
case GLS_SRCBLEND_ONE_MINUS_SRC_ALPHA:
srcFactor = GL_ONE_MINUS_SRC_ALPHA;
break;
case GLS_SRCBLEND_DST_ALPHA:
srcFactor = GL_DST_ALPHA;
break;
case GLS_SRCBLEND_ONE_MINUS_DST_ALPHA:
srcFactor = GL_ONE_MINUS_DST_ALPHA;
break;
case GLS_SRCBLEND_ALPHA_SATURATE:
srcFactor = GL_SRC_ALPHA_SATURATE;
break;
default:
srcFactor = GL_ONE; // to get warning to shut up
ri.Error( ERR_DROP, "GL_State: invalid src blend state bits" );
break;
}
switch ( stateBits & GLS_DSTBLEND_BITS )
{
case GLS_DSTBLEND_ZERO:
dstFactor = GL_ZERO;
break;
case GLS_DSTBLEND_ONE:
dstFactor = GL_ONE;
break;
case GLS_DSTBLEND_SRC_COLOR:
dstFactor = GL_SRC_COLOR;
break;
case GLS_DSTBLEND_ONE_MINUS_SRC_COLOR:
dstFactor = GL_ONE_MINUS_SRC_COLOR;
break;
case GLS_DSTBLEND_SRC_ALPHA:
dstFactor = GL_SRC_ALPHA;
break;
case GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA:
dstFactor = GL_ONE_MINUS_SRC_ALPHA;
break;
case GLS_DSTBLEND_DST_ALPHA:
dstFactor = GL_DST_ALPHA;
break;
case GLS_DSTBLEND_ONE_MINUS_DST_ALPHA:
dstFactor = GL_ONE_MINUS_DST_ALPHA;
break;
default:
dstFactor = GL_ONE; // to get warning to shut up
ri.Error( ERR_DROP, "GL_State: invalid dst blend state bits" );
break;
}
qglEnable( GL_BLEND );
qglBlendFunc( srcFactor, dstFactor );
}
else
{
qglDisable( GL_BLEND );
}
}
//
// check depthmask
//
if ( diff & GLS_DEPTHMASK_TRUE )
{
if ( stateBits & GLS_DEPTHMASK_TRUE )
{
qglDepthMask( GL_TRUE );
}
else
{
qglDepthMask( GL_FALSE );
}
}
//
// fill/line mode
//
if ( diff & GLS_POLYMODE_LINE )
{
if ( stateBits & GLS_POLYMODE_LINE )
{
qglPolygonMode( GL_FRONT_AND_BACK, GL_LINE );
}
else
{
qglPolygonMode( GL_FRONT_AND_BACK, GL_FILL );
}
}
//
// depthtest
//
if ( diff & GLS_DEPTHTEST_DISABLE )
{
if ( stateBits & GLS_DEPTHTEST_DISABLE )
{
qglDisable( GL_DEPTH_TEST );
}
else
{
qglEnable( GL_DEPTH_TEST );
}
}
//
// alpha test
//
if ( diff & GLS_ATEST_BITS )
{
switch ( stateBits & GLS_ATEST_BITS )
{
case 0:
qglDisable( GL_ALPHA_TEST );
break;
case GLS_ATEST_GT_0:
qglEnable( GL_ALPHA_TEST );
qglAlphaFunc( GL_GREATER, 0.0f );
break;
case GLS_ATEST_LT_80:
qglEnable( GL_ALPHA_TEST );
qglAlphaFunc( GL_LESS, 0.5f );
break;
case GLS_ATEST_GE_80:
qglEnable( GL_ALPHA_TEST );
qglAlphaFunc( GL_GEQUAL, 0.5f );
break;
default:
assert( 0 );
break;
}
}
glState.glStateBits = stateBits;
}
void GL_SetProjectionMatrix(matrix_t matrix)
{
Matrix16Copy(matrix, glState.projection);
Matrix16Multiply(glState.projection, glState.modelview, glState.modelviewProjection);
}
void GL_SetModelviewMatrix(matrix_t matrix)
{
Matrix16Copy(matrix, glState.modelview);
Matrix16Multiply(glState.projection, glState.modelview, glState.modelviewProjection);
}
/*
================
RB_Hyperspace
A player has predicted a teleport, but hasn't arrived yet
================
*/
static void RB_Hyperspace( void ) {
float c;
if ( !backEnd.isHyperspace ) {
// do initialization shit
}
c = ( backEnd.refdef.time & 255 ) / 255.0f;
qglClearColor( c, c, c, 1 );
qglClear( GL_COLOR_BUFFER_BIT );
backEnd.isHyperspace = qtrue;
}
static void SetViewportAndScissor( void ) {
GL_SetProjectionMatrix( backEnd.viewParms.projectionMatrix );
// set the window clipping
qglViewport( backEnd.viewParms.viewportX, backEnd.viewParms.viewportY,
backEnd.viewParms.viewportWidth, backEnd.viewParms.viewportHeight );
qglScissor( backEnd.viewParms.viewportX, backEnd.viewParms.viewportY,
backEnd.viewParms.viewportWidth, backEnd.viewParms.viewportHeight );
}
/*
=================
RB_BeginDrawingView
Any mirrored or portaled views have already been drawn, so prepare
to actually render the visible surfaces for this view
=================
*/
void RB_BeginDrawingView (void) {
int clearBits = 0;
// sync with gl if needed
if ( r_finish->integer == 1 && !glState.finishCalled ) {
qglFinish ();
glState.finishCalled = qtrue;
}
if ( r_finish->integer == 0 ) {
glState.finishCalled = qtrue;
}
// we will need to change the projection matrix before drawing
// 2D images again
backEnd.projection2D = qfalse;
if (glRefConfig.framebufferObject)
{
// FIXME: HUGE HACK: render to the screen fbo if we've already postprocessed the frame and aren't drawing more world
if (backEnd.viewParms.targetFbo == tr.renderFbo && backEnd.framePostProcessed && (backEnd.refdef.rdflags & RDF_NOWORLDMODEL))
{
FBO_Bind(tr.screenScratchFbo);
}
else
{
FBO_Bind(backEnd.viewParms.targetFbo);
}
}
//
// set the modelview matrix for the viewer
//
SetViewportAndScissor();
// ensures that depth writes are enabled for the depth clear
GL_State( GLS_DEFAULT );
// clear relevant buffers
clearBits = GL_DEPTH_BUFFER_BIT;
if ( r_measureOverdraw->integer || r_shadows->integer == 2 )
{
clearBits |= GL_STENCIL_BUFFER_BIT;
}
if ( r_fastsky->integer && !( backEnd.refdef.rdflags & RDF_NOWORLDMODEL ) )
{
clearBits |= GL_COLOR_BUFFER_BIT; // FIXME: only if sky shaders have been used
#ifdef _DEBUG
qglClearColor( 0.8f, 0.7f, 0.4f, 1.0f ); // FIXME: get color of sky
#else
qglClearColor( 0.0f, 0.0f, 0.0f, 1.0f ); // FIXME: get color of sky
#endif
}
// clear to white for shadow maps
if (backEnd.viewParms.flags & VPF_SHADOWMAP)
{
clearBits |= GL_COLOR_BUFFER_BIT;
qglClearColor( 1.0f, 1.0f, 1.0f, 1.0f );
}
qglClear( clearBits );
if ( ( backEnd.refdef.rdflags & RDF_HYPERSPACE ) )
{
RB_Hyperspace();
return;
}
else
{
backEnd.isHyperspace = qfalse;
}
glState.faceCulling = -1; // force face culling to set next time
// we will only draw a sun if there was sky rendered in this view
backEnd.skyRenderedThisView = qfalse;
#ifdef REACTION
backEnd.viewHasSunFlare = qfalse;
#endif
// clip to the plane of the portal
if ( backEnd.viewParms.isPortal ) {
#if 0
float plane[4];
double plane2[4];
plane[0] = backEnd.viewParms.portalPlane.normal[0];
plane[1] = backEnd.viewParms.portalPlane.normal[1];
plane[2] = backEnd.viewParms.portalPlane.normal[2];
plane[3] = backEnd.viewParms.portalPlane.dist;
plane2[0] = DotProduct (backEnd.viewParms.or.axis[0], plane);
plane2[1] = DotProduct (backEnd.viewParms.or.axis[1], plane);
plane2[2] = DotProduct (backEnd.viewParms.or.axis[2], plane);
plane2[3] = DotProduct (plane, backEnd.viewParms.or.origin) - plane[3];
#endif
GL_SetModelviewMatrix( s_flipMatrix );
}
}
#define MAC_EVENT_PUMP_MSEC 5
/*
==================
RB_RenderDrawSurfList
==================
*/
void RB_RenderDrawSurfList( drawSurf_t *drawSurfs, int numDrawSurfs ) {
shader_t *shader, *oldShader;
int fogNum, oldFogNum;
int entityNum, oldEntityNum;
int dlighted, oldDlighted;
int pshadowed, oldPshadowed;
qboolean depthRange, oldDepthRange, isCrosshair, wasCrosshair;
int i;
drawSurf_t *drawSurf;
int oldSort;
float originalTime;
FBO_t* fbo = NULL;
qboolean inQuery = qfalse;
#if 1 //def REACTION
float depth[2];
#endif
// save original time for entity shader offsets
originalTime = backEnd.refdef.floatTime;
fbo = glState.currentFBO;
// draw everything
oldEntityNum = -1;
backEnd.currentEntity = &tr.worldEntity;
oldShader = NULL;
oldFogNum = -1;
oldDepthRange = qfalse;
wasCrosshair = qfalse;
oldDlighted = qfalse;
oldPshadowed = qfalse;
oldSort = -1;
depthRange = qfalse;
#if 1 //def REACTION
depth[0] = 0.f;
depth[1] = 1.f;
#endif
backEnd.pc.c_surfaces += numDrawSurfs;
for (i = 0, drawSurf = drawSurfs ; i < numDrawSurfs ; i++, drawSurf++) {
if ( drawSurf->sort == oldSort ) {
if (backEnd.depthFill && shader && shader->sort != SS_OPAQUE)
continue;
// fast path, same as previous sort
rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );
continue;
}
oldSort = drawSurf->sort;
R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum, &dlighted, &pshadowed );
//
// change the tess parameters if needed
// a "entityMergable" shader is a shader that can have surfaces from seperate
// entities merged into a single batch, like smoke and blood puff sprites
if (shader != oldShader || fogNum != oldFogNum || dlighted != oldDlighted || pshadowed != oldPshadowed
|| ( entityNum != oldEntityNum && !shader->entityMergable ) ) {
if (oldShader != NULL) {
RB_EndSurface();
}
RB_BeginSurface( shader, fogNum );
backEnd.pc.c_surfBatches++;
oldShader = shader;
oldFogNum = fogNum;
oldDlighted = dlighted;
oldPshadowed = pshadowed;
}
if (backEnd.depthFill && shader && shader->sort != SS_OPAQUE)
continue;
//
// change the modelview matrix if needed
//
if ( entityNum != oldEntityNum ) {
qboolean sunflare = qfalse;
depthRange = isCrosshair = qfalse;
#ifdef REACTION
// if we were rendering to a FBO and the previous entity was a sunflare
// and the current one isn't, switch back to the main fbo
if (oldEntityNum != -1 && fbo && !backEnd.depthFill &&
RF_SUNFLARE == (backEnd.refdef.entities[oldEntityNum].e.renderfx & RF_SUNFLARE) &&
0 == (backEnd.refdef.entities[entityNum].e.renderfx & RF_SUNFLARE))
{
if (inQuery) {
inQuery = qfalse;
qglEndQueryARB(GL_SAMPLES_PASSED_ARB);
}
FBO_Bind(fbo);
qglDepthRange(depth[0], depth[1]);
}
#endif
if ( entityNum != REFENTITYNUM_WORLD ) {
backEnd.currentEntity = &backEnd.refdef.entities[entityNum];
backEnd.refdef.floatTime = originalTime - backEnd.currentEntity->e.shaderTime;
// we have to reset the shaderTime as well otherwise image animations start
// from the wrong frame
tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset;
// set up the transformation matrix
R_RotateForEntity( backEnd.currentEntity, &backEnd.viewParms, &backEnd.or );
// set up the dynamic lighting if needed
if ( backEnd.currentEntity->needDlights ) {
R_TransformDlights( backEnd.refdef.num_dlights, backEnd.refdef.dlights, &backEnd.or );
}
#ifdef REACTION
// if the current entity is a sunflare
if(backEnd.currentEntity->e.renderfx & RF_SUNFLARE && !backEnd.depthFill) {
// if we're rendering to a fbo
if (fbo) {
VectorCopy(backEnd.currentEntity->e.origin, backEnd.sunFlarePos);
// switch FBO
FBO_Bind(tr.godRaysFbo);
qglClearColor( 0.0f, 0.0f, 0.0f, 1.0f );
qglClear( GL_COLOR_BUFFER_BIT );
qglDepthRange(1.f, 1.f);
if (glRefConfig.occlusionQuery && !inQuery && !backEnd.viewHasSunFlare) {
inQuery = qtrue;
tr.sunFlareQueryActive[tr.sunFlareQueryIndex] = qtrue;
qglBeginQueryARB(GL_SAMPLES_PASSED_ARB, tr.sunFlareQuery[tr.sunFlareQueryIndex]);
}
sunflare = qtrue;
} else {
depthRange = qtrue;
}
}
#endif
if(backEnd.currentEntity->e.renderfx & RF_DEPTHHACK)
{
// hack the depth range to prevent view model from poking into walls
depthRange = qtrue;
if(backEnd.currentEntity->e.renderfx & RF_CROSSHAIR)
isCrosshair = qtrue;
}
} else {
backEnd.currentEntity = &tr.worldEntity;
backEnd.refdef.floatTime = originalTime;
backEnd.or = backEnd.viewParms.world;
// we have to reset the shaderTime as well otherwise image animations on
// the world (like water) continue with the wrong frame
tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset;
R_TransformDlights( backEnd.refdef.num_dlights, backEnd.refdef.dlights, &backEnd.or );
}
GL_SetModelviewMatrix( backEnd.or.modelMatrix );
//
// change depthrange. Also change projection matrix so first person weapon does not look like coming
// out of the screen.
//
if (oldDepthRange != depthRange || wasCrosshair != isCrosshair)
{
if (depthRange)
{
if(backEnd.viewParms.stereoFrame != STEREO_CENTER)
{
if(isCrosshair)
{
if(oldDepthRange)
{
// was not a crosshair but now is, change back proj matrix
GL_SetProjectionMatrix( backEnd.viewParms.projectionMatrix );
}
}
else
{
viewParms_t temp = backEnd.viewParms;
R_SetupProjection(&temp, r_znear->value, 0, qfalse);
GL_SetProjectionMatrix( temp.projectionMatrix );
}
}
#if 1 //def REACTION
if(!oldDepthRange)
{
depth[0] = 0;
depth[1] = 0.3f;
qglDepthRange (depth[0], depth[1]);
}
#endif
}
else
{
if(!wasCrosshair && backEnd.viewParms.stereoFrame != STEREO_CENTER)
{
GL_SetProjectionMatrix( backEnd.viewParms.projectionMatrix );
}
if (!sunflare)
qglDepthRange (0, 1);
#if 1 //def REACTION
depth[0] = 0;
depth[1] = 1;
#endif
}
oldDepthRange = depthRange;
wasCrosshair = isCrosshair;
}
oldEntityNum = entityNum;
}
// add the triangles for this surface
rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );
}
backEnd.refdef.floatTime = originalTime;
// draw the contents of the last shader batch
if (oldShader != NULL) {
RB_EndSurface();
}
if (inQuery) {
inQuery = qfalse;
qglEndQueryARB(GL_SAMPLES_PASSED_ARB);
}
#ifdef REACTION
// HACK: flip Z and render black to god rays buffer
if (backEnd.frameHasSunFlare && !backEnd.depthFill)
{
vec4_t black;
VectorSet4(black, 0, 0, 0, 1);
qglDepthRange (1, 1);
FBO_BlitFromTexture(tr.whiteImage, NULL, NULL, tr.godRaysFbo, NULL, NULL, black, GLS_DEPTHFUNC_GREATER);
}
#endif
FBO_Bind(fbo);
// go back to the world modelview matrix
GL_SetModelviewMatrix( backEnd.viewParms.world.modelMatrix );
//if ( depthRange ) {
qglDepthRange (0, 1);
//}
}
/*
============================================================================
RENDER BACK END THREAD FUNCTIONS
============================================================================
*/
/*
================
RB_SetGL2D
================
*/
void RB_SetGL2D (void) {
matrix_t matrix;
int width, height;
if (backEnd.projection2D && backEnd.last2DFBO == glState.currentFBO)
return;
backEnd.projection2D = qtrue;
backEnd.last2DFBO = glState.currentFBO;
if (glState.currentFBO)
{
width = glState.currentFBO->width;
height = glState.currentFBO->height;
}
else
{
width = glConfig.vidWidth;
height = glConfig.vidHeight;
}
// set 2D virtual screen size
qglViewport( 0, 0, width, height );
qglScissor( 0, 0, width, height );
Matrix16Ortho(0, width, height, 0, 0, 1, matrix);
GL_SetProjectionMatrix(matrix);
Matrix16Identity(matrix);
GL_SetModelviewMatrix(matrix);
GL_State( GLS_DEPTHTEST_DISABLE |
GLS_SRCBLEND_SRC_ALPHA |
GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA );
qglDisable( GL_CULL_FACE );
qglDisable( GL_CLIP_PLANE0 );
// set time for 2D shaders
backEnd.refdef.time = ri.Milliseconds();
backEnd.refdef.floatTime = backEnd.refdef.time * 0.001f;
// reset color scaling
backEnd.refdef.colorScale = 1.0f;
}
/*
=============
RE_StretchRaw
FIXME: not exactly backend
Stretches a raw 32 bit power of 2 bitmap image over the given screen rectangle.
Used for cinematics.
=============
*/
void RE_StretchRaw (int x, int y, int w, int h, int cols, int rows, const byte *data, int client, qboolean dirty) {
int i, j;
int start, end;
shaderProgram_t *sp = &tr.textureColorShader;
vec4_t color;
if ( !tr.registered ) {
return;
}
R_SyncRenderThread();
// we definately want to sync every frame for the cinematics
qglFinish();
start = 0;
if ( r_speeds->integer ) {
start = ri.Milliseconds();
}
// make sure rows and cols are powers of 2
for ( i = 0 ; ( 1 << i ) < cols ; i++ ) {
}
for ( j = 0 ; ( 1 << j ) < rows ; j++ ) {
}
if ( ( 1 << i ) != cols || ( 1 << j ) != rows) {
ri.Error (ERR_DROP, "Draw_StretchRaw: size not a power of 2: %i by %i", cols, rows);
}
GL_Bind( tr.scratchImage[client] );
// if the scratchImage isn't in the format we want, specify it as a new texture
if ( cols != tr.scratchImage[client]->width || rows != tr.scratchImage[client]->height ) {
tr.scratchImage[client]->width = tr.scratchImage[client]->uploadWidth = cols;
tr.scratchImage[client]->height = tr.scratchImage[client]->uploadHeight = rows;
qglTexImage2D( GL_TEXTURE_2D, 0, GL_RGB8, cols, rows, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
} else {
if (dirty) {
// otherwise, just subimage upload it so that drivers can tell we are going to be changing
// it and don't try and do a texture compression
qglTexSubImage2D( GL_TEXTURE_2D, 0, 0, 0, cols, rows, GL_RGBA, GL_UNSIGNED_BYTE, data );
}
}
if ( r_speeds->integer ) {
end = ri.Milliseconds();
ri.Printf( PRINT_ALL, "qglTexSubImage2D %i, %i: %i msec\n", cols, rows, end - start );
}
// FIXME: HUGE hack
if (glRefConfig.framebufferObject && !glState.currentFBO)
{
if (backEnd.framePostProcessed)
{
FBO_Bind(tr.screenScratchFbo);
}
else
{
FBO_Bind(tr.renderFbo);
}
}
RB_SetGL2D();
tess.numIndexes = 0;
tess.numVertexes = 0;
tess.firstIndex = 0;
tess.xyz[tess.numVertexes][0] = x;
tess.xyz[tess.numVertexes][1] = y;
tess.xyz[tess.numVertexes][2] = 0;
tess.xyz[tess.numVertexes][3] = 1;
tess.texCoords[tess.numVertexes][0][0] = 0.5f / cols;
tess.texCoords[tess.numVertexes][0][1] = 0.5f / rows;
tess.texCoords[tess.numVertexes][1][0] = 0;
tess.texCoords[tess.numVertexes][1][1] = 1;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = x + w;
tess.xyz[tess.numVertexes][1] = y;
tess.xyz[tess.numVertexes][2] = 0;
tess.xyz[tess.numVertexes][3] = 1;
tess.texCoords[tess.numVertexes][0][0] = (cols - 0.5f) / cols;
tess.texCoords[tess.numVertexes][0][1] = 0.5f / rows;
tess.texCoords[tess.numVertexes][1][0] = 0;
tess.texCoords[tess.numVertexes][1][1] = 1;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = x + w;
tess.xyz[tess.numVertexes][1] = y + h;
tess.xyz[tess.numVertexes][2] = 0;
tess.xyz[tess.numVertexes][3] = 1;
tess.texCoords[tess.numVertexes][0][0] = (cols - 0.5f) / cols;
tess.texCoords[tess.numVertexes][0][1] = (rows - 0.5f) / rows;
tess.texCoords[tess.numVertexes][1][0] = 0;
tess.texCoords[tess.numVertexes][1][1] = 1;
tess.numVertexes++;
tess.xyz[tess.numVertexes][0] = x;
tess.xyz[tess.numVertexes][1] = y + h;
tess.xyz[tess.numVertexes][2] = 0;
tess.xyz[tess.numVertexes][3] = 1;
tess.texCoords[tess.numVertexes][0][0] = 0.5f / cols;
tess.texCoords[tess.numVertexes][0][1] = (rows - 0.5f) / rows;
tess.texCoords[tess.numVertexes][1][0] = 0;
tess.texCoords[tess.numVertexes][1][1] = 1;
tess.numVertexes++;
tess.indexes[tess.numIndexes++] = 0;
tess.indexes[tess.numIndexes++] = 1;
tess.indexes[tess.numIndexes++] = 2;
tess.indexes[tess.numIndexes++] = 0;
tess.indexes[tess.numIndexes++] = 2;
tess.indexes[tess.numIndexes++] = 3;
// FIXME: A lot of this can probably be removed for speed, and refactored into a more convenient function
RB_UpdateVBOs(ATTR_POSITION | ATTR_TEXCOORD);
sp = &tr.textureColorShader;
GLSL_VertexAttribsState(ATTR_POSITION | ATTR_TEXCOORD);
GLSL_BindProgram(sp);
GLSL_SetUniformMatrix16(sp, TEXTURECOLOR_UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection);
VectorSet4(color, 1, 1, 1, 1);
GLSL_SetUniformVec4(sp, TEXTURECOLOR_UNIFORM_COLOR, color);
R_DrawElementsVBO(tess.numIndexes, tess.firstIndex);
//R_BindNullVBO();
//R_BindNullIBO();
tess.numIndexes = 0;
tess.numVertexes = 0;
tess.firstIndex = 0;
}
void RE_UploadCinematic (int w, int h, int cols, int rows, const byte *data, int client, qboolean dirty) {
GL_Bind( tr.scratchImage[client] );
// if the scratchImage isn't in the format we want, specify it as a new texture
if ( cols != tr.scratchImage[client]->width || rows != tr.scratchImage[client]->height ) {
tr.scratchImage[client]->width = tr.scratchImage[client]->uploadWidth = cols;
tr.scratchImage[client]->height = tr.scratchImage[client]->uploadHeight = rows;
qglTexImage2D( GL_TEXTURE_2D, 0, GL_RGB8, cols, rows, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
} else {
if (dirty) {
// otherwise, just subimage upload it so that drivers can tell we are going to be changing
// it and don't try and do a texture compression
qglTexSubImage2D( GL_TEXTURE_2D, 0, 0, 0, cols, rows, GL_RGBA, GL_UNSIGNED_BYTE, data );
}
}
}
/*
=============
RB_SetColor
=============
*/
const void *RB_SetColor( const void *data ) {
const setColorCommand_t *cmd;
cmd = (const setColorCommand_t *)data;
backEnd.color2D[0] = cmd->color[0] * 255;
backEnd.color2D[1] = cmd->color[1] * 255;
backEnd.color2D[2] = cmd->color[2] * 255;
backEnd.color2D[3] = cmd->color[3] * 255;
return (const void *)(cmd + 1);
}
/*
=============
RB_StretchPic
=============
*/
const void *RB_StretchPic ( const void *data ) {
const stretchPicCommand_t *cmd;
shader_t *shader;
int numVerts, numIndexes;
cmd = (const stretchPicCommand_t *)data;
// FIXME: HUGE hack
if (glRefConfig.framebufferObject && !glState.currentFBO)
{
if (backEnd.framePostProcessed)
{
FBO_Bind(tr.screenScratchFbo);
}
else
{
FBO_Bind(tr.renderFbo);
}
}
RB_SetGL2D();
shader = cmd->shader;
if ( shader != tess.shader ) {
if ( tess.numIndexes ) {
RB_EndSurface();
}
backEnd.currentEntity = &backEnd.entity2D;
RB_BeginSurface( shader, 0 );
}
RB_CHECKOVERFLOW( 4, 6 );
numVerts = tess.numVertexes;
numIndexes = tess.numIndexes;
tess.numVertexes += 4;
tess.numIndexes += 6;
tess.indexes[ numIndexes ] = numVerts + 3;
tess.indexes[ numIndexes + 1 ] = numVerts + 0;
tess.indexes[ numIndexes + 2 ] = numVerts + 2;
tess.indexes[ numIndexes + 3 ] = numVerts + 2;
tess.indexes[ numIndexes + 4 ] = numVerts + 0;
tess.indexes[ numIndexes + 5 ] = numVerts + 1;
{
vec4_t color;
VectorScale4(backEnd.color2D, 1.0f / 255.0f, color);
VectorCopy4(color, tess.vertexColors[ numVerts ]);
VectorCopy4(color, tess.vertexColors[ numVerts + 1]);
VectorCopy4(color, tess.vertexColors[ numVerts + 2]);
VectorCopy4(color, tess.vertexColors[ numVerts + 3 ]);
}
tess.xyz[ numVerts ][0] = cmd->x;
tess.xyz[ numVerts ][1] = cmd->y;
tess.xyz[ numVerts ][2] = 0;
tess.texCoords[ numVerts ][0][0] = cmd->s1;
tess.texCoords[ numVerts ][0][1] = cmd->t1;
tess.xyz[ numVerts + 1 ][0] = cmd->x + cmd->w;
tess.xyz[ numVerts + 1 ][1] = cmd->y;
tess.xyz[ numVerts + 1 ][2] = 0;
tess.texCoords[ numVerts + 1 ][0][0] = cmd->s2;
tess.texCoords[ numVerts + 1 ][0][1] = cmd->t1;
tess.xyz[ numVerts + 2 ][0] = cmd->x + cmd->w;
tess.xyz[ numVerts + 2 ][1] = cmd->y + cmd->h;
tess.xyz[ numVerts + 2 ][2] = 0;
tess.texCoords[ numVerts + 2 ][0][0] = cmd->s2;
tess.texCoords[ numVerts + 2 ][0][1] = cmd->t2;
tess.xyz[ numVerts + 3 ][0] = cmd->x;
tess.xyz[ numVerts + 3 ][1] = cmd->y + cmd->h;
tess.xyz[ numVerts + 3 ][2] = 0;
tess.texCoords[ numVerts + 3 ][0][0] = cmd->s1;
tess.texCoords[ numVerts + 3 ][0][1] = cmd->t2;
return (const void *)(cmd + 1);
}
/*
=============
RB_DrawSurfs
=============
*/
const void *RB_DrawSurfs( const void *data ) {
const drawSurfsCommand_t *cmd;
// finish any 2D drawing if needed
if ( tess.numIndexes ) {
RB_EndSurface();
}
cmd = (const drawSurfsCommand_t *)data;
backEnd.refdef = cmd->refdef;
backEnd.viewParms = cmd->viewParms;
// clear the z buffer, set the modelview, etc
RB_BeginDrawingView ();
if ((backEnd.viewParms.flags & VPF_DEPTHCLAMP) && glRefConfig.depthClamp)
{
qglEnable(GL_DEPTH_CLAMP);
}
if (!(backEnd.refdef.rdflags & RDF_NOWORLDMODEL) && (r_depthPrepass->integer || (backEnd.viewParms.flags & VPF_DEPTHSHADOW)))
{
FBO_t *oldFbo = glState.currentFBO;
backEnd.depthFill = qtrue;
qglColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
RB_RenderDrawSurfList( cmd->drawSurfs, cmd->numDrawSurfs );
qglColorMask(!backEnd.colorMask[0], !backEnd.colorMask[1], !backEnd.colorMask[2], !backEnd.colorMask[3]);
backEnd.depthFill = qfalse;
// If we're using multisampling, resolve the depth first
if (tr.msaaResolveFbo)
{
FBO_FastBlit(tr.renderFbo, NULL, tr.msaaResolveFbo, NULL, GL_DEPTH_BUFFER_BIT, GL_NEAREST);
}
if (r_ssao->integer)
{
vec2_t srcTexScale;
vec4_t color;
vec4_t quadVerts[4];
vec2_t texCoords[4];
vec2_t invTexRes;
matrix_t idmatrix;
srcTexScale[0] = srcTexScale[1] = 1.0f;
color[0] = color[1] = color[2] = color[3] = 1.0f;
FBO_Bind(tr.hdrDepthFbo);
qglViewport(0, 0, tr.hdrDepthFbo->width, tr.hdrDepthFbo->height);
qglScissor(0, 0, tr.hdrDepthFbo->width, tr.hdrDepthFbo->height);
Matrix16Identity(idmatrix);
VectorSet4(quadVerts[0], -1, 1, 0, 1);
VectorSet4(quadVerts[1], 1, 1, 0, 1);
VectorSet4(quadVerts[2], 1, -1, 0, 1);
VectorSet4(quadVerts[3], -1, -1, 0, 1);
texCoords[0][0] = 0; texCoords[0][1] = 1;
texCoords[1][0] = 1; texCoords[1][1] = 1;
texCoords[2][0] = 1; texCoords[2][1] = 0;
texCoords[3][0] = 0; texCoords[3][1] = 0;
invTexRes[0] = 0.0f;
invTexRes[1] = 0.0f;
GL_State( GLS_DEPTHTEST_DISABLE );
GLSL_BindProgram(&tr.textureColorShader);
GL_BindToTMU(tr.renderDepthImage, TB_COLORMAP);
GLSL_SetUniformMatrix16(&tr.textureColorShader, TEXTURECOLOR_UNIFORM_MODELVIEWPROJECTIONMATRIX, idmatrix);
GLSL_SetUniformVec4(&tr.textureColorShader, TEXTURECOLOR_UNIFORM_COLOR, color);
GLSL_SetUniformVec2(&tr.textureColorShader, TEXTURECOLOR_UNIFORM_INVTEXRES, invTexRes);
GLSL_SetUniformVec2(&tr.textureColorShader, TEXTURECOLOR_UNIFORM_AUTOEXPOSUREMINMAX, tr.refdef.autoExposureMinMax);
GLSL_SetUniformVec3(&tr.textureColorShader, TEXTURECOLOR_UNIFORM_TONEMINAVGMAXLINEAR, tr.refdef.toneMinAvgMaxLinear);
RB_InstantQuad2(quadVerts, texCoords); //, color, shaderProgram, invTexRes);
}
if (backEnd.viewParms.flags & VPF_USESUNLIGHT)
{
vec4_t quadVerts[4];
vec2_t texCoords[4];
FBO_Bind(tr.screenShadowFbo);
qglViewport(0, 0, tr.screenShadowFbo->width, tr.screenShadowFbo->height);
qglScissor(0, 0, tr.screenShadowFbo->width, tr.screenShadowFbo->height);
VectorSet4(quadVerts[0], -1, 1, 0, 1);
VectorSet4(quadVerts[1], 1, 1, 0, 1);
VectorSet4(quadVerts[2], 1, -1, 0, 1);
VectorSet4(quadVerts[3], -1, -1, 0, 1);
texCoords[0][0] = 0; texCoords[0][1] = 1;
texCoords[1][0] = 1; texCoords[1][1] = 1;
texCoords[2][0] = 1; texCoords[2][1] = 0;
texCoords[3][0] = 0; texCoords[3][1] = 0;
GL_State( GLS_DEPTHTEST_DISABLE );
GLSL_BindProgram(&tr.shadowmaskShader);
GL_BindToTMU(tr.renderDepthImage, TB_COLORMAP);
GL_BindToTMU(tr.sunShadowDepthImage[0], TB_SHADOWMAP);
GL_BindToTMU(tr.sunShadowDepthImage[1], TB_SHADOWMAP2);
GL_BindToTMU(tr.sunShadowDepthImage[2], TB_SHADOWMAP3);
GLSL_SetUniformMatrix16(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_SHADOWMVP, backEnd.refdef.sunShadowMvp[0]);
GLSL_SetUniformMatrix16(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_SHADOWMVP2, backEnd.refdef.sunShadowMvp[1]);
GLSL_SetUniformMatrix16(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_SHADOWMVP3, backEnd.refdef.sunShadowMvp[2]);
GLSL_SetUniformVec3(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_VIEWORIGIN, backEnd.refdef.vieworg);
{
vec4_t viewInfo;
vec3_t viewVector;
float zmax = backEnd.viewParms.zFar;
float ymax = zmax * tan(backEnd.viewParms.fovY * M_PI / 360.0f);
float xmax = zmax * tan(backEnd.viewParms.fovX * M_PI / 360.0f);
float zmin = r_znear->value;
VectorScale(backEnd.refdef.viewaxis[0], zmax, viewVector);
GLSL_SetUniformVec3(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_VIEWFORWARD, viewVector);
VectorScale(backEnd.refdef.viewaxis[1], xmax, viewVector);
GLSL_SetUniformVec3(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_VIEWLEFT, viewVector);
VectorScale(backEnd.refdef.viewaxis[2], ymax, viewVector);
GLSL_SetUniformVec3(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_VIEWUP, viewVector);
VectorSet4(viewInfo, zmax / zmin, zmax, 0.0, 0.0);
GLSL_SetUniformVec4(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_VIEWINFO, viewInfo);
}
RB_InstantQuad2(quadVerts, texCoords); //, color, shaderProgram, invTexRes);
}
if (r_ssao->integer)
{
vec4_t quadVerts[4];
vec2_t texCoords[4];
FBO_Bind(tr.quarterFbo[0]);
qglViewport(0, 0, tr.quarterFbo[0]->width, tr.quarterFbo[0]->height);
qglScissor(0, 0, tr.quarterFbo[0]->width, tr.quarterFbo[0]->height);
VectorSet4(quadVerts[0], -1, 1, 0, 1);
VectorSet4(quadVerts[1], 1, 1, 0, 1);
VectorSet4(quadVerts[2], 1, -1, 0, 1);
VectorSet4(quadVerts[3], -1, -1, 0, 1);
texCoords[0][0] = 0; texCoords[0][1] = 1;
texCoords[1][0] = 1; texCoords[1][1] = 1;
texCoords[2][0] = 1; texCoords[2][1] = 0;
texCoords[3][0] = 0; texCoords[3][1] = 0;
GL_State( GLS_DEPTHTEST_DISABLE );
GLSL_BindProgram(&tr.ssaoShader);
GL_BindToTMU(tr.hdrDepthImage, TB_COLORMAP);
{
vec4_t viewInfo;
float zmax = backEnd.viewParms.zFar;
float zmin = r_znear->value;
VectorSet4(viewInfo, zmax / zmin, zmax, 0.0, 0.0);
GLSL_SetUniformVec4(&tr.ssaoShader, SSAO_UNIFORM_VIEWINFO, viewInfo);
}
RB_InstantQuad2(quadVerts, texCoords); //, color, shaderProgram, invTexRes);
FBO_Bind(tr.quarterFbo[1]);
qglViewport(0, 0, tr.quarterFbo[1]->width, tr.quarterFbo[1]->height);
qglScissor(0, 0, tr.quarterFbo[1]->width, tr.quarterFbo[1]->height);
GLSL_BindProgram(&tr.depthBlurShader[0]);
GL_BindToTMU(tr.quarterImage[0], TB_COLORMAP);
GL_BindToTMU(tr.hdrDepthImage, TB_LIGHTMAP);
{
vec4_t viewInfo;
float zmax = backEnd.viewParms.zFar;
float zmin = r_znear->value;
VectorSet4(viewInfo, zmax / zmin, zmax, 0.0, 0.0);
GLSL_SetUniformVec4(&tr.depthBlurShader[0], DEPTHBLUR_UNIFORM_VIEWINFO, viewInfo);
}
RB_InstantQuad2(quadVerts, texCoords); //, color, shaderProgram, invTexRes);
FBO_Bind(tr.screenSsaoFbo);
qglViewport(0, 0, tr.screenSsaoFbo->width, tr.screenSsaoFbo->height);
qglScissor(0, 0, tr.screenSsaoFbo->width, tr.screenSsaoFbo->height);
GLSL_BindProgram(&tr.depthBlurShader[1]);
GL_BindToTMU(tr.quarterImage[1], TB_COLORMAP);
GL_BindToTMU(tr.hdrDepthImage, TB_LIGHTMAP);
{
vec4_t viewInfo;
float zmax = backEnd.viewParms.zFar;
float zmin = r_znear->value;
VectorSet4(viewInfo, zmax / zmin, zmax, 0.0, 0.0);
GLSL_SetUniformVec4(&tr.depthBlurShader[1], DEPTHBLUR_UNIFORM_VIEWINFO, viewInfo);
}
RB_InstantQuad2(quadVerts, texCoords); //, color, shaderProgram, invTexRes);
}
// reset viewport and scissor
FBO_Bind(oldFbo);
SetViewportAndScissor();
}
if ((backEnd.viewParms.flags & VPF_DEPTHCLAMP) && glRefConfig.depthClamp)
{
qglDisable(GL_DEPTH_CLAMP);
}
if (!(backEnd.viewParms.flags & VPF_DEPTHSHADOW))
{
RB_RenderDrawSurfList( cmd->drawSurfs, cmd->numDrawSurfs );
#if 0
RB_DrawSun();
#endif
// darken down any stencil shadows
RB_ShadowFinish();
// add light flares on lights that aren't obscured
RB_RenderFlares();
}
if (glRefConfig.framebufferObject)
FBO_Bind(NULL);
return (const void *)(cmd + 1);
}
/*
=============
RB_DrawBuffer
=============
*/
const void *RB_DrawBuffer( const void *data ) {
const drawBufferCommand_t *cmd;
cmd = (const drawBufferCommand_t *)data;
qglDrawBuffer( cmd->buffer );
// clear screen for debugging
if ( r_clear->integer ) {
qglClearColor( 1, 0, 0.5, 1 );
qglClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
}
return (const void *)(cmd + 1);
}
/*
===============
RB_ShowImages
Draw all the images to the screen, on top of whatever
was there. This is used to test for texture thrashing.
Also called by RE_EndRegistration
===============
*/
void RB_ShowImages( void ) {
int i;
image_t *image;
float x, y, w, h;
int start, end;
RB_SetGL2D();
qglClear( GL_COLOR_BUFFER_BIT );
qglFinish();
start = ri.Milliseconds();
for ( i=0 ; i<tr.numImages ; i++ ) {
image = tr.images[i];
w = glConfig.vidWidth / 20;
h = glConfig.vidHeight / 15;
x = i % 20 * w;
y = i / 20 * h;
// show in proportional size in mode 2
if ( r_showImages->integer == 2 ) {
w *= image->uploadWidth / 512.0f;
h *= image->uploadHeight / 512.0f;
}
{
vec4_t quadVerts[4];
GL_Bind(image);
VectorSet4(quadVerts[0], x, y, 0, 1);
VectorSet4(quadVerts[1], x + w, y, 0, 1);
VectorSet4(quadVerts[2], x + w, y + h, 0, 1);
VectorSet4(quadVerts[3], x, y + h, 0, 1);
RB_InstantQuad(quadVerts);
}
}
qglFinish();
end = ri.Milliseconds();
ri.Printf( PRINT_ALL, "%i msec to draw all images\n", end - start );
}
/*
=============
RB_ColorMask
=============
*/
const void *RB_ColorMask(const void *data)
{
const colorMaskCommand_t *cmd = data;
if (glRefConfig.framebufferObject)
{
// reverse color mask, so 0 0 0 0 is the default
backEnd.colorMask[0] = !cmd->rgba[0];
backEnd.colorMask[1] = !cmd->rgba[1];
backEnd.colorMask[2] = !cmd->rgba[2];
backEnd.colorMask[3] = !cmd->rgba[3];
}
qglColorMask(cmd->rgba[0], cmd->rgba[1], cmd->rgba[2], cmd->rgba[3]);
return (const void *)(cmd + 1);
}
/*
=============
RB_ClearDepth
=============
*/
const void *RB_ClearDepth(const void *data)
{
const clearDepthCommand_t *cmd = data;
if(tess.numIndexes)
RB_EndSurface();
// texture swapping test
if (r_showImages->integer)
RB_ShowImages();
if (backEnd.framePostProcessed && (backEnd.refdef.rdflags & RDF_NOWORLDMODEL))
{
FBO_Bind(tr.screenScratchFbo);
}
else
{
FBO_Bind(tr.renderFbo);
}
qglClear(GL_DEPTH_BUFFER_BIT);
// if we're doing MSAA, clear the depth texture for the resolve buffer
if (tr.msaaResolveFbo)
{
FBO_Bind(tr.screenScratchFbo);
qglClear(GL_DEPTH_BUFFER_BIT);
}
return (const void *)(cmd + 1);
}
/*
=============
RB_SwapBuffers
=============
*/
const void *RB_SwapBuffers( const void *data ) {
const swapBuffersCommand_t *cmd;
// finish any 2D drawing if needed
if ( tess.numIndexes ) {
RB_EndSurface();
}
// texture swapping test
if ( r_showImages->integer ) {
RB_ShowImages();
}
cmd = (const swapBuffersCommand_t *)data;
// we measure overdraw by reading back the stencil buffer and
// counting up the number of increments that have happened
if ( r_measureOverdraw->integer ) {
int i;
long sum = 0;
unsigned char *stencilReadback;
stencilReadback = ri.Hunk_AllocateTempMemory( glConfig.vidWidth * glConfig.vidHeight );
qglReadPixels( 0, 0, glConfig.vidWidth, glConfig.vidHeight, GL_STENCIL_INDEX, GL_UNSIGNED_BYTE, stencilReadback );
for ( i = 0; i < glConfig.vidWidth * glConfig.vidHeight; i++ ) {
sum += stencilReadback[i];
}
backEnd.pc.c_overDraw += sum;
ri.Hunk_FreeTempMemory( stencilReadback );
}
if (glRefConfig.framebufferObject)
{
// copy final image to screen
vec4_t color;
if (backEnd.framePostProcessed)
{
// frame was postprocessed into screen fbo, copy from there
}
else if (!glRefConfig.framebuffer_srgb)
{
// Copy render to screenscratch, possibly resolving MSAA
FBO_FastBlit(tr.renderFbo, NULL, tr.screenScratchFbo, NULL, GL_COLOR_BUFFER_BIT, GL_NEAREST);
}
else
{
FBO_t *srcFbo = tr.renderFbo;
if (tr.msaaResolveFbo)
{
// Resolve the MSAA before copying
FBO_FastBlit(srcFbo, NULL, tr.msaaResolveFbo, NULL, GL_COLOR_BUFFER_BIT, GL_NEAREST);
srcFbo = tr.msaaResolveFbo;
}
// need to copy from resolve to screenscratch to fix gamma
FBO_Blit(srcFbo, NULL, NULL, tr.screenScratchFbo, NULL, NULL, NULL, 0);
}
color[0] =
color[1] =
color[2] = pow(2, tr.overbrightBits); //exp2(tr.overbrightBits);
color[3] = 1.0f;
// turn off colormask when copying final image
if (backEnd.colorMask[0] || backEnd.colorMask[1] || backEnd.colorMask[2] || backEnd.colorMask[3])
qglColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
FBO_Blit(tr.screenScratchFbo, NULL, NULL, NULL, NULL, NULL, color, 0);
if (backEnd.colorMask[0] || backEnd.colorMask[1] || backEnd.colorMask[2] || backEnd.colorMask[3])
qglColorMask(!backEnd.colorMask[0], !backEnd.colorMask[1], !backEnd.colorMask[2], !backEnd.colorMask[3]);
}
if ( !glState.finishCalled ) {
qglFinish();
}
GLimp_LogComment( "***************** RB_SwapBuffers *****************\n\n\n" );
GLimp_EndFrame();
backEnd.framePostProcessed = qfalse;
backEnd.projection2D = qfalse;
#ifdef REACTION
backEnd.frameHasSunFlare = qfalse;
#endif
return (const void *)(cmd + 1);
}
/*
=============
RB_CapShadowMap
=============
*/
const void *RB_CapShadowMap(const void *data)
{
const capShadowmapCommand_t *cmd = data;
if (cmd->map != -1)
{
GL_SelectTexture(0);
if (cmd->cubeSide != -1)
{
GL_BindCubemap(tr.shadowCubemaps[cmd->map]);
qglCopyTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + cmd->cubeSide, 0, GL_RGBA8, backEnd.refdef.x, glConfig.vidHeight - ( backEnd.refdef.y + PSHADOW_MAP_SIZE ), PSHADOW_MAP_SIZE, PSHADOW_MAP_SIZE, 0);
}
else
{
GL_Bind(tr.pshadowMaps[cmd->map]);
qglCopyTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, backEnd.refdef.x, glConfig.vidHeight - ( backEnd.refdef.y + PSHADOW_MAP_SIZE ), PSHADOW_MAP_SIZE, PSHADOW_MAP_SIZE, 0);
}
}
return (const void *)(cmd + 1);
}
/*
=============
RB_PostProcess
=============
*/
const void *RB_PostProcess(const void *data)
{
const postProcessCommand_t *cmd = data;
FBO_t *srcFbo;
qboolean autoExposure;
if (!glRefConfig.framebufferObject)
{
// do nothing
backEnd.framePostProcessed = qtrue;
return (const void *)(cmd + 1);
}
srcFbo = tr.renderFbo;
if (tr.msaaResolveFbo)
{
// Resolve the MSAA before anything else
FBO_FastBlit(tr.renderFbo, NULL, tr.msaaResolveFbo, NULL, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST);
srcFbo = tr.msaaResolveFbo;
}
if (r_postProcess->integer && r_ssao->integer)
{
vec4i_t dstBox;
VectorSet4(dstBox, 0, 0, srcFbo->width, srcFbo->height);
FBO_BlitFromTexture(tr.screenSsaoImage, NULL, NULL, srcFbo, dstBox, NULL, NULL, GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ZERO);
}
if (r_postProcess->integer && (r_toneMap->integer || r_forceToneMap->integer))
{
autoExposure = r_autoExposure->integer || r_forceAutoExposure;
RB_ToneMap(srcFbo, autoExposure);
}
else if (!glRefConfig.framebuffer_srgb && r_cameraExposure->value == 0.0f)
{
FBO_FastBlit(srcFbo, NULL, tr.screenScratchFbo, NULL, GL_COLOR_BUFFER_BIT, GL_NEAREST);
}
else
{
vec4_t color;
color[0] =
color[1] =
color[2] = pow(2, r_cameraExposure->value); //exp2(r_cameraExposure->value);
color[3] = 1.0f;
FBO_Blit(srcFbo, NULL, NULL, tr.screenScratchFbo, NULL, NULL, color, 0);
}
#ifdef REACTION
if (r_postProcess->integer && glRefConfig.framebufferObject)
{
RB_GodRays();
if (1)
RB_BokehBlur(backEnd.refdef.blurFactor);
else
RB_GaussianBlur(backEnd.refdef.blurFactor);
}
#endif
if (0)
{
vec4i_t dstBox;
VectorSet4(dstBox, 0, 0, 128, 128);
FBO_BlitFromTexture(tr.sunShadowDepthImage[0], NULL, NULL, tr.screenScratchFbo, dstBox, NULL, NULL, 0);
VectorSet4(dstBox, 128, 0, 128, 128);
FBO_BlitFromTexture(tr.sunShadowDepthImage[1], NULL, NULL, tr.screenScratchFbo, dstBox, NULL, NULL, 0);
VectorSet4(dstBox, 256, 0, 128, 128);
FBO_BlitFromTexture(tr.sunShadowDepthImage[2], NULL, NULL, tr.screenScratchFbo, dstBox, NULL, NULL, 0);
}
if (0)
{
vec4i_t dstBox;
VectorSet4(dstBox, 256, tr.screenScratchFbo->height - 256, 256, 256);
FBO_BlitFromTexture(tr.renderDepthImage, NULL, NULL, tr.screenScratchFbo, dstBox, NULL, NULL, 0);
VectorSet4(dstBox, 512, tr.screenScratchFbo->height - 256, 256, 256);
FBO_BlitFromTexture(tr.screenShadowImage, NULL, NULL, tr.screenScratchFbo, dstBox, NULL, NULL, 0);
}
if (0)
{
vec4i_t dstBox;
VectorSet4(dstBox, 256, tr.screenScratchFbo->height - 256, 256, 256);
FBO_BlitFromTexture(tr.renderImage, NULL, NULL, tr.screenScratchFbo, dstBox, NULL, NULL, 0);
}
backEnd.framePostProcessed = qtrue;
return (const void *)(cmd + 1);
}
/*
====================
RB_ExecuteRenderCommands
This function will be called synchronously if running without
smp extensions, or asynchronously by another thread.
====================
*/
void RB_ExecuteRenderCommands( const void *data ) {
int t1, t2;
t1 = ri.Milliseconds ();
if ( !r_smp->integer || data == backEndData[0]->commands.cmds ) {
backEnd.smpFrame = 0;
} else {
backEnd.smpFrame = 1;
}
while ( 1 ) {
data = PADP(data, sizeof(void *));
switch ( *(const int *)data ) {
case RC_SET_COLOR:
data = RB_SetColor( data );
break;
case RC_STRETCH_PIC:
data = RB_StretchPic( data );
break;
case RC_DRAW_SURFS:
data = RB_DrawSurfs( data );
break;
case RC_DRAW_BUFFER:
data = RB_DrawBuffer( data );
break;
case RC_SWAP_BUFFERS:
data = RB_SwapBuffers( data );
break;
case RC_SCREENSHOT:
data = RB_TakeScreenshotCmd( data );
break;
case RC_VIDEOFRAME:
data = RB_TakeVideoFrameCmd( data );
break;
case RC_COLORMASK:
data = RB_ColorMask(data);
break;
case RC_CLEARDEPTH:
data = RB_ClearDepth(data);
break;
case RC_CAPSHADOWMAP:
data = RB_CapShadowMap(data);
break;
case RC_POSTPROCESS:
data = RB_PostProcess(data);
break;
case RC_END_OF_LIST:
default:
// stop rendering on this thread
t2 = ri.Milliseconds ();
backEnd.pc.msec = t2 - t1;
return;
}
}
}
/*
================
RB_RenderThread
================
*/
void RB_RenderThread( void ) {
const void *data;
// wait for either a rendering command or a quit command
while ( 1 ) {
// sleep until we have work to do
data = GLimp_RendererSleep();
if ( !data ) {
return; // all done, renderer is shutting down
}
renderThreadActive = qtrue;
RB_ExecuteRenderCommands( data );
renderThreadActive = qfalse;
}
}