lilium-voyager/code/renderergl2/tr_main.c

2984 lines
80 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_main.c -- main control flow for each frame
#include "tr_local.h"
#include <string.h> // memcpy
trGlobals_t tr;
static float s_flipMatrix[16] = {
// convert from our coordinate system (looking down X)
// to OpenGL's coordinate system (looking down -Z)
0, 0, -1, 0,
-1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 0, 1
};
refimport_t ri;
// entities that will have procedurally generated surfaces will just
// point at this for their sorting surface
surfaceType_t entitySurface = SF_ENTITY;
/*
================
R_CompareVert
================
*/
qboolean R_CompareVert(srfVert_t * v1, srfVert_t * v2, qboolean checkST)
{
int i;
for(i = 0; i < 3; i++)
{
if(floor(v1->xyz[i] + 0.1) != floor(v2->xyz[i] + 0.1))
{
return qfalse;
}
if(checkST && ((v1->st[0] != v2->st[0]) || (v1->st[1] != v2->st[1])))
{
return qfalse;
}
}
return qtrue;
}
/*
=============
R_CalcNormalForTriangle
=============
*/
void R_CalcNormalForTriangle(vec3_t normal, const vec3_t v0, const vec3_t v1, const vec3_t v2)
{
vec3_t udir, vdir;
// compute the face normal based on vertex points
VectorSubtract(v2, v0, udir);
VectorSubtract(v1, v0, vdir);
CrossProduct(udir, vdir, normal);
VectorNormalize(normal);
}
/*
=============
R_CalcTangentsForTriangle
http://members.rogers.com/deseric/tangentspace.htm
=============
*/
void R_CalcTangentsForTriangle(vec3_t tangent, vec3_t bitangent,
const vec3_t v0, const vec3_t v1, const vec3_t v2,
const vec2_t t0, const vec2_t t1, const vec2_t t2)
{
int i;
vec3_t planes[3];
vec3_t u, v;
for(i = 0; i < 3; i++)
{
VectorSet(u, v1[i] - v0[i], t1[0] - t0[0], t1[1] - t0[1]);
VectorSet(v, v2[i] - v0[i], t2[0] - t0[0], t2[1] - t0[1]);
VectorNormalize(u);
VectorNormalize(v);
CrossProduct(u, v, planes[i]);
}
//So your tangent space will be defined by this :
//Normal = Normal of the triangle or Tangent X Bitangent (careful with the cross product,
// you have to make sure the normal points in the right direction)
//Tangent = ( dp(Fx(s,t)) / ds, dp(Fy(s,t)) / ds, dp(Fz(s,t)) / ds ) or ( -Bx/Ax, -By/Ay, - Bz/Az )
//Bitangent = ( dp(Fx(s,t)) / dt, dp(Fy(s,t)) / dt, dp(Fz(s,t)) / dt ) or ( -Cx/Ax, -Cy/Ay, -Cz/Az )
// tangent...
tangent[0] = -planes[0][1] / planes[0][0];
tangent[1] = -planes[1][1] / planes[1][0];
tangent[2] = -planes[2][1] / planes[2][0];
VectorNormalize(tangent);
// bitangent...
bitangent[0] = -planes[0][2] / planes[0][0];
bitangent[1] = -planes[1][2] / planes[1][0];
bitangent[2] = -planes[2][2] / planes[2][0];
VectorNormalize(bitangent);
}
/*
=============
R_CalcTangentSpace
=============
*/
void R_CalcTangentSpace(vec3_t tangent, vec3_t bitangent, vec3_t normal,
const vec3_t v0, const vec3_t v1, const vec3_t v2, const vec2_t t0, const vec2_t t1, const vec2_t t2)
{
vec3_t cp, u, v;
vec3_t faceNormal;
VectorSet(u, v1[0] - v0[0], t1[0] - t0[0], t1[1] - t0[1]);
VectorSet(v, v2[0] - v0[0], t2[0] - t0[0], t2[1] - t0[1]);
CrossProduct(u, v, cp);
if(fabs(cp[0]) > 10e-6)
{
tangent[0] = -cp[1] / cp[0];
bitangent[0] = -cp[2] / cp[0];
}
u[0] = v1[1] - v0[1];
v[0] = v2[1] - v0[1];
CrossProduct(u, v, cp);
if(fabs(cp[0]) > 10e-6)
{
tangent[1] = -cp[1] / cp[0];
bitangent[1] = -cp[2] / cp[0];
}
u[0] = v1[2] - v0[2];
v[0] = v2[2] - v0[2];
CrossProduct(u, v, cp);
if(fabs(cp[0]) > 10e-6)
{
tangent[2] = -cp[1] / cp[0];
bitangent[2] = -cp[2] / cp[0];
}
VectorNormalize(tangent);
VectorNormalize(bitangent);
// compute the face normal based on vertex points
if ( normal[0] == 0.0f && normal[1] == 0.0f && normal[2] == 0.0f )
{
VectorSubtract(v2, v0, u);
VectorSubtract(v1, v0, v);
CrossProduct(u, v, faceNormal);
}
else
{
VectorCopy(normal, faceNormal);
}
VectorNormalize(faceNormal);
#if 1
// Gram-Schmidt orthogonalize
//tangent[a] = (t - n * Dot(n, t)).Normalize();
VectorMA(tangent, -DotProduct(faceNormal, tangent), faceNormal, tangent);
VectorNormalize(tangent);
// compute the cross product B=NxT
//CrossProduct(normal, tangent, bitangent);
#else
// normal, compute the cross product N=TxB
CrossProduct(tangent, bitangent, normal);
VectorNormalize(normal);
if(DotProduct(normal, faceNormal) < 0)
{
//VectorInverse(normal);
//VectorInverse(tangent);
//VectorInverse(bitangent);
// compute the cross product T=BxN
CrossProduct(bitangent, faceNormal, tangent);
// compute the cross product B=NxT
//CrossProduct(normal, tangent, bitangent);
}
#endif
VectorCopy(faceNormal, normal);
}
void R_CalcTangentSpaceFast(vec3_t tangent, vec3_t bitangent, vec3_t normal,
const vec3_t v0, const vec3_t v1, const vec3_t v2, const vec2_t t0, const vec2_t t1, const vec2_t t2)
{
vec3_t cp, u, v;
vec3_t faceNormal;
VectorSet(u, v1[0] - v0[0], t1[0] - t0[0], t1[1] - t0[1]);
VectorSet(v, v2[0] - v0[0], t2[0] - t0[0], t2[1] - t0[1]);
CrossProduct(u, v, cp);
if(fabs(cp[0]) > 10e-6)
{
tangent[0] = -cp[1] / cp[0];
bitangent[0] = -cp[2] / cp[0];
}
u[0] = v1[1] - v0[1];
v[0] = v2[1] - v0[1];
CrossProduct(u, v, cp);
if(fabs(cp[0]) > 10e-6)
{
tangent[1] = -cp[1] / cp[0];
bitangent[1] = -cp[2] / cp[0];
}
u[0] = v1[2] - v0[2];
v[0] = v2[2] - v0[2];
CrossProduct(u, v, cp);
if(fabs(cp[0]) > 10e-6)
{
tangent[2] = -cp[1] / cp[0];
bitangent[2] = -cp[2] / cp[0];
}
VectorNormalizeFast(tangent);
VectorNormalizeFast(bitangent);
// compute the face normal based on vertex points
VectorSubtract(v2, v0, u);
VectorSubtract(v1, v0, v);
CrossProduct(u, v, faceNormal);
VectorNormalizeFast(faceNormal);
#if 0
// normal, compute the cross product N=TxB
CrossProduct(tangent, bitangent, normal);
VectorNormalizeFast(normal);
if(DotProduct(normal, faceNormal) < 0)
{
VectorInverse(normal);
//VectorInverse(tangent);
//VectorInverse(bitangent);
CrossProduct(normal, tangent, bitangent);
}
VectorCopy(faceNormal, normal);
#else
// Gram-Schmidt orthogonalize
//tangent[a] = (t - n * Dot(n, t)).Normalize();
VectorMA(tangent, -DotProduct(faceNormal, tangent), faceNormal, tangent);
VectorNormalizeFast(tangent);
#endif
VectorCopy(faceNormal, normal);
}
/*
http://www.terathon.com/code/tangent.html
*/
void R_CalcTexDirs(vec3_t sdir, vec3_t tdir, const vec3_t v1, const vec3_t v2,
const vec3_t v3, const vec2_t w1, const vec2_t w2, const vec2_t w3)
{
float x1, x2, y1, y2, z1, z2;
float s1, s2, t1, t2, r;
x1 = v2[0] - v1[0];
x2 = v3[0] - v1[0];
y1 = v2[1] - v1[1];
y2 = v3[1] - v1[1];
z1 = v2[2] - v1[2];
z2 = v3[2] - v1[2];
s1 = w2[0] - w1[0];
s2 = w3[0] - w1[0];
t1 = w2[1] - w1[1];
t2 = w3[1] - w1[1];
r = 1.0f / (s1 * t2 - s2 * t1);
VectorSet(sdir, (t2 * x1 - t1 * x2) * r, (t2 * y1 - t1 * y2) * r, (t2 * z1 - t1 * z2) * r);
VectorSet(tdir, (s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r, (s1 * z2 - s2 * z1) * r);
}
void R_CalcTbnFromNormalAndTexDirs(vec3_t tangent, vec3_t bitangent, vec3_t normal, vec3_t sdir, vec3_t tdir)
{
vec3_t n_cross_t;
vec_t n_dot_t, handedness;
// Gram-Schmidt orthogonalize
n_dot_t = DotProduct(normal, sdir);
VectorMA(sdir, -n_dot_t, normal, tangent);
VectorNormalize(tangent);
// Calculate handedness
CrossProduct(normal, sdir, n_cross_t);
handedness = (DotProduct(n_cross_t, tdir) < 0.0f) ? -1.0f : 1.0f;
// Calculate bitangent
CrossProduct(normal, tangent, bitangent);
VectorScale(bitangent, handedness, bitangent);
}
void R_CalcTBN2(vec3_t tangent, vec3_t bitangent, vec3_t normal,
const vec3_t v1, const vec3_t v2, const vec3_t v3, const vec2_t t1, const vec2_t t2, const vec2_t t3)
{
vec3_t v2v1;
vec3_t v3v1;
float c2c1_T;
float c2c1_B;
float c3c1_T;
float c3c1_B;
float denominator;
float scale1, scale2;
vec3_t T, B, N, C;
// Calculate the tangent basis for each vertex of the triangle
// UPDATE: In the 3rd edition of the accompanying article, the for-loop located here has
// been removed as it was redundant (the entire TBN matrix was calculated three times
// instead of just one).
//
// Please note, that this function relies on the fact that the input geometry are triangles
// and the tangent basis for each vertex thus is identical!
//
// Calculate the vectors from the current vertex to the two other vertices in the triangle
VectorSubtract(v2, v1, v2v1);
VectorSubtract(v3, v1, v3v1);
// The equation presented in the article states that:
// c2c1_T = V2.texcoord.x - V1.texcoord.x
// c2c1_B = V2.texcoord.y - V1.texcoord.y
// c3c1_T = V3.texcoord.x - V1.texcoord.x
// c3c1_B = V3.texcoord.y - V1.texcoord.y
// Calculate c2c1_T and c2c1_B
c2c1_T = t2[0] - t1[0];
c2c1_B = t2[1] - t2[1];
// Calculate c3c1_T and c3c1_B
c3c1_T = t3[0] - t1[0];
c3c1_B = t3[1] - t1[1];
denominator = c2c1_T * c3c1_B - c3c1_T * c2c1_B;
//if(ROUNDOFF(fDenominator) == 0.0f)
if(denominator == 0.0f)
{
// We won't risk a divide by zero, so set the tangent matrix to the identity matrix
VectorSet(tangent, 1, 0, 0);
VectorSet(bitangent, 0, 1, 0);
VectorSet(normal, 0, 0, 1);
}
else
{
// Calculate the reciprocal value once and for all (to achieve speed)
scale1 = 1.0f / denominator;
// T and B are calculated just as the equation in the article states
VectorSet(T, (c3c1_B * v2v1[0] - c2c1_B * v3v1[0]) * scale1,
(c3c1_B * v2v1[1] - c2c1_B * v3v1[1]) * scale1,
(c3c1_B * v2v1[2] - c2c1_B * v3v1[2]) * scale1);
VectorSet(B, (-c3c1_T * v2v1[0] + c2c1_T * v3v1[0]) * scale1,
(-c3c1_T * v2v1[1] + c2c1_T * v3v1[1]) * scale1,
(-c3c1_T * v2v1[2] + c2c1_T * v3v1[2]) * scale1);
// The normal N is calculated as the cross product between T and B
CrossProduct(T, B, N);
#if 0
VectorCopy(T, tangent);
VectorCopy(B, bitangent);
VectorCopy(N, normal);
#else
// Calculate the reciprocal value once and for all (to achieve speed)
scale2 = 1.0f / ((T[0] * B[1] * N[2] - T[2] * B[1] * N[0]) +
(B[0] * N[1] * T[2] - B[2] * N[1] * T[0]) +
(N[0] * T[1] * B[2] - N[2] * T[1] * B[0]));
// Calculate the inverse if the TBN matrix using the formula described in the article.
// We store the basis vectors directly in the provided TBN matrix: pvTBNMatrix
CrossProduct(B, N, C); tangent[0] = C[0] * scale2;
CrossProduct(N, T, C); tangent[1] = -C[0] * scale2;
CrossProduct(T, B, C); tangent[2] = C[0] * scale2;
VectorNormalize(tangent);
CrossProduct(B, N, C); bitangent[0] = -C[1] * scale2;
CrossProduct(N, T, C); bitangent[1] = C[1] * scale2;
CrossProduct(T, B, C); bitangent[2] = -C[1] * scale2;
VectorNormalize(bitangent);
CrossProduct(B, N, C); normal[0] = C[2] * scale2;
CrossProduct(N, T, C); normal[1] = -C[2] * scale2;
CrossProduct(T, B, C); normal[2] = C[2] * scale2;
VectorNormalize(normal);
#endif
}
}
#ifdef USE_VERT_TANGENT_SPACE
qboolean R_CalcTangentVectors(srfVert_t * dv[3])
{
int i;
float bb, s, t;
vec3_t bary;
/* calculate barycentric basis for the triangle */
bb = (dv[1]->st[0] - dv[0]->st[0]) * (dv[2]->st[1] - dv[0]->st[1]) - (dv[2]->st[0] - dv[0]->st[0]) * (dv[1]->st[1] - dv[0]->st[1]);
if(fabs(bb) < 0.00000001f)
return qfalse;
/* do each vertex */
for(i = 0; i < 3; i++)
{
vec3_t bitangent, nxt;
// calculate s tangent vector
s = dv[i]->st[0] + 10.0f;
t = dv[i]->st[1];
bary[0] = ((dv[1]->st[0] - s) * (dv[2]->st[1] - t) - (dv[2]->st[0] - s) * (dv[1]->st[1] - t)) / bb;
bary[1] = ((dv[2]->st[0] - s) * (dv[0]->st[1] - t) - (dv[0]->st[0] - s) * (dv[2]->st[1] - t)) / bb;
bary[2] = ((dv[0]->st[0] - s) * (dv[1]->st[1] - t) - (dv[1]->st[0] - s) * (dv[0]->st[1] - t)) / bb;
dv[i]->tangent[0] = bary[0] * dv[0]->xyz[0] + bary[1] * dv[1]->xyz[0] + bary[2] * dv[2]->xyz[0];
dv[i]->tangent[1] = bary[0] * dv[0]->xyz[1] + bary[1] * dv[1]->xyz[1] + bary[2] * dv[2]->xyz[1];
dv[i]->tangent[2] = bary[0] * dv[0]->xyz[2] + bary[1] * dv[1]->xyz[2] + bary[2] * dv[2]->xyz[2];
VectorSubtract(dv[i]->tangent, dv[i]->xyz, dv[i]->tangent);
VectorNormalize(dv[i]->tangent);
// calculate t tangent vector
s = dv[i]->st[0];
t = dv[i]->st[1] + 10.0f;
bary[0] = ((dv[1]->st[0] - s) * (dv[2]->st[1] - t) - (dv[2]->st[0] - s) * (dv[1]->st[1] - t)) / bb;
bary[1] = ((dv[2]->st[0] - s) * (dv[0]->st[1] - t) - (dv[0]->st[0] - s) * (dv[2]->st[1] - t)) / bb;
bary[2] = ((dv[0]->st[0] - s) * (dv[1]->st[1] - t) - (dv[1]->st[0] - s) * (dv[0]->st[1] - t)) / bb;
bitangent[0] = bary[0] * dv[0]->xyz[0] + bary[1] * dv[1]->xyz[0] + bary[2] * dv[2]->xyz[0];
bitangent[1] = bary[0] * dv[0]->xyz[1] + bary[1] * dv[1]->xyz[1] + bary[2] * dv[2]->xyz[1];
bitangent[2] = bary[0] * dv[0]->xyz[2] + bary[1] * dv[1]->xyz[2] + bary[2] * dv[2]->xyz[2];
VectorSubtract(bitangent, dv[i]->xyz, bitangent);
VectorNormalize(bitangent);
// store bitangent handedness
CrossProduct(dv[i]->normal, dv[i]->tangent, nxt);
dv[i]->tangent[3] = (DotProduct(nxt, bitangent) < 0.0f) ? -1.0f : 1.0f;
// debug code
//% Sys_FPrintf( SYS_VRB, "%d S: (%f %f %f) T: (%f %f %f)\n", i,
//% stv[ i ][ 0 ], stv[ i ][ 1 ], stv[ i ][ 2 ], ttv[ i ][ 0 ], ttv[ i ][ 1 ], ttv[ i ][ 2 ] );
}
return qtrue;
}
#endif
/*
=================
R_CullLocalBox
Returns CULL_IN, CULL_CLIP, or CULL_OUT
=================
*/
int R_CullLocalBox(vec3_t localBounds[2]) {
#if 0
int i, j;
vec3_t transformed[8];
float dists[8];
vec3_t v;
cplane_t *frust;
int anyBack;
int front, back;
if ( r_nocull->integer ) {
return CULL_CLIP;
}
// transform into world space
for (i = 0 ; i < 8 ; i++) {
v[0] = bounds[i&1][0];
v[1] = bounds[(i>>1)&1][1];
v[2] = bounds[(i>>2)&1][2];
VectorCopy( tr.or.origin, transformed[i] );
VectorMA( transformed[i], v[0], tr.or.axis[0], transformed[i] );
VectorMA( transformed[i], v[1], tr.or.axis[1], transformed[i] );
VectorMA( transformed[i], v[2], tr.or.axis[2], transformed[i] );
}
// check against frustum planes
anyBack = 0;
for (i = 0 ; i < 4 ; i++) {
frust = &tr.viewParms.frustum[i];
front = back = 0;
for (j = 0 ; j < 8 ; j++) {
dists[j] = DotProduct(transformed[j], frust->normal);
if ( dists[j] > frust->dist ) {
front = 1;
if ( back ) {
break; // a point is in front
}
} else {
back = 1;
}
}
if ( !front ) {
// all points were behind one of the planes
return CULL_OUT;
}
anyBack |= back;
}
if ( !anyBack ) {
return CULL_IN; // completely inside frustum
}
return CULL_CLIP; // partially clipped
#else
int j;
vec3_t transformed;
vec3_t v;
vec3_t worldBounds[2];
if(r_nocull->integer)
{
return CULL_CLIP;
}
// transform into world space
ClearBounds(worldBounds[0], worldBounds[1]);
for(j = 0; j < 8; j++)
{
v[0] = localBounds[j & 1][0];
v[1] = localBounds[(j >> 1) & 1][1];
v[2] = localBounds[(j >> 2) & 1][2];
R_LocalPointToWorld(v, transformed);
AddPointToBounds(transformed, worldBounds[0], worldBounds[1]);
}
return R_CullBox(worldBounds);
#endif
}
/*
=================
R_CullBox
Returns CULL_IN, CULL_CLIP, or CULL_OUT
=================
*/
int R_CullBox(vec3_t worldBounds[2]) {
int i;
cplane_t *frust;
qboolean anyClip;
int r, numPlanes;
numPlanes = (tr.viewParms.flags & VPF_FARPLANEFRUSTUM) ? 5 : 4;
// check against frustum planes
anyClip = qfalse;
for(i = 0; i < numPlanes; i++)
{
frust = &tr.viewParms.frustum[i];
r = BoxOnPlaneSide(worldBounds[0], worldBounds[1], frust);
if(r == 2)
{
// completely outside frustum
return CULL_OUT;
}
if(r == 3)
{
anyClip = qtrue;
}
}
if(!anyClip)
{
// completely inside frustum
return CULL_IN;
}
// partially clipped
return CULL_CLIP;
}
/*
** R_CullLocalPointAndRadius
*/
int R_CullLocalPointAndRadius( const vec3_t pt, float radius )
{
vec3_t transformed;
R_LocalPointToWorld( pt, transformed );
return R_CullPointAndRadius( transformed, radius );
}
/*
** R_CullPointAndRadius
*/
int R_CullPointAndRadiusEx( const vec3_t pt, float radius, const cplane_t* frustum, int numPlanes )
{
int i;
float dist;
const cplane_t *frust;
qboolean mightBeClipped = qfalse;
if ( r_nocull->integer ) {
return CULL_CLIP;
}
// check against frustum planes
for (i = 0 ; i < numPlanes ; i++)
{
frust = &frustum[i];
dist = DotProduct( pt, frust->normal) - frust->dist;
if ( dist < -radius )
{
return CULL_OUT;
}
else if ( dist <= radius )
{
mightBeClipped = qtrue;
}
}
if ( mightBeClipped )
{
return CULL_CLIP;
}
return CULL_IN; // completely inside frustum
}
/*
** R_CullPointAndRadius
*/
int R_CullPointAndRadius( const vec3_t pt, float radius )
{
return R_CullPointAndRadiusEx(pt, radius, tr.viewParms.frustum, (tr.viewParms.flags & VPF_FARPLANEFRUSTUM) ? 5 : 4);
}
/*
=================
R_LocalNormalToWorld
=================
*/
void R_LocalNormalToWorld (const vec3_t local, vec3_t world) {
world[0] = local[0] * tr.or.axis[0][0] + local[1] * tr.or.axis[1][0] + local[2] * tr.or.axis[2][0];
world[1] = local[0] * tr.or.axis[0][1] + local[1] * tr.or.axis[1][1] + local[2] * tr.or.axis[2][1];
world[2] = local[0] * tr.or.axis[0][2] + local[1] * tr.or.axis[1][2] + local[2] * tr.or.axis[2][2];
}
/*
=================
R_LocalPointToWorld
=================
*/
void R_LocalPointToWorld (const vec3_t local, vec3_t world) {
world[0] = local[0] * tr.or.axis[0][0] + local[1] * tr.or.axis[1][0] + local[2] * tr.or.axis[2][0] + tr.or.origin[0];
world[1] = local[0] * tr.or.axis[0][1] + local[1] * tr.or.axis[1][1] + local[2] * tr.or.axis[2][1] + tr.or.origin[1];
world[2] = local[0] * tr.or.axis[0][2] + local[1] * tr.or.axis[1][2] + local[2] * tr.or.axis[2][2] + tr.or.origin[2];
}
/*
=================
R_WorldToLocal
=================
*/
void R_WorldToLocal (const vec3_t world, vec3_t local) {
local[0] = DotProduct(world, tr.or.axis[0]);
local[1] = DotProduct(world, tr.or.axis[1]);
local[2] = DotProduct(world, tr.or.axis[2]);
}
/*
==========================
R_TransformModelToClip
==========================
*/
void R_TransformModelToClip( const vec3_t src, const float *modelMatrix, const float *projectionMatrix,
vec4_t eye, vec4_t dst ) {
int i;
for ( i = 0 ; i < 4 ; i++ ) {
eye[i] =
src[0] * modelMatrix[ i + 0 * 4 ] +
src[1] * modelMatrix[ i + 1 * 4 ] +
src[2] * modelMatrix[ i + 2 * 4 ] +
1 * modelMatrix[ i + 3 * 4 ];
}
for ( i = 0 ; i < 4 ; i++ ) {
dst[i] =
eye[0] * projectionMatrix[ i + 0 * 4 ] +
eye[1] * projectionMatrix[ i + 1 * 4 ] +
eye[2] * projectionMatrix[ i + 2 * 4 ] +
eye[3] * projectionMatrix[ i + 3 * 4 ];
}
}
/*
==========================
R_TransformClipToWindow
==========================
*/
void R_TransformClipToWindow( const vec4_t clip, const viewParms_t *view, vec4_t normalized, vec4_t window ) {
normalized[0] = clip[0] / clip[3];
normalized[1] = clip[1] / clip[3];
normalized[2] = ( clip[2] + clip[3] ) / ( 2 * clip[3] );
window[0] = 0.5f * ( 1.0f + normalized[0] ) * view->viewportWidth;
window[1] = 0.5f * ( 1.0f + normalized[1] ) * view->viewportHeight;
window[2] = normalized[2];
window[0] = (int) ( window[0] + 0.5 );
window[1] = (int) ( window[1] + 0.5 );
}
/*
==========================
myGlMultMatrix
==========================
*/
void myGlMultMatrix( const float *a, const float *b, float *out ) {
int i, j;
for ( i = 0 ; i < 4 ; i++ ) {
for ( j = 0 ; j < 4 ; j++ ) {
out[ i * 4 + j ] =
a [ i * 4 + 0 ] * b [ 0 * 4 + j ]
+ a [ i * 4 + 1 ] * b [ 1 * 4 + j ]
+ a [ i * 4 + 2 ] * b [ 2 * 4 + j ]
+ a [ i * 4 + 3 ] * b [ 3 * 4 + j ];
}
}
}
/*
=================
R_RotateForEntity
Generates an orientation for an entity and viewParms
Does NOT produce any GL calls
Called by both the front end and the back end
=================
*/
void R_RotateForEntity( const trRefEntity_t *ent, const viewParms_t *viewParms,
orientationr_t *or ) {
float glMatrix[16];
vec3_t delta;
float axisLength;
if ( ent->e.reType != RT_MODEL ) {
*or = viewParms->world;
return;
}
VectorCopy( ent->e.origin, or->origin );
VectorCopy( ent->e.axis[0], or->axis[0] );
VectorCopy( ent->e.axis[1], or->axis[1] );
VectorCopy( ent->e.axis[2], or->axis[2] );
glMatrix[0] = or->axis[0][0];
glMatrix[4] = or->axis[1][0];
glMatrix[8] = or->axis[2][0];
glMatrix[12] = or->origin[0];
glMatrix[1] = or->axis[0][1];
glMatrix[5] = or->axis[1][1];
glMatrix[9] = or->axis[2][1];
glMatrix[13] = or->origin[1];
glMatrix[2] = or->axis[0][2];
glMatrix[6] = or->axis[1][2];
glMatrix[10] = or->axis[2][2];
glMatrix[14] = or->origin[2];
glMatrix[3] = 0;
glMatrix[7] = 0;
glMatrix[11] = 0;
glMatrix[15] = 1;
Mat4Copy(glMatrix, or->transformMatrix);
myGlMultMatrix( glMatrix, viewParms->world.modelMatrix, or->modelMatrix );
// calculate the viewer origin in the model's space
// needed for fog, specular, and environment mapping
VectorSubtract( viewParms->or.origin, or->origin, delta );
// compensate for scale in the axes if necessary
if ( ent->e.nonNormalizedAxes ) {
axisLength = VectorLength( ent->e.axis[0] );
if ( !axisLength ) {
axisLength = 0;
} else {
axisLength = 1.0f / axisLength;
}
} else {
axisLength = 1.0f;
}
or->viewOrigin[0] = DotProduct( delta, or->axis[0] ) * axisLength;
or->viewOrigin[1] = DotProduct( delta, or->axis[1] ) * axisLength;
or->viewOrigin[2] = DotProduct( delta, or->axis[2] ) * axisLength;
}
/*
=================
R_RotateForViewer
Sets up the modelview matrix for a given viewParm
=================
*/
void R_RotateForViewer (void)
{
float viewerMatrix[16];
vec3_t origin;
Com_Memset (&tr.or, 0, sizeof(tr.or));
tr.or.axis[0][0] = 1;
tr.or.axis[1][1] = 1;
tr.or.axis[2][2] = 1;
VectorCopy (tr.viewParms.or.origin, tr.or.viewOrigin);
// transform by the camera placement
VectorCopy( tr.viewParms.or.origin, origin );
viewerMatrix[0] = tr.viewParms.or.axis[0][0];
viewerMatrix[4] = tr.viewParms.or.axis[0][1];
viewerMatrix[8] = tr.viewParms.or.axis[0][2];
viewerMatrix[12] = -origin[0] * viewerMatrix[0] + -origin[1] * viewerMatrix[4] + -origin[2] * viewerMatrix[8];
viewerMatrix[1] = tr.viewParms.or.axis[1][0];
viewerMatrix[5] = tr.viewParms.or.axis[1][1];
viewerMatrix[9] = tr.viewParms.or.axis[1][2];
viewerMatrix[13] = -origin[0] * viewerMatrix[1] + -origin[1] * viewerMatrix[5] + -origin[2] * viewerMatrix[9];
viewerMatrix[2] = tr.viewParms.or.axis[2][0];
viewerMatrix[6] = tr.viewParms.or.axis[2][1];
viewerMatrix[10] = tr.viewParms.or.axis[2][2];
viewerMatrix[14] = -origin[0] * viewerMatrix[2] + -origin[1] * viewerMatrix[6] + -origin[2] * viewerMatrix[10];
viewerMatrix[3] = 0;
viewerMatrix[7] = 0;
viewerMatrix[11] = 0;
viewerMatrix[15] = 1;
// convert from our coordinate system (looking down X)
// to OpenGL's coordinate system (looking down -Z)
myGlMultMatrix( viewerMatrix, s_flipMatrix, tr.or.modelMatrix );
tr.viewParms.world = tr.or;
}
/*
** SetFarClip
*/
static void R_SetFarClip( void )
{
float farthestCornerDistance = 0;
int i;
// if not rendering the world (icons, menus, etc)
// set a 2k far clip plane
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
tr.viewParms.zFar = 2048;
return;
}
//
// set far clipping planes dynamically
//
farthestCornerDistance = 0;
for ( i = 0; i < 8; i++ )
{
vec3_t v;
vec3_t vecTo;
float distance;
if ( i & 1 )
{
v[0] = tr.viewParms.visBounds[0][0];
}
else
{
v[0] = tr.viewParms.visBounds[1][0];
}
if ( i & 2 )
{
v[1] = tr.viewParms.visBounds[0][1];
}
else
{
v[1] = tr.viewParms.visBounds[1][1];
}
if ( i & 4 )
{
v[2] = tr.viewParms.visBounds[0][2];
}
else
{
v[2] = tr.viewParms.visBounds[1][2];
}
VectorSubtract( v, tr.viewParms.or.origin, vecTo );
distance = vecTo[0] * vecTo[0] + vecTo[1] * vecTo[1] + vecTo[2] * vecTo[2];
if ( distance > farthestCornerDistance )
{
farthestCornerDistance = distance;
}
}
tr.viewParms.zFar = sqrt( farthestCornerDistance );
}
/*
=================
R_SetupFrustum
Set up the culling frustum planes for the current view using the results we got from computing the first two rows of
the projection matrix.
=================
*/
void R_SetupFrustum (viewParms_t *dest, float xmin, float xmax, float ymax, float zProj, float zFar, float stereoSep)
{
vec3_t ofsorigin;
float oppleg, adjleg, length;
int i;
if(stereoSep == 0 && xmin == -xmax)
{
// symmetric case can be simplified
VectorCopy(dest->or.origin, ofsorigin);
length = sqrt(xmax * xmax + zProj * zProj);
oppleg = xmax / length;
adjleg = zProj / length;
VectorScale(dest->or.axis[0], oppleg, dest->frustum[0].normal);
VectorMA(dest->frustum[0].normal, adjleg, dest->or.axis[1], dest->frustum[0].normal);
VectorScale(dest->or.axis[0], oppleg, dest->frustum[1].normal);
VectorMA(dest->frustum[1].normal, -adjleg, dest->or.axis[1], dest->frustum[1].normal);
}
else
{
// In stereo rendering, due to the modification of the projection matrix, dest->or.origin is not the
// actual origin that we're rendering so offset the tip of the view pyramid.
VectorMA(dest->or.origin, stereoSep, dest->or.axis[1], ofsorigin);
oppleg = xmax + stereoSep;
length = sqrt(oppleg * oppleg + zProj * zProj);
VectorScale(dest->or.axis[0], oppleg / length, dest->frustum[0].normal);
VectorMA(dest->frustum[0].normal, zProj / length, dest->or.axis[1], dest->frustum[0].normal);
oppleg = xmin + stereoSep;
length = sqrt(oppleg * oppleg + zProj * zProj);
VectorScale(dest->or.axis[0], -oppleg / length, dest->frustum[1].normal);
VectorMA(dest->frustum[1].normal, -zProj / length, dest->or.axis[1], dest->frustum[1].normal);
}
length = sqrt(ymax * ymax + zProj * zProj);
oppleg = ymax / length;
adjleg = zProj / length;
VectorScale(dest->or.axis[0], oppleg, dest->frustum[2].normal);
VectorMA(dest->frustum[2].normal, adjleg, dest->or.axis[2], dest->frustum[2].normal);
VectorScale(dest->or.axis[0], oppleg, dest->frustum[3].normal);
VectorMA(dest->frustum[3].normal, -adjleg, dest->or.axis[2], dest->frustum[3].normal);
for (i=0 ; i<4 ; i++) {
dest->frustum[i].type = PLANE_NON_AXIAL;
dest->frustum[i].dist = DotProduct (ofsorigin, dest->frustum[i].normal);
SetPlaneSignbits( &dest->frustum[i] );
}
if (zFar != 0.0f)
{
vec3_t farpoint;
VectorMA(ofsorigin, zFar, dest->or.axis[0], farpoint);
VectorScale(dest->or.axis[0], -1.0f, dest->frustum[4].normal);
dest->frustum[4].type = PLANE_NON_AXIAL;
dest->frustum[4].dist = DotProduct (farpoint, dest->frustum[4].normal);
SetPlaneSignbits( &dest->frustum[4] );
dest->flags |= VPF_FARPLANEFRUSTUM;
}
}
/*
===============
R_SetupProjection
===============
*/
void R_SetupProjection(viewParms_t *dest, float zProj, float zFar, qboolean computeFrustum)
{
float xmin, xmax, ymin, ymax;
float width, height, stereoSep = r_stereoSeparation->value;
/*
* offset the view origin of the viewer for stereo rendering
* by setting the projection matrix appropriately.
*/
if(stereoSep != 0)
{
if(dest->stereoFrame == STEREO_LEFT)
stereoSep = zProj / stereoSep;
else if(dest->stereoFrame == STEREO_RIGHT)
stereoSep = zProj / -stereoSep;
else
stereoSep = 0;
}
ymax = zProj * tan(dest->fovY * M_PI / 360.0f);
ymin = -ymax;
xmax = zProj * tan(dest->fovX * M_PI / 360.0f);
xmin = -xmax;
width = xmax - xmin;
height = ymax - ymin;
dest->projectionMatrix[0] = 2 * zProj / width;
dest->projectionMatrix[4] = 0;
dest->projectionMatrix[8] = (xmax + xmin + 2 * stereoSep) / width;
dest->projectionMatrix[12] = 2 * zProj * stereoSep / width;
dest->projectionMatrix[1] = 0;
dest->projectionMatrix[5] = 2 * zProj / height;
dest->projectionMatrix[9] = ( ymax + ymin ) / height; // normally 0
dest->projectionMatrix[13] = 0;
dest->projectionMatrix[3] = 0;
dest->projectionMatrix[7] = 0;
dest->projectionMatrix[11] = -1;
dest->projectionMatrix[15] = 0;
// Now that we have all the data for the projection matrix we can also setup the view frustum.
if(computeFrustum)
R_SetupFrustum(dest, xmin, xmax, ymax, zProj, zFar, stereoSep);
}
/*
===============
R_SetupProjectionZ
Sets the z-component transformation part in the projection matrix
===============
*/
void R_SetupProjectionZ(viewParms_t *dest)
{
float zNear, zFar, depth;
zNear = r_znear->value;
zFar = dest->zFar;
depth = zFar - zNear;
dest->projectionMatrix[2] = 0;
dest->projectionMatrix[6] = 0;
dest->projectionMatrix[10] = -( zFar + zNear ) / depth;
dest->projectionMatrix[14] = -2 * zFar * zNear / depth;
if (dest->isPortal)
{
float plane[4];
float plane2[4];
vec4_t q, c;
// transform portal plane into camera space
plane[0] = dest->portalPlane.normal[0];
plane[1] = dest->portalPlane.normal[1];
plane[2] = dest->portalPlane.normal[2];
plane[3] = dest->portalPlane.dist;
plane2[0] = -DotProduct (dest->or.axis[1], plane);
plane2[1] = DotProduct (dest->or.axis[2], plane);
plane2[2] = -DotProduct (dest->or.axis[0], plane);
plane2[3] = DotProduct (plane, dest->or.origin) - plane[3];
// Lengyel, Eric. "Modifying the Projection Matrix to Perform Oblique Near-plane Clipping".
// Terathon Software 3D Graphics Library, 2004. http://www.terathon.com/code/oblique.html
q[0] = (SGN(plane2[0]) + dest->projectionMatrix[8]) / dest->projectionMatrix[0];
q[1] = (SGN(plane2[1]) + dest->projectionMatrix[9]) / dest->projectionMatrix[5];
q[2] = -1.0f;
q[3] = (1.0f + dest->projectionMatrix[10]) / dest->projectionMatrix[14];
VectorScale4(plane2, 2.0f / DotProduct4(plane2, q), c);
dest->projectionMatrix[2] = c[0];
dest->projectionMatrix[6] = c[1];
dest->projectionMatrix[10] = c[2] + 1.0f;
dest->projectionMatrix[14] = c[3];
}
}
/*
===============
R_SetupProjectionOrtho
===============
*/
void R_SetupProjectionOrtho(viewParms_t *dest, vec3_t viewBounds[2])
{
float xmin, xmax, ymin, ymax, znear, zfar;
//viewParms_t *dest = &tr.viewParms;
int i;
vec3_t pop;
// Quake3: Projection:
//
// Z X Y Z
// | / | /
// |/ |/
// Y--+ +--X
xmin = viewBounds[0][1];
xmax = viewBounds[1][1];
ymin = -viewBounds[1][2];
ymax = -viewBounds[0][2];
znear = viewBounds[0][0];
zfar = viewBounds[1][0];
dest->projectionMatrix[0] = 2 / (xmax - xmin);
dest->projectionMatrix[4] = 0;
dest->projectionMatrix[8] = 0;
dest->projectionMatrix[12] = (xmax + xmin) / (xmax - xmin);
dest->projectionMatrix[1] = 0;
dest->projectionMatrix[5] = 2 / (ymax - ymin);
dest->projectionMatrix[9] = 0;
dest->projectionMatrix[13] = (ymax + ymin) / (ymax - ymin);
dest->projectionMatrix[2] = 0;
dest->projectionMatrix[6] = 0;
dest->projectionMatrix[10] = -2 / (zfar - znear);
dest->projectionMatrix[14] = -(zfar + znear) / (zfar - znear);
dest->projectionMatrix[3] = 0;
dest->projectionMatrix[7] = 0;
dest->projectionMatrix[11] = 0;
dest->projectionMatrix[15] = 1;
VectorScale(dest->or.axis[1], 1.0f, dest->frustum[0].normal);
VectorMA(dest->or.origin, viewBounds[0][1], dest->frustum[0].normal, pop);
dest->frustum[0].dist = DotProduct(pop, dest->frustum[0].normal);
VectorScale(dest->or.axis[1], -1.0f, dest->frustum[1].normal);
VectorMA(dest->or.origin, -viewBounds[1][1], dest->frustum[1].normal, pop);
dest->frustum[1].dist = DotProduct(pop, dest->frustum[1].normal);
VectorScale(dest->or.axis[2], 1.0f, dest->frustum[2].normal);
VectorMA(dest->or.origin, viewBounds[0][2], dest->frustum[2].normal, pop);
dest->frustum[2].dist = DotProduct(pop, dest->frustum[2].normal);
VectorScale(dest->or.axis[2], -1.0f, dest->frustum[3].normal);
VectorMA(dest->or.origin, -viewBounds[1][2], dest->frustum[3].normal, pop);
dest->frustum[3].dist = DotProduct(pop, dest->frustum[3].normal);
VectorScale(dest->or.axis[0], -1.0f, dest->frustum[4].normal);
VectorMA(dest->or.origin, -viewBounds[1][0], dest->frustum[4].normal, pop);
dest->frustum[4].dist = DotProduct(pop, dest->frustum[4].normal);
for (i = 0; i < 5; i++)
{
dest->frustum[i].type = PLANE_NON_AXIAL;
SetPlaneSignbits (&dest->frustum[i]);
}
dest->flags |= VPF_FARPLANEFRUSTUM;
}
/*
=================
R_MirrorPoint
=================
*/
void R_MirrorPoint (vec3_t in, orientation_t *surface, orientation_t *camera, vec3_t out) {
int i;
vec3_t local;
vec3_t transformed;
float d;
VectorSubtract( in, surface->origin, local );
VectorClear( transformed );
for ( i = 0 ; i < 3 ; i++ ) {
d = DotProduct(local, surface->axis[i]);
VectorMA( transformed, d, camera->axis[i], transformed );
}
VectorAdd( transformed, camera->origin, out );
}
void R_MirrorVector (vec3_t in, orientation_t *surface, orientation_t *camera, vec3_t out) {
int i;
float d;
VectorClear( out );
for ( i = 0 ; i < 3 ; i++ ) {
d = DotProduct(in, surface->axis[i]);
VectorMA( out, d, camera->axis[i], out );
}
}
/*
=============
R_PlaneForSurface
=============
*/
void R_PlaneForSurface (surfaceType_t *surfType, cplane_t *plane) {
srfBspSurface_t *tri;
srfPoly_t *poly;
srfVert_t *v1, *v2, *v3;
vec4_t plane4;
if (!surfType) {
Com_Memset (plane, 0, sizeof(*plane));
plane->normal[0] = 1;
return;
}
switch (*surfType) {
case SF_FACE:
*plane = ((srfBspSurface_t *)surfType)->cullPlane;
return;
case SF_TRIANGLES:
tri = (srfBspSurface_t *)surfType;
v1 = tri->verts + tri->indexes[0];
v2 = tri->verts + tri->indexes[1];
v3 = tri->verts + tri->indexes[2];
PlaneFromPoints( plane4, v1->xyz, v2->xyz, v3->xyz );
VectorCopy( plane4, plane->normal );
plane->dist = plane4[3];
return;
case SF_POLY:
poly = (srfPoly_t *)surfType;
PlaneFromPoints( plane4, poly->verts[0].xyz, poly->verts[1].xyz, poly->verts[2].xyz );
VectorCopy( plane4, plane->normal );
plane->dist = plane4[3];
return;
default:
Com_Memset (plane, 0, sizeof(*plane));
plane->normal[0] = 1;
return;
}
}
/*
=================
R_GetPortalOrientation
entityNum is the entity that the portal surface is a part of, which may
be moving and rotating.
Returns qtrue if it should be mirrored
=================
*/
qboolean R_GetPortalOrientations( drawSurf_t *drawSurf, int entityNum,
orientation_t *surface, orientation_t *camera,
vec3_t pvsOrigin, qboolean *mirror ) {
int i;
cplane_t originalPlane, plane;
trRefEntity_t *e;
float d;
vec3_t transformed;
// create plane axis for the portal we are seeing
R_PlaneForSurface( drawSurf->surface, &originalPlane );
// rotate the plane if necessary
if ( entityNum != REFENTITYNUM_WORLD ) {
tr.currentEntityNum = entityNum;
tr.currentEntity = &tr.refdef.entities[entityNum];
// get the orientation of the entity
R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.or );
// rotate the plane, but keep the non-rotated version for matching
// against the portalSurface entities
R_LocalNormalToWorld( originalPlane.normal, plane.normal );
plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.or.origin );
// translate the original plane
originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.or.origin );
} else {
plane = originalPlane;
}
VectorCopy( plane.normal, surface->axis[0] );
PerpendicularVector( surface->axis[1], surface->axis[0] );
CrossProduct( surface->axis[0], surface->axis[1], surface->axis[2] );
// locate the portal entity closest to this plane.
// origin will be the origin of the portal, origin2 will be
// the origin of the camera
for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) {
e = &tr.refdef.entities[i];
if ( e->e.reType != RT_PORTALSURFACE ) {
continue;
}
d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist;
if ( d > 64 || d < -64) {
continue;
}
// get the pvsOrigin from the entity
VectorCopy( e->e.oldorigin, pvsOrigin );
// if the entity is just a mirror, don't use as a camera point
if ( e->e.oldorigin[0] == e->e.origin[0] &&
e->e.oldorigin[1] == e->e.origin[1] &&
e->e.oldorigin[2] == e->e.origin[2] ) {
VectorScale( plane.normal, plane.dist, surface->origin );
VectorCopy( surface->origin, camera->origin );
VectorSubtract( vec3_origin, surface->axis[0], camera->axis[0] );
VectorCopy( surface->axis[1], camera->axis[1] );
VectorCopy( surface->axis[2], camera->axis[2] );
*mirror = qtrue;
return qtrue;
}
// project the origin onto the surface plane to get
// an origin point we can rotate around
d = DotProduct( e->e.origin, plane.normal ) - plane.dist;
VectorMA( e->e.origin, -d, surface->axis[0], surface->origin );
// now get the camera origin and orientation
VectorCopy( e->e.oldorigin, camera->origin );
AxisCopy( e->e.axis, camera->axis );
VectorSubtract( vec3_origin, camera->axis[0], camera->axis[0] );
VectorSubtract( vec3_origin, camera->axis[1], camera->axis[1] );
// optionally rotate
if ( e->e.oldframe ) {
// if a speed is specified
if ( e->e.frame ) {
// continuous rotate
d = (tr.refdef.time/1000.0f) * e->e.frame;
VectorCopy( camera->axis[1], transformed );
RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
} else {
// bobbing rotate, with skinNum being the rotation offset
d = sin( tr.refdef.time * 0.003f );
d = e->e.skinNum + d * 4;
VectorCopy( camera->axis[1], transformed );
RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
}
}
else if ( e->e.skinNum ) {
d = e->e.skinNum;
VectorCopy( camera->axis[1], transformed );
RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
}
*mirror = qfalse;
return qtrue;
}
// if we didn't locate a portal entity, don't render anything.
// We don't want to just treat it as a mirror, because without a
// portal entity the server won't have communicated a proper entity set
// in the snapshot
// unfortunately, with local movement prediction it is easily possible
// to see a surface before the server has communicated the matching
// portal surface entity, so we don't want to print anything here...
//ri.Printf( PRINT_ALL, "Portal surface without a portal entity\n" );
return qfalse;
}
static qboolean IsMirror( const drawSurf_t *drawSurf, int entityNum )
{
int i;
cplane_t originalPlane, plane;
trRefEntity_t *e;
float d;
// create plane axis for the portal we are seeing
R_PlaneForSurface( drawSurf->surface, &originalPlane );
// rotate the plane if necessary
if ( entityNum != REFENTITYNUM_WORLD )
{
tr.currentEntityNum = entityNum;
tr.currentEntity = &tr.refdef.entities[entityNum];
// get the orientation of the entity
R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.or );
// rotate the plane, but keep the non-rotated version for matching
// against the portalSurface entities
R_LocalNormalToWorld( originalPlane.normal, plane.normal );
plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.or.origin );
// translate the original plane
originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.or.origin );
}
// locate the portal entity closest to this plane.
// origin will be the origin of the portal, origin2 will be
// the origin of the camera
for ( i = 0 ; i < tr.refdef.num_entities ; i++ )
{
e = &tr.refdef.entities[i];
if ( e->e.reType != RT_PORTALSURFACE ) {
continue;
}
d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist;
if ( d > 64 || d < -64) {
continue;
}
// if the entity is just a mirror, don't use as a camera point
if ( e->e.oldorigin[0] == e->e.origin[0] &&
e->e.oldorigin[1] == e->e.origin[1] &&
e->e.oldorigin[2] == e->e.origin[2] )
{
return qtrue;
}
return qfalse;
}
return qfalse;
}
/*
** SurfIsOffscreen
**
** Determines if a surface is completely offscreen.
*/
static qboolean SurfIsOffscreen( const drawSurf_t *drawSurf, vec4_t clipDest[128] ) {
float shortest = 100000000;
int entityNum;
int numTriangles;
shader_t *shader;
int fogNum;
int dlighted;
int pshadowed;
vec4_t clip, eye;
int i;
unsigned int pointOr = 0;
unsigned int pointAnd = (unsigned int)~0;
R_RotateForViewer();
R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum, &dlighted, &pshadowed );
RB_BeginSurface( shader, fogNum, drawSurf->cubemapIndex);
rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );
assert( tess.numVertexes < 128 );
for ( i = 0; i < tess.numVertexes; i++ )
{
int j;
unsigned int pointFlags = 0;
R_TransformModelToClip( tess.xyz[i], tr.or.modelMatrix, tr.viewParms.projectionMatrix, eye, clip );
for ( j = 0; j < 3; j++ )
{
if ( clip[j] >= clip[3] )
{
pointFlags |= (1 << (j*2));
}
else if ( clip[j] <= -clip[3] )
{
pointFlags |= ( 1 << (j*2+1));
}
}
pointAnd &= pointFlags;
pointOr |= pointFlags;
}
// trivially reject
if ( pointAnd )
{
return qtrue;
}
// determine if this surface is backfaced and also determine the distance
// to the nearest vertex so we can cull based on portal range. Culling
// based on vertex distance isn't 100% correct (we should be checking for
// range to the surface), but it's good enough for the types of portals
// we have in the game right now.
numTriangles = tess.numIndexes / 3;
for ( i = 0; i < tess.numIndexes; i += 3 )
{
vec3_t normal, tNormal;
float len;
VectorSubtract( tess.xyz[tess.indexes[i]], tr.viewParms.or.origin, normal );
len = VectorLengthSquared( normal ); // lose the sqrt
if ( len < shortest )
{
shortest = len;
}
R_VaoUnpackNormal(tNormal, tess.normal[tess.indexes[i]]);
if ( DotProduct( normal, tNormal ) >= 0 )
{
numTriangles--;
}
}
if ( !numTriangles )
{
return qtrue;
}
// mirrors can early out at this point, since we don't do a fade over distance
// with them (although we could)
if ( IsMirror( drawSurf, entityNum ) )
{
return qfalse;
}
if ( shortest > (tess.shader->portalRange*tess.shader->portalRange) )
{
return qtrue;
}
return qfalse;
}
/*
========================
R_MirrorViewBySurface
Returns qtrue if another view has been rendered
========================
*/
qboolean R_MirrorViewBySurface (drawSurf_t *drawSurf, int entityNum) {
vec4_t clipDest[128];
viewParms_t newParms;
viewParms_t oldParms;
orientation_t surface, camera;
// don't recursively mirror
if (tr.viewParms.isPortal) {
ri.Printf( PRINT_DEVELOPER, "WARNING: recursive mirror/portal found\n" );
return qfalse;
}
if ( r_noportals->integer || (r_fastsky->integer == 1) ) {
return qfalse;
}
// trivially reject portal/mirror
if ( SurfIsOffscreen( drawSurf, clipDest ) ) {
return qfalse;
}
// save old viewParms so we can return to it after the mirror view
oldParms = tr.viewParms;
newParms = tr.viewParms;
newParms.isPortal = qtrue;
newParms.zFar = 0.0f;
newParms.flags &= ~VPF_FARPLANEFRUSTUM;
if ( !R_GetPortalOrientations( drawSurf, entityNum, &surface, &camera,
newParms.pvsOrigin, &newParms.isMirror ) ) {
return qfalse; // bad portal, no portalentity
}
if (newParms.isMirror)
newParms.flags |= VPF_NOVIEWMODEL;
R_MirrorPoint (oldParms.or.origin, &surface, &camera, newParms.or.origin );
VectorSubtract( vec3_origin, camera.axis[0], newParms.portalPlane.normal );
newParms.portalPlane.dist = DotProduct( camera.origin, newParms.portalPlane.normal );
R_MirrorVector (oldParms.or.axis[0], &surface, &camera, newParms.or.axis[0]);
R_MirrorVector (oldParms.or.axis[1], &surface, &camera, newParms.or.axis[1]);
R_MirrorVector (oldParms.or.axis[2], &surface, &camera, newParms.or.axis[2]);
// OPTIMIZE: restrict the viewport on the mirrored view
// render the mirror view
R_RenderView (&newParms);
tr.viewParms = oldParms;
return qtrue;
}
/*
=================
R_SpriteFogNum
See if a sprite is inside a fog volume
=================
*/
int R_SpriteFogNum( trRefEntity_t *ent ) {
int i, j;
fog_t *fog;
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
return 0;
}
if ( ent->e.renderfx & RF_CROSSHAIR ) {
return 0;
}
for ( i = 1 ; i < tr.world->numfogs ; i++ ) {
fog = &tr.world->fogs[i];
for ( j = 0 ; j < 3 ; j++ ) {
if ( ent->e.origin[j] - ent->e.radius >= fog->bounds[1][j] ) {
break;
}
if ( ent->e.origin[j] + ent->e.radius <= fog->bounds[0][j] ) {
break;
}
}
if ( j == 3 ) {
return i;
}
}
return 0;
}
/*
==========================================================================================
DRAWSURF SORTING
==========================================================================================
*/
/*
===============
R_Radix
===============
*/
static ID_INLINE void R_Radix( int byte, int size, drawSurf_t *source, drawSurf_t *dest )
{
int count[ 256 ] = { 0 };
int index[ 256 ];
int i;
unsigned char *sortKey = NULL;
unsigned char *end = NULL;
sortKey = ( (unsigned char *)&source[ 0 ].sort ) + byte;
end = sortKey + ( size * sizeof( drawSurf_t ) );
for( ; sortKey < end; sortKey += sizeof( drawSurf_t ) )
++count[ *sortKey ];
index[ 0 ] = 0;
for( i = 1; i < 256; ++i )
index[ i ] = index[ i - 1 ] + count[ i - 1 ];
sortKey = ( (unsigned char *)&source[ 0 ].sort ) + byte;
for( i = 0; i < size; ++i, sortKey += sizeof( drawSurf_t ) )
dest[ index[ *sortKey ]++ ] = source[ i ];
}
/*
===============
R_RadixSort
Radix sort with 4 byte size buckets
===============
*/
static void R_RadixSort( drawSurf_t *source, int size )
{
static drawSurf_t scratch[ MAX_DRAWSURFS ];
#ifdef Q3_LITTLE_ENDIAN
R_Radix( 0, size, source, scratch );
R_Radix( 1, size, scratch, source );
R_Radix( 2, size, source, scratch );
R_Radix( 3, size, scratch, source );
#else
R_Radix( 3, size, source, scratch );
R_Radix( 2, size, scratch, source );
R_Radix( 1, size, source, scratch );
R_Radix( 0, size, scratch, source );
#endif //Q3_LITTLE_ENDIAN
}
//==========================================================================================
/*
=================
R_AddDrawSurf
=================
*/
void R_AddDrawSurf( surfaceType_t *surface, shader_t *shader,
int fogIndex, int dlightMap, int pshadowMap, int cubemap ) {
int index;
// instead of checking for overflow, we just mask the index
// so it wraps around
index = tr.refdef.numDrawSurfs & DRAWSURF_MASK;
// the sort data is packed into a single 32 bit value so it can be
// compared quickly during the qsorting process
tr.refdef.drawSurfs[index].sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT)
| tr.shiftedEntityNum | ( fogIndex << QSORT_FOGNUM_SHIFT )
| ((int)pshadowMap << QSORT_PSHADOW_SHIFT) | (int)dlightMap;
tr.refdef.drawSurfs[index].cubemapIndex = cubemap;
tr.refdef.drawSurfs[index].surface = surface;
tr.refdef.numDrawSurfs++;
}
/*
=================
R_DecomposeSort
=================
*/
void R_DecomposeSort( unsigned sort, int *entityNum, shader_t **shader,
int *fogNum, int *dlightMap, int *pshadowMap ) {
*fogNum = ( sort >> QSORT_FOGNUM_SHIFT ) & 31;
*shader = tr.sortedShaders[ ( sort >> QSORT_SHADERNUM_SHIFT ) & (MAX_SHADERS-1) ];
*entityNum = ( sort >> QSORT_REFENTITYNUM_SHIFT ) & REFENTITYNUM_MASK;
*pshadowMap = (sort >> QSORT_PSHADOW_SHIFT ) & 1;
*dlightMap = sort & 1;
}
/*
=================
R_SortDrawSurfs
=================
*/
void R_SortDrawSurfs( drawSurf_t *drawSurfs, int numDrawSurfs ) {
shader_t *shader;
int fogNum;
int entityNum;
int dlighted;
int pshadowed;
int i;
//ri.Printf(PRINT_ALL, "firstDrawSurf %d numDrawSurfs %d\n", (int)(drawSurfs - tr.refdef.drawSurfs), numDrawSurfs);
// it is possible for some views to not have any surfaces
if ( numDrawSurfs < 1 ) {
// we still need to add it for hyperspace cases
R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
return;
}
// sort the drawsurfs by sort type, then orientation, then shader
R_RadixSort( drawSurfs, numDrawSurfs );
// skip pass through drawing if rendering a shadow map
if (tr.viewParms.flags & (VPF_SHADOWMAP | VPF_DEPTHSHADOW))
{
R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
return;
}
// check for any pass through drawing, which
// may cause another view to be rendered first
for ( i = 0 ; i < numDrawSurfs ; i++ ) {
R_DecomposeSort( (drawSurfs+i)->sort, &entityNum, &shader, &fogNum, &dlighted, &pshadowed );
if ( shader->sort > SS_PORTAL ) {
break;
}
// no shader should ever have this sort type
if ( shader->sort == SS_BAD ) {
ri.Error (ERR_DROP, "Shader '%s'with sort == SS_BAD", shader->name );
}
// if the mirror was completely clipped away, we may need to check another surface
if ( R_MirrorViewBySurface( (drawSurfs+i), entityNum) ) {
// this is a debug option to see exactly what is being mirrored
if ( r_portalOnly->integer ) {
return;
}
break; // only one mirror view at a time
}
}
R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
}
static void R_AddEntitySurface (int entityNum)
{
trRefEntity_t *ent;
shader_t *shader;
tr.currentEntityNum = entityNum;
ent = tr.currentEntity = &tr.refdef.entities[tr.currentEntityNum];
ent->needDlights = qfalse;
// preshift the value we are going to OR into the drawsurf sort
tr.shiftedEntityNum = tr.currentEntityNum << QSORT_REFENTITYNUM_SHIFT;
//
// the weapon model must be handled special --
// we don't want the hacked weapon position showing in
// mirrors, because the true body position will already be drawn
//
if ( (ent->e.renderfx & RF_FIRST_PERSON) && (tr.viewParms.flags & VPF_NOVIEWMODEL)) {
return;
}
// simple generated models, like sprites and beams, are not culled
switch ( ent->e.reType ) {
case RT_PORTALSURFACE:
break; // don't draw anything
case RT_SPRITE:
case RT_BEAM:
case RT_LIGHTNING:
case RT_RAIL_CORE:
case RT_RAIL_RINGS:
// self blood sprites, talk balloons, etc should not be drawn in the primary
// view. We can't just do this check for all entities, because md3
// entities may still want to cast shadows from them
if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal) {
return;
}
shader = R_GetShaderByHandle( ent->e.customShader );
R_AddDrawSurf( &entitySurface, shader, R_SpriteFogNum( ent ), 0, 0, 0 /*cubeMap*/ );
break;
case RT_MODEL:
// we must set up parts of tr.or for model culling
R_RotateForEntity( ent, &tr.viewParms, &tr.or );
tr.currentModel = R_GetModelByHandle( ent->e.hModel );
if (!tr.currentModel) {
R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0, 0, 0 /*cubeMap*/ );
} else {
switch ( tr.currentModel->type ) {
case MOD_MESH:
R_AddMD3Surfaces( ent );
break;
case MOD_MDR:
R_MDRAddAnimSurfaces( ent );
break;
case MOD_IQM:
R_AddIQMSurfaces( ent );
break;
case MOD_BRUSH:
R_AddBrushModelSurfaces( ent );
break;
case MOD_BAD: // null model axis
if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal) {
break;
}
R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0, 0, 0 );
break;
default:
ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad modeltype" );
break;
}
}
break;
default:
ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad reType" );
}
}
/*
=============
R_AddEntitySurfaces
=============
*/
void R_AddEntitySurfaces (void) {
int i;
if ( !r_drawentities->integer ) {
return;
}
for ( i = 0; i < tr.refdef.num_entities; i++)
R_AddEntitySurface(i);
}
/*
====================
R_GenerateDrawSurfs
====================
*/
void R_GenerateDrawSurfs( void ) {
R_AddWorldSurfaces ();
R_AddPolygonSurfaces();
// set the projection matrix with the minimum zfar
// now that we have the world bounded
// this needs to be done before entities are
// added, because they use the projection
// matrix for lod calculation
// dynamically compute far clip plane distance
if (!(tr.viewParms.flags & VPF_SHADOWMAP))
{
R_SetFarClip();
}
// we know the size of the clipping volume. Now set the rest of the projection matrix.
R_SetupProjectionZ (&tr.viewParms);
R_AddEntitySurfaces ();
}
/*
================
R_DebugPolygon
================
*/
void R_DebugPolygon( int color, int numPoints, float *points ) {
// FIXME: implement this
#if 0
int i;
GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );
// draw solid shade
qglColor3f( color&1, (color>>1)&1, (color>>2)&1 );
qglBegin( GL_POLYGON );
for ( i = 0 ; i < numPoints ; i++ ) {
qglVertex3fv( points + i * 3 );
}
qglEnd();
// draw wireframe outline
GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );
qglDepthRange( 0, 0 );
qglColor3f( 1, 1, 1 );
qglBegin( GL_POLYGON );
for ( i = 0 ; i < numPoints ; i++ ) {
qglVertex3fv( points + i * 3 );
}
qglEnd();
qglDepthRange( 0, 1 );
#endif
}
/*
====================
R_DebugGraphics
Visualization aid for movement clipping debugging
====================
*/
void R_DebugGraphics( void ) {
if ( !r_debugSurface->integer ) {
return;
}
R_IssuePendingRenderCommands();
GL_Bind( tr.whiteImage);
GL_Cull( CT_FRONT_SIDED );
ri.CM_DrawDebugSurface( R_DebugPolygon );
}
/*
================
R_RenderView
A view may be either the actual camera view,
or a mirror / remote location
================
*/
void R_RenderView (viewParms_t *parms) {
int firstDrawSurf;
int numDrawSurfs;
if ( parms->viewportWidth <= 0 || parms->viewportHeight <= 0 ) {
return;
}
tr.viewCount++;
tr.viewParms = *parms;
tr.viewParms.frameSceneNum = tr.frameSceneNum;
tr.viewParms.frameCount = tr.frameCount;
firstDrawSurf = tr.refdef.numDrawSurfs;
tr.viewCount++;
// set viewParms.world
R_RotateForViewer ();
R_SetupProjection(&tr.viewParms, r_zproj->value, tr.viewParms.zFar, qtrue);
R_GenerateDrawSurfs();
// if we overflowed MAX_DRAWSURFS, the drawsurfs
// wrapped around in the buffer and we will be missing
// the first surfaces, not the last ones
numDrawSurfs = tr.refdef.numDrawSurfs;
if ( numDrawSurfs > MAX_DRAWSURFS ) {
numDrawSurfs = MAX_DRAWSURFS;
}
R_SortDrawSurfs( tr.refdef.drawSurfs + firstDrawSurf, numDrawSurfs - firstDrawSurf );
// draw main system development information (surface outlines, etc)
R_DebugGraphics();
}
void R_RenderDlightCubemaps(const refdef_t *fd)
{
int i;
for (i = 0; i < tr.refdef.num_dlights; i++)
{
viewParms_t shadowParms;
int j;
// use previous frame to determine visible dlights
if ((1 << i) & tr.refdef.dlightMask)
continue;
Com_Memset( &shadowParms, 0, sizeof( shadowParms ) );
shadowParms.viewportX = tr.refdef.x;
shadowParms.viewportY = glConfig.vidHeight - ( tr.refdef.y + PSHADOW_MAP_SIZE );
shadowParms.viewportWidth = PSHADOW_MAP_SIZE;
shadowParms.viewportHeight = PSHADOW_MAP_SIZE;
shadowParms.isPortal = qfalse;
shadowParms.isMirror = qtrue; // because it is
shadowParms.fovX = 90;
shadowParms.fovY = 90;
shadowParms.flags = VPF_SHADOWMAP | VPF_DEPTHSHADOW | VPF_NOVIEWMODEL;
shadowParms.zFar = tr.refdef.dlights[i].radius;
VectorCopy( tr.refdef.dlights[i].origin, shadowParms.or.origin );
for (j = 0; j < 6; j++)
{
switch(j)
{
case 0:
// -X
VectorSet( shadowParms.or.axis[0], -1, 0, 0);
VectorSet( shadowParms.or.axis[1], 0, 0, -1);
VectorSet( shadowParms.or.axis[2], 0, 1, 0);
break;
case 1:
// +X
VectorSet( shadowParms.or.axis[0], 1, 0, 0);
VectorSet( shadowParms.or.axis[1], 0, 0, 1);
VectorSet( shadowParms.or.axis[2], 0, 1, 0);
break;
case 2:
// -Y
VectorSet( shadowParms.or.axis[0], 0, -1, 0);
VectorSet( shadowParms.or.axis[1], 1, 0, 0);
VectorSet( shadowParms.or.axis[2], 0, 0, -1);
break;
case 3:
// +Y
VectorSet( shadowParms.or.axis[0], 0, 1, 0);
VectorSet( shadowParms.or.axis[1], 1, 0, 0);
VectorSet( shadowParms.or.axis[2], 0, 0, 1);
break;
case 4:
// -Z
VectorSet( shadowParms.or.axis[0], 0, 0, -1);
VectorSet( shadowParms.or.axis[1], 1, 0, 0);
VectorSet( shadowParms.or.axis[2], 0, 1, 0);
break;
case 5:
// +Z
VectorSet( shadowParms.or.axis[0], 0, 0, 1);
VectorSet( shadowParms.or.axis[1], -1, 0, 0);
VectorSet( shadowParms.or.axis[2], 0, 1, 0);
break;
}
R_RenderView(&shadowParms);
R_AddCapShadowmapCmd( i, j );
}
}
}
void R_RenderPshadowMaps(const refdef_t *fd)
{
viewParms_t shadowParms;
int i;
// first, make a list of shadows
for ( i = 0; i < tr.refdef.num_entities; i++)
{
trRefEntity_t *ent = &tr.refdef.entities[i];
if((ent->e.renderfx & (RF_FIRST_PERSON | RF_NOSHADOW)))
continue;
//if((ent->e.renderfx & RF_THIRD_PERSON))
//continue;
if (ent->e.reType == RT_MODEL)
{
model_t *model = R_GetModelByHandle( ent->e.hModel );
pshadow_t shadow;
float radius = 0.0f;
float scale = 1.0f;
vec3_t diff;
int j;
if (!model)
continue;
if (ent->e.nonNormalizedAxes)
{
scale = VectorLength( ent->e.axis[0] );
}
switch (model->type)
{
case MOD_MESH:
{
mdvFrame_t *frame = &model->mdv[0]->frames[ent->e.frame];
radius = frame->radius * scale;
}
break;
case MOD_MDR:
{
// FIXME: never actually tested this
mdrHeader_t *header = model->modelData;
int frameSize = (size_t)( &((mdrFrame_t *)0)->bones[ header->numBones ] );
mdrFrame_t *frame = ( mdrFrame_t * ) ( ( byte * ) header + header->ofsFrames + frameSize * ent->e.frame);
radius = frame->radius;
}
break;
case MOD_IQM:
{
// FIXME: never actually tested this
iqmData_t *data = model->modelData;
vec3_t diag;
float *framebounds;
framebounds = data->bounds + 6*ent->e.frame;
VectorSubtract( framebounds+3, framebounds, diag );
radius = 0.5f * VectorLength( diag );
}
break;
default:
break;
}
if (!radius)
continue;
// Cull entities that are behind the viewer by more than lightRadius
VectorSubtract(ent->e.origin, fd->vieworg, diff);
if (DotProduct(diff, fd->viewaxis[0]) < -r_pshadowDist->value)
continue;
memset(&shadow, 0, sizeof(shadow));
shadow.numEntities = 1;
shadow.entityNums[0] = i;
shadow.viewRadius = radius;
shadow.lightRadius = r_pshadowDist->value;
VectorCopy(ent->e.origin, shadow.viewOrigin);
shadow.sort = DotProduct(diff, diff) / (radius * radius);
VectorCopy(ent->e.origin, shadow.entityOrigins[0]);
shadow.entityRadiuses[0] = radius;
for (j = 0; j < MAX_CALC_PSHADOWS; j++)
{
pshadow_t swap;
if (j + 1 > tr.refdef.num_pshadows)
{
tr.refdef.num_pshadows = j + 1;
tr.refdef.pshadows[j] = shadow;
break;
}
// sort shadows by distance from camera divided by radius
// FIXME: sort better
if (tr.refdef.pshadows[j].sort <= shadow.sort)
continue;
swap = tr.refdef.pshadows[j];
tr.refdef.pshadows[j] = shadow;
shadow = swap;
}
}
}
// next, merge touching pshadows
for ( i = 0; i < tr.refdef.num_pshadows; i++)
{
pshadow_t *ps1 = &tr.refdef.pshadows[i];
int j;
for (j = i + 1; j < tr.refdef.num_pshadows; j++)
{
pshadow_t *ps2 = &tr.refdef.pshadows[j];
int k;
qboolean touch;
if (ps1->numEntities == 8)
break;
touch = qfalse;
if (SpheresIntersect(ps1->viewOrigin, ps1->viewRadius, ps2->viewOrigin, ps2->viewRadius))
{
for (k = 0; k < ps1->numEntities; k++)
{
if (SpheresIntersect(ps1->entityOrigins[k], ps1->entityRadiuses[k], ps2->viewOrigin, ps2->viewRadius))
{
touch = qtrue;
break;
}
}
}
if (touch)
{
vec3_t newOrigin;
float newRadius;
BoundingSphereOfSpheres(ps1->viewOrigin, ps1->viewRadius, ps2->viewOrigin, ps2->viewRadius, newOrigin, &newRadius);
VectorCopy(newOrigin, ps1->viewOrigin);
ps1->viewRadius = newRadius;
ps1->entityNums[ps1->numEntities] = ps2->entityNums[0];
VectorCopy(ps2->viewOrigin, ps1->entityOrigins[ps1->numEntities]);
ps1->entityRadiuses[ps1->numEntities] = ps2->viewRadius;
ps1->numEntities++;
for (k = j; k < tr.refdef.num_pshadows - 1; k++)
{
tr.refdef.pshadows[k] = tr.refdef.pshadows[k + 1];
}
j--;
tr.refdef.num_pshadows--;
}
}
}
// cap number of drawn pshadows
if (tr.refdef.num_pshadows > MAX_DRAWN_PSHADOWS)
{
tr.refdef.num_pshadows = MAX_DRAWN_PSHADOWS;
}
// next, fill up the rest of the shadow info
for ( i = 0; i < tr.refdef.num_pshadows; i++)
{
pshadow_t *shadow = &tr.refdef.pshadows[i];
vec3_t up;
vec3_t ambientLight, directedLight, lightDir;
VectorSet(lightDir, 0.57735f, 0.57735f, 0.57735f);
#if 1
R_LightForPoint(shadow->viewOrigin, ambientLight, directedLight, lightDir);
// sometimes there's no light
if (DotProduct(lightDir, lightDir) < 0.9f)
VectorSet(lightDir, 0.0f, 0.0f, 1.0f);
#endif
if (shadow->viewRadius * 3.0f > shadow->lightRadius)
{
shadow->lightRadius = shadow->viewRadius * 3.0f;
}
VectorMA(shadow->viewOrigin, shadow->viewRadius, lightDir, shadow->lightOrigin);
// make up a projection, up doesn't matter
VectorScale(lightDir, -1.0f, shadow->lightViewAxis[0]);
VectorSet(up, 0, 0, -1);
if ( abs(DotProduct(up, shadow->lightViewAxis[0])) > 0.9f )
{
VectorSet(up, -1, 0, 0);
}
CrossProduct(shadow->lightViewAxis[0], up, shadow->lightViewAxis[1]);
VectorNormalize(shadow->lightViewAxis[1]);
CrossProduct(shadow->lightViewAxis[0], shadow->lightViewAxis[1], shadow->lightViewAxis[2]);
VectorCopy(shadow->lightViewAxis[0], shadow->cullPlane.normal);
shadow->cullPlane.dist = DotProduct(shadow->cullPlane.normal, shadow->lightOrigin);
shadow->cullPlane.type = PLANE_NON_AXIAL;
SetPlaneSignbits(&shadow->cullPlane);
}
// next, render shadowmaps
for ( i = 0; i < tr.refdef.num_pshadows; i++)
{
int firstDrawSurf;
pshadow_t *shadow = &tr.refdef.pshadows[i];
int j;
Com_Memset( &shadowParms, 0, sizeof( shadowParms ) );
if (glRefConfig.framebufferObject)
{
shadowParms.viewportX = 0;
shadowParms.viewportY = 0;
}
else
{
shadowParms.viewportX = tr.refdef.x;
shadowParms.viewportY = glConfig.vidHeight - ( tr.refdef.y + PSHADOW_MAP_SIZE );
}
shadowParms.viewportWidth = PSHADOW_MAP_SIZE;
shadowParms.viewportHeight = PSHADOW_MAP_SIZE;
shadowParms.isPortal = qfalse;
shadowParms.isMirror = qfalse;
shadowParms.fovX = 90;
shadowParms.fovY = 90;
if (glRefConfig.framebufferObject)
shadowParms.targetFbo = tr.pshadowFbos[i];
shadowParms.flags = VPF_SHADOWMAP | VPF_DEPTHSHADOW | VPF_NOVIEWMODEL;
shadowParms.zFar = shadow->lightRadius;
VectorCopy(shadow->lightOrigin, shadowParms.or.origin);
VectorCopy(shadow->lightViewAxis[0], shadowParms.or.axis[0]);
VectorCopy(shadow->lightViewAxis[1], shadowParms.or.axis[1]);
VectorCopy(shadow->lightViewAxis[2], shadowParms.or.axis[2]);
{
tr.viewCount++;
tr.viewParms = shadowParms;
tr.viewParms.frameSceneNum = tr.frameSceneNum;
tr.viewParms.frameCount = tr.frameCount;
firstDrawSurf = tr.refdef.numDrawSurfs;
tr.viewCount++;
// set viewParms.world
R_RotateForViewer ();
{
float xmin, xmax, ymin, ymax, znear, zfar;
viewParms_t *dest = &tr.viewParms;
vec3_t pop;
xmin = ymin = -shadow->viewRadius;
xmax = ymax = shadow->viewRadius;
znear = 0;
zfar = shadow->lightRadius;
dest->projectionMatrix[0] = 2 / (xmax - xmin);
dest->projectionMatrix[4] = 0;
dest->projectionMatrix[8] = (xmax + xmin) / (xmax - xmin);
dest->projectionMatrix[12] =0;
dest->projectionMatrix[1] = 0;
dest->projectionMatrix[5] = 2 / (ymax - ymin);
dest->projectionMatrix[9] = ( ymax + ymin ) / (ymax - ymin); // normally 0
dest->projectionMatrix[13] = 0;
dest->projectionMatrix[2] = 0;
dest->projectionMatrix[6] = 0;
dest->projectionMatrix[10] = 2 / (zfar - znear);
dest->projectionMatrix[14] = 0;
dest->projectionMatrix[3] = 0;
dest->projectionMatrix[7] = 0;
dest->projectionMatrix[11] = 0;
dest->projectionMatrix[15] = 1;
VectorScale(dest->or.axis[1], 1.0f, dest->frustum[0].normal);
VectorMA(dest->or.origin, -shadow->viewRadius, dest->frustum[0].normal, pop);
dest->frustum[0].dist = DotProduct(pop, dest->frustum[0].normal);
VectorScale(dest->or.axis[1], -1.0f, dest->frustum[1].normal);
VectorMA(dest->or.origin, -shadow->viewRadius, dest->frustum[1].normal, pop);
dest->frustum[1].dist = DotProduct(pop, dest->frustum[1].normal);
VectorScale(dest->or.axis[2], 1.0f, dest->frustum[2].normal);
VectorMA(dest->or.origin, -shadow->viewRadius, dest->frustum[2].normal, pop);
dest->frustum[2].dist = DotProduct(pop, dest->frustum[2].normal);
VectorScale(dest->or.axis[2], -1.0f, dest->frustum[3].normal);
VectorMA(dest->or.origin, -shadow->viewRadius, dest->frustum[3].normal, pop);
dest->frustum[3].dist = DotProduct(pop, dest->frustum[3].normal);
VectorScale(dest->or.axis[0], -1.0f, dest->frustum[4].normal);
VectorMA(dest->or.origin, -shadow->lightRadius, dest->frustum[4].normal, pop);
dest->frustum[4].dist = DotProduct(pop, dest->frustum[4].normal);
for (j = 0; j < 5; j++)
{
dest->frustum[j].type = PLANE_NON_AXIAL;
SetPlaneSignbits (&dest->frustum[j]);
}
dest->flags |= VPF_FARPLANEFRUSTUM;
}
for (j = 0; j < shadow->numEntities; j++)
{
R_AddEntitySurface(shadow->entityNums[j]);
}
R_SortDrawSurfs( tr.refdef.drawSurfs + firstDrawSurf, tr.refdef.numDrawSurfs - firstDrawSurf );
if (!glRefConfig.framebufferObject)
R_AddCapShadowmapCmd( i, -1 );
}
}
}
static float CalcSplit(float n, float f, float i, float m)
{
return (n * pow(f / n, i / m) + (f - n) * i / m) / 2.0f;
}
void R_RenderSunShadowMaps(const refdef_t *fd, int level)
{
viewParms_t shadowParms;
vec4_t lightDir, lightCol;
vec3_t lightViewAxis[3];
vec3_t lightOrigin;
float splitZNear, splitZFar, splitBias;
float viewZNear, viewZFar;
vec3_t lightviewBounds[2];
qboolean lightViewIndependentOfCameraView = qfalse;
if (r_forceSun->integer == 2)
{
int scale = 32768;
float angle = (fd->time % scale) / (float)scale * M_PI;
lightDir[0] = cos(angle);
lightDir[1] = sin(35.0f * M_PI / 180.0f);
lightDir[2] = sin(angle) * cos(35.0f * M_PI / 180.0f);
lightDir[3] = 0.0f;
if (1) //((fd->time % (scale * 2)) < scale)
{
lightCol[0] =
lightCol[1] =
lightCol[2] = CLAMP(sin(angle) * 2.0f, 0.0f, 1.0f) * 2.0f;
lightCol[3] = 1.0f;
}
else
{
lightCol[0] =
lightCol[1] =
lightCol[2] = CLAMP(sin(angle) * 2.0f * 0.1f, 0.0f, 0.1f);
lightCol[3] = 1.0f;
}
VectorCopy4(lightDir, tr.refdef.sunDir);
VectorCopy4(lightCol, tr.refdef.sunCol);
VectorScale4(lightCol, 0.2f, tr.refdef.sunAmbCol);
}
else
{
VectorCopy4(tr.refdef.sunDir, lightDir);
}
viewZNear = r_shadowCascadeZNear->value;
viewZFar = r_shadowCascadeZFar->value;
splitBias = r_shadowCascadeZBias->value;
switch(level)
{
case 0:
default:
//splitZNear = r_znear->value;
//splitZFar = 256;
splitZNear = viewZNear;
splitZFar = CalcSplit(viewZNear, viewZFar, 1, 3) + splitBias;
break;
case 1:
splitZNear = CalcSplit(viewZNear, viewZFar, 1, 3) + splitBias;
splitZFar = CalcSplit(viewZNear, viewZFar, 2, 3) + splitBias;
//splitZNear = 256;
//splitZFar = 896;
break;
case 2:
splitZNear = CalcSplit(viewZNear, viewZFar, 2, 3) + splitBias;
splitZFar = viewZFar;
//splitZNear = 896;
//splitZFar = 3072;
break;
}
if (level != 3)
VectorCopy(fd->vieworg, lightOrigin);
else
VectorCopy(tr.world->lightGridOrigin, lightOrigin);
// Make up a projection
VectorScale(lightDir, -1.0f, lightViewAxis[0]);
if (level == 3 || lightViewIndependentOfCameraView)
{
// Use world up as light view up
VectorSet(lightViewAxis[2], 0, 0, 1);
}
else if (level == 0)
{
// Level 0 tries to use a diamond texture orientation relative to camera view
// Use halfway between camera view forward and left for light view up
VectorAdd(fd->viewaxis[0], fd->viewaxis[1], lightViewAxis[2]);
}
else
{
// Use camera view up as light view up
VectorCopy(fd->viewaxis[2], lightViewAxis[2]);
}
// Check if too close to parallel to light direction
if (abs(DotProduct(lightViewAxis[2], lightViewAxis[0])) > 0.9f)
{
if (level == 3 || lightViewIndependentOfCameraView)
{
// Use world left as light view up
VectorSet(lightViewAxis[2], 0, 1, 0);
}
else if (level == 0)
{
// Level 0 tries to use a diamond texture orientation relative to camera view
// Use halfway between camera view forward and up for light view up
VectorAdd(fd->viewaxis[0], fd->viewaxis[2], lightViewAxis[2]);
}
else
{
// Use camera view left as light view up
VectorCopy(fd->viewaxis[1], lightViewAxis[2]);
}
}
// clean axes
CrossProduct(lightViewAxis[2], lightViewAxis[0], lightViewAxis[1]);
VectorNormalize(lightViewAxis[1]);
CrossProduct(lightViewAxis[0], lightViewAxis[1], lightViewAxis[2]);
// Create bounds for light projection using slice of view projection
{
mat4_t lightViewMatrix;
vec4_t point, base, lightViewPoint;
float lx, ly;
base[3] = 1;
point[3] = 1;
lightViewPoint[3] = 1;
Mat4View(lightViewAxis, lightOrigin, lightViewMatrix);
ClearBounds(lightviewBounds[0], lightviewBounds[1]);
if (level != 3)
{
// add view near plane
lx = splitZNear * tan(fd->fov_x * M_PI / 360.0f);
ly = splitZNear * tan(fd->fov_y * M_PI / 360.0f);
VectorMA(fd->vieworg, splitZNear, fd->viewaxis[0], base);
VectorMA(base, lx, fd->viewaxis[1], point);
VectorMA(point, ly, fd->viewaxis[2], point);
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
VectorMA(base, -lx, fd->viewaxis[1], point);
VectorMA(point, ly, fd->viewaxis[2], point);
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
VectorMA(base, lx, fd->viewaxis[1], point);
VectorMA(point, -ly, fd->viewaxis[2], point);
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
VectorMA(base, -lx, fd->viewaxis[1], point);
VectorMA(point, -ly, fd->viewaxis[2], point);
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
// add view far plane
lx = splitZFar * tan(fd->fov_x * M_PI / 360.0f);
ly = splitZFar * tan(fd->fov_y * M_PI / 360.0f);
VectorMA(fd->vieworg, splitZFar, fd->viewaxis[0], base);
VectorMA(base, lx, fd->viewaxis[1], point);
VectorMA(point, ly, fd->viewaxis[2], point);
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
VectorMA(base, -lx, fd->viewaxis[1], point);
VectorMA(point, ly, fd->viewaxis[2], point);
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
VectorMA(base, lx, fd->viewaxis[1], point);
VectorMA(point, -ly, fd->viewaxis[2], point);
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
VectorMA(base, -lx, fd->viewaxis[1], point);
VectorMA(point, -ly, fd->viewaxis[2], point);
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
}
else
{
// use light grid size as level size
// FIXME: could be tighter
vec3_t bounds;
bounds[0] = tr.world->lightGridSize[0] * tr.world->lightGridBounds[0];
bounds[1] = tr.world->lightGridSize[1] * tr.world->lightGridBounds[1];
bounds[2] = tr.world->lightGridSize[2] * tr.world->lightGridBounds[2];
point[0] = tr.world->lightGridOrigin[0];
point[1] = tr.world->lightGridOrigin[1];
point[2] = tr.world->lightGridOrigin[2];
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
point[0] = tr.world->lightGridOrigin[0] + bounds[0];
point[1] = tr.world->lightGridOrigin[1];
point[2] = tr.world->lightGridOrigin[2];
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
point[0] = tr.world->lightGridOrigin[0];
point[1] = tr.world->lightGridOrigin[1] + bounds[1];
point[2] = tr.world->lightGridOrigin[2];
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
point[0] = tr.world->lightGridOrigin[0] + bounds[0];
point[1] = tr.world->lightGridOrigin[1] + bounds[1];
point[2] = tr.world->lightGridOrigin[2];
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
point[0] = tr.world->lightGridOrigin[0];
point[1] = tr.world->lightGridOrigin[1];
point[2] = tr.world->lightGridOrigin[2] + bounds[2];
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
point[0] = tr.world->lightGridOrigin[0] + bounds[0];
point[1] = tr.world->lightGridOrigin[1];
point[2] = tr.world->lightGridOrigin[2] + bounds[2];
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
point[0] = tr.world->lightGridOrigin[0];
point[1] = tr.world->lightGridOrigin[1] + bounds[1];
point[2] = tr.world->lightGridOrigin[2] + bounds[2];
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
point[0] = tr.world->lightGridOrigin[0] + bounds[0];
point[1] = tr.world->lightGridOrigin[1] + bounds[1];
point[2] = tr.world->lightGridOrigin[2] + bounds[2];
Mat4Transform(lightViewMatrix, point, lightViewPoint);
AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]);
}
if (!glRefConfig.depthClamp)
lightviewBounds[0][0] = lightviewBounds[1][0] - 8192;
// Moving the Light in Texel-Sized Increments
// from http://msdn.microsoft.com/en-us/library/windows/desktop/ee416324%28v=vs.85%29.aspx
//
if (lightViewIndependentOfCameraView)
{
float cascadeBound, worldUnitsPerTexel, invWorldUnitsPerTexel;
cascadeBound = MAX(lightviewBounds[1][0] - lightviewBounds[0][0], lightviewBounds[1][1] - lightviewBounds[0][1]);
cascadeBound = MAX(cascadeBound, lightviewBounds[1][2] - lightviewBounds[0][2]);
worldUnitsPerTexel = cascadeBound / tr.sunShadowFbo[level]->width;
invWorldUnitsPerTexel = 1.0f / worldUnitsPerTexel;
VectorScale(lightviewBounds[0], invWorldUnitsPerTexel, lightviewBounds[0]);
lightviewBounds[0][0] = floor(lightviewBounds[0][0]);
lightviewBounds[0][1] = floor(lightviewBounds[0][1]);
lightviewBounds[0][2] = floor(lightviewBounds[0][2]);
VectorScale(lightviewBounds[0], worldUnitsPerTexel, lightviewBounds[0]);
VectorScale(lightviewBounds[1], invWorldUnitsPerTexel, lightviewBounds[1]);
lightviewBounds[1][0] = floor(lightviewBounds[1][0]);
lightviewBounds[1][1] = floor(lightviewBounds[1][1]);
lightviewBounds[1][2] = floor(lightviewBounds[1][2]);
VectorScale(lightviewBounds[1], worldUnitsPerTexel, lightviewBounds[1]);
}
//ri.Printf(PRINT_ALL, "level %d znear %f zfar %f\n", level, lightviewBounds[0][0], lightviewBounds[1][0]);
//ri.Printf(PRINT_ALL, "xmin %f xmax %f ymin %f ymax %f\n", lightviewBounds[0][1], lightviewBounds[1][1], -lightviewBounds[1][2], -lightviewBounds[0][2]);
}
{
int firstDrawSurf;
Com_Memset( &shadowParms, 0, sizeof( shadowParms ) );
if (glRefConfig.framebufferObject)
{
shadowParms.viewportX = 0;
shadowParms.viewportY = 0;
}
else
{
shadowParms.viewportX = tr.refdef.x;
shadowParms.viewportY = glConfig.vidHeight - ( tr.refdef.y + tr.sunShadowFbo[level]->height );
}
shadowParms.viewportWidth = tr.sunShadowFbo[level]->width;
shadowParms.viewportHeight = tr.sunShadowFbo[level]->height;
shadowParms.isPortal = qfalse;
shadowParms.isMirror = qfalse;
shadowParms.fovX = 90;
shadowParms.fovY = 90;
if (glRefConfig.framebufferObject)
shadowParms.targetFbo = tr.sunShadowFbo[level];
shadowParms.flags = VPF_DEPTHSHADOW | VPF_DEPTHCLAMP | VPF_ORTHOGRAPHIC | VPF_NOVIEWMODEL;
shadowParms.zFar = lightviewBounds[1][0];
VectorCopy(lightOrigin, shadowParms.or.origin);
VectorCopy(lightViewAxis[0], shadowParms.or.axis[0]);
VectorCopy(lightViewAxis[1], shadowParms.or.axis[1]);
VectorCopy(lightViewAxis[2], shadowParms.or.axis[2]);
VectorCopy(lightOrigin, shadowParms.pvsOrigin );
{
tr.viewCount++;
tr.viewParms = shadowParms;
tr.viewParms.frameSceneNum = tr.frameSceneNum;
tr.viewParms.frameCount = tr.frameCount;
firstDrawSurf = tr.refdef.numDrawSurfs;
tr.viewCount++;
// set viewParms.world
R_RotateForViewer ();
R_SetupProjectionOrtho(&tr.viewParms, lightviewBounds);
R_AddWorldSurfaces ();
R_AddPolygonSurfaces();
R_AddEntitySurfaces ();
R_SortDrawSurfs( tr.refdef.drawSurfs + firstDrawSurf, tr.refdef.numDrawSurfs - firstDrawSurf );
}
Mat4Multiply(tr.viewParms.projectionMatrix, tr.viewParms.world.modelMatrix, tr.refdef.sunShadowMvp[level]);
}
}
void R_RenderCubemapSide( int cubemapIndex, int cubemapSide, qboolean subscene )
{
refdef_t refdef;
viewParms_t parms;
float oldColorScale = tr.refdef.colorScale;
memset( &refdef, 0, sizeof( refdef ) );
refdef.rdflags = 0;
VectorCopy(tr.cubemaps[cubemapIndex].origin, refdef.vieworg);
switch(cubemapSide)
{
case 0:
// -X
VectorSet( refdef.viewaxis[0], -1, 0, 0);
VectorSet( refdef.viewaxis[1], 0, 0, -1);
VectorSet( refdef.viewaxis[2], 0, 1, 0);
break;
case 1:
// +X
VectorSet( refdef.viewaxis[0], 1, 0, 0);
VectorSet( refdef.viewaxis[1], 0, 0, 1);
VectorSet( refdef.viewaxis[2], 0, 1, 0);
break;
case 2:
// -Y
VectorSet( refdef.viewaxis[0], 0, -1, 0);
VectorSet( refdef.viewaxis[1], 1, 0, 0);
VectorSet( refdef.viewaxis[2], 0, 0, -1);
break;
case 3:
// +Y
VectorSet( refdef.viewaxis[0], 0, 1, 0);
VectorSet( refdef.viewaxis[1], 1, 0, 0);
VectorSet( refdef.viewaxis[2], 0, 0, 1);
break;
case 4:
// -Z
VectorSet( refdef.viewaxis[0], 0, 0, -1);
VectorSet( refdef.viewaxis[1], 1, 0, 0);
VectorSet( refdef.viewaxis[2], 0, 1, 0);
break;
case 5:
// +Z
VectorSet( refdef.viewaxis[0], 0, 0, 1);
VectorSet( refdef.viewaxis[1], -1, 0, 0);
VectorSet( refdef.viewaxis[2], 0, 1, 0);
break;
}
refdef.fov_x = 90;
refdef.fov_y = 90;
refdef.x = 0;
refdef.y = 0;
refdef.width = tr.renderCubeFbo->width;
refdef.height = tr.renderCubeFbo->height;
refdef.time = 0;
if (!subscene)
{
RE_BeginScene(&refdef);
// FIXME: sun shadows aren't rendered correctly in cubemaps
// fix involves changing r_FBufScale to fit smaller cubemap image size, or rendering cubemap to framebuffer first
if(0) //(glRefConfig.framebufferObject && r_sunlightMode->integer && (r_forceSun->integer || tr.sunShadows))
{
R_RenderSunShadowMaps(&refdef, 0);
R_RenderSunShadowMaps(&refdef, 1);
R_RenderSunShadowMaps(&refdef, 2);
R_RenderSunShadowMaps(&refdef, 3);
}
}
{
vec3_t ambient, directed, lightDir;
R_LightForPoint(tr.refdef.vieworg, ambient, directed, lightDir);
tr.refdef.colorScale = 1.0f; //766.0f / (directed[0] + directed[1] + directed[2] + 1.0f);
// only print message for first side
if (directed[0] + directed[1] + directed[2] == 0 && cubemapSide == 0)
{
ri.Printf(PRINT_ALL, "cubemap %d (%f, %f, %f) is outside the lightgrid!\n", cubemapIndex, tr.refdef.vieworg[0], tr.refdef.vieworg[1], tr.refdef.vieworg[2]);
}
}
Com_Memset( &parms, 0, sizeof( parms ) );
parms.viewportX = 0;
parms.viewportY = 0;
parms.viewportWidth = tr.renderCubeFbo->width;
parms.viewportHeight = tr.renderCubeFbo->height;
parms.isPortal = qfalse;
parms.isMirror = qtrue;
parms.flags = VPF_NOVIEWMODEL | VPF_NOCUBEMAPS;
parms.fovX = 90;
parms.fovY = 90;
VectorCopy( refdef.vieworg, parms.or.origin );
VectorCopy( refdef.viewaxis[0], parms.or.axis[0] );
VectorCopy( refdef.viewaxis[1], parms.or.axis[1] );
VectorCopy( refdef.viewaxis[2], parms.or.axis[2] );
VectorCopy( refdef.vieworg, parms.pvsOrigin );
// FIXME: sun shadows aren't rendered correctly in cubemaps
// fix involves changing r_FBufScale to fit smaller cubemap image size, or rendering cubemap to framebuffer first
if (0) //(r_depthPrepass->value && ((r_forceSun->integer) || tr.sunShadows))
{
parms.flags = VPF_USESUNLIGHT;
}
parms.targetFbo = tr.renderCubeFbo;
parms.targetFboLayer = cubemapSide;
parms.targetFboCubemapIndex = cubemapIndex;
R_RenderView(&parms);
if (subscene)
{
tr.refdef.colorScale = oldColorScale;
}
else
{
RE_EndScene();
}
}