lilium-voyager/code/renderergl2/tr_shade.c
Simon McVittie 5909b9a1cf Isolate the Altivec code so non-Altivec PPC targets can use the same binary.
Moved all the code using Altivec intrinsics to separate files. This 
means we can optionally use GCC's -maltivec on just these files, which
are chosen at runtime if the CPU supports Altivec, and compile the rest
without it, making a single binary that has Altivec optimizations but
can still work on G3.

Unlike SSE and similar extensions on x86, there does not seem to be
a way to enable conditional, targeted use of Altivec based on runtime
detection (which is what ioquake3 wants to do) without also giving the
compiler permission to use Altivec in code generation; so to not crash
on CPUs that do not implement Altivec, we'll have to turn it off
altogether, except in translation units that are only entered when
runtime Altivec detection is successful.

This has been tested on Linux PPC (on an Altivec-enabled CPU),
but we may need further work after testing trickles out to other
PowerPC devices and ancient Mac OS X builds.

I did a little work on this patch, but the majority of the effort belongs 
to Simon McVittie (thanks!).
2018-05-12 14:14:47 -04:00

1635 lines
41 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_shade.c
#include "tr_local.h"
/*
THIS ENTIRE FILE IS BACK END
This file deals with applying shaders to surface data in the tess struct.
*/
/*
==================
R_DrawElements
==================
*/
void R_DrawElements( int numIndexes, glIndex_t firstIndex)
{
qglDrawElements(GL_TRIANGLES, numIndexes, GL_INDEX_TYPE, BUFFER_OFFSET(firstIndex * sizeof(glIndex_t)));
}
/*
=============================================================
SURFACE SHADERS
=============================================================
*/
shaderCommands_t tess;
/*
=================
R_BindAnimatedImageToTMU
=================
*/
static void R_BindAnimatedImageToTMU( textureBundle_t *bundle, int tmu ) {
int64_t index;
if ( bundle->isVideoMap ) {
ri.CIN_RunCinematic(bundle->videoMapHandle);
ri.CIN_UploadCinematic(bundle->videoMapHandle);
GL_BindToTMU(tr.scratchImage[bundle->videoMapHandle], tmu);
return;
}
if ( bundle->numImageAnimations <= 1 ) {
GL_BindToTMU( bundle->image[0], tmu);
return;
}
// it is necessary to do this messy calc to make sure animations line up
// exactly with waveforms of the same frequency
index = tess.shaderTime * bundle->imageAnimationSpeed * FUNCTABLE_SIZE;
index >>= FUNCTABLE_SIZE2;
if ( index < 0 ) {
index = 0; // may happen with shader time offsets
}
// Windows x86 doesn't load renderer DLL with 64 bit modulus
//index %= bundle->numImageAnimations;
while ( index >= bundle->numImageAnimations ) {
index -= bundle->numImageAnimations;
}
GL_BindToTMU( bundle->image[ index ], tmu );
}
/*
================
DrawTris
Draws triangle outlines for debugging
================
*/
static void DrawTris (shaderCommands_t *input) {
GL_BindToTMU( tr.whiteImage, TB_COLORMAP );
GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE );
qglDepthRange( 0, 0 );
{
shaderProgram_t *sp = &tr.textureColorShader;
vec4_t color;
GLSL_BindProgram(sp);
GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection);
VectorSet4(color, 1, 1, 1, 1);
GLSL_SetUniformVec4(sp, UNIFORM_COLOR, color);
GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 0);
R_DrawElements(input->numIndexes, input->firstIndex);
}
qglDepthRange( 0, 1 );
}
/*
================
DrawNormals
Draws vertex normals for debugging
================
*/
static void DrawNormals (shaderCommands_t *input) {
//FIXME: implement this
}
/*
==============
RB_BeginSurface
We must set some things up before beginning any tesselation,
because a surface may be forced to perform a RB_End due
to overflow.
==============
*/
void RB_BeginSurface( shader_t *shader, int fogNum, int cubemapIndex ) {
shader_t *state = (shader->remappedShader) ? shader->remappedShader : shader;
tess.numIndexes = 0;
tess.firstIndex = 0;
tess.numVertexes = 0;
tess.shader = state;
tess.fogNum = fogNum;
tess.cubemapIndex = cubemapIndex;
tess.dlightBits = 0; // will be OR'd in by surface functions
tess.pshadowBits = 0; // will be OR'd in by surface functions
tess.xstages = state->stages;
tess.numPasses = state->numUnfoggedPasses;
tess.currentStageIteratorFunc = state->optimalStageIteratorFunc;
tess.useInternalVao = qtrue;
tess.useCacheVao = qfalse;
tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset;
if (tess.shader->clampTime && tess.shaderTime >= tess.shader->clampTime) {
tess.shaderTime = tess.shader->clampTime;
}
if (backEnd.viewParms.flags & VPF_SHADOWMAP)
{
tess.currentStageIteratorFunc = RB_StageIteratorGeneric;
}
}
extern float EvalWaveForm( const waveForm_t *wf );
extern float EvalWaveFormClamped( const waveForm_t *wf );
static void ComputeTexMods( shaderStage_t *pStage, int bundleNum, float *outMatrix, float *outOffTurb)
{
int tm;
float matrix[6], currentmatrix[6];
textureBundle_t *bundle = &pStage->bundle[bundleNum];
matrix[0] = 1.0f; matrix[2] = 0.0f; matrix[4] = 0.0f;
matrix[1] = 0.0f; matrix[3] = 1.0f; matrix[5] = 0.0f;
currentmatrix[0] = 1.0f; currentmatrix[2] = 0.0f; currentmatrix[4] = 0.0f;
currentmatrix[1] = 0.0f; currentmatrix[3] = 1.0f; currentmatrix[5] = 0.0f;
outMatrix[0] = 1.0f; outMatrix[2] = 0.0f;
outMatrix[1] = 0.0f; outMatrix[3] = 1.0f;
outOffTurb[0] = 0.0f; outOffTurb[1] = 0.0f; outOffTurb[2] = 0.0f; outOffTurb[3] = 0.0f;
for ( tm = 0; tm < bundle->numTexMods ; tm++ ) {
switch ( bundle->texMods[tm].type )
{
case TMOD_NONE:
tm = TR_MAX_TEXMODS; // break out of for loop
break;
case TMOD_TURBULENT:
RB_CalcTurbulentFactors(&bundle->texMods[tm].wave, &outOffTurb[2], &outOffTurb[3]);
break;
case TMOD_ENTITY_TRANSLATE:
RB_CalcScrollTexMatrix( backEnd.currentEntity->e.shaderTexCoord, matrix );
break;
case TMOD_SCROLL:
RB_CalcScrollTexMatrix( bundle->texMods[tm].scroll,
matrix );
break;
case TMOD_SCALE:
RB_CalcScaleTexMatrix( bundle->texMods[tm].scale,
matrix );
break;
case TMOD_STRETCH:
RB_CalcStretchTexMatrix( &bundle->texMods[tm].wave,
matrix );
break;
case TMOD_TRANSFORM:
RB_CalcTransformTexMatrix( &bundle->texMods[tm],
matrix );
break;
case TMOD_ROTATE:
RB_CalcRotateTexMatrix( bundle->texMods[tm].rotateSpeed,
matrix );
break;
default:
ri.Error( ERR_DROP, "ERROR: unknown texmod '%d' in shader '%s'", bundle->texMods[tm].type, tess.shader->name );
break;
}
switch ( bundle->texMods[tm].type )
{
case TMOD_NONE:
case TMOD_TURBULENT:
default:
break;
case TMOD_ENTITY_TRANSLATE:
case TMOD_SCROLL:
case TMOD_SCALE:
case TMOD_STRETCH:
case TMOD_TRANSFORM:
case TMOD_ROTATE:
outMatrix[0] = matrix[0] * currentmatrix[0] + matrix[2] * currentmatrix[1];
outMatrix[1] = matrix[1] * currentmatrix[0] + matrix[3] * currentmatrix[1];
outMatrix[2] = matrix[0] * currentmatrix[2] + matrix[2] * currentmatrix[3];
outMatrix[3] = matrix[1] * currentmatrix[2] + matrix[3] * currentmatrix[3];
outOffTurb[0] = matrix[0] * currentmatrix[4] + matrix[2] * currentmatrix[5] + matrix[4];
outOffTurb[1] = matrix[1] * currentmatrix[4] + matrix[3] * currentmatrix[5] + matrix[5];
currentmatrix[0] = outMatrix[0];
currentmatrix[1] = outMatrix[1];
currentmatrix[2] = outMatrix[2];
currentmatrix[3] = outMatrix[3];
currentmatrix[4] = outOffTurb[0];
currentmatrix[5] = outOffTurb[1];
break;
}
}
}
static void ComputeDeformValues(int *deformGen, vec5_t deformParams)
{
// u_DeformGen
*deformGen = DGEN_NONE;
if(!ShaderRequiresCPUDeforms(tess.shader))
{
deformStage_t *ds;
// only support the first one
ds = &tess.shader->deforms[0];
switch (ds->deformation)
{
case DEFORM_WAVE:
*deformGen = ds->deformationWave.func;
deformParams[0] = ds->deformationWave.base;
deformParams[1] = ds->deformationWave.amplitude;
deformParams[2] = ds->deformationWave.phase;
deformParams[3] = ds->deformationWave.frequency;
deformParams[4] = ds->deformationSpread;
break;
case DEFORM_BULGE:
*deformGen = DGEN_BULGE;
deformParams[0] = 0;
deformParams[1] = ds->bulgeHeight; // amplitude
deformParams[2] = ds->bulgeWidth; // phase
deformParams[3] = ds->bulgeSpeed; // frequency
deformParams[4] = 0;
break;
default:
break;
}
}
}
static void ProjectDlightTexture( void ) {
int l;
vec3_t origin;
float scale;
float radius;
int deformGen;
vec5_t deformParams;
if ( !backEnd.refdef.num_dlights ) {
return;
}
ComputeDeformValues(&deformGen, deformParams);
for ( l = 0 ; l < backEnd.refdef.num_dlights ; l++ ) {
dlight_t *dl;
shaderProgram_t *sp;
vec4_t vector;
if ( !( tess.dlightBits & ( 1 << l ) ) ) {
continue; // this surface definitely doesn't have any of this light
}
dl = &backEnd.refdef.dlights[l];
VectorCopy( dl->transformed, origin );
radius = dl->radius;
scale = 1.0f / radius;
sp = &tr.dlightShader[deformGen == DGEN_NONE ? 0 : 1];
backEnd.pc.c_dlightDraws++;
GLSL_BindProgram(sp);
GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection);
GLSL_SetUniformFloat(sp, UNIFORM_VERTEXLERP, glState.vertexAttribsInterpolation);
GLSL_SetUniformInt(sp, UNIFORM_DEFORMGEN, deformGen);
if (deformGen != DGEN_NONE)
{
GLSL_SetUniformFloat5(sp, UNIFORM_DEFORMPARAMS, deformParams);
GLSL_SetUniformFloat(sp, UNIFORM_TIME, tess.shaderTime);
}
vector[0] = dl->color[0];
vector[1] = dl->color[1];
vector[2] = dl->color[2];
vector[3] = 1.0f;
GLSL_SetUniformVec4(sp, UNIFORM_COLOR, vector);
vector[0] = origin[0];
vector[1] = origin[1];
vector[2] = origin[2];
vector[3] = scale;
GLSL_SetUniformVec4(sp, UNIFORM_DLIGHTINFO, vector);
GL_BindToTMU( tr.dlightImage, TB_COLORMAP );
// include GLS_DEPTHFUNC_EQUAL so alpha tested surfaces don't add light
// where they aren't rendered
if ( dl->additive ) {
GL_State( GLS_ATEST_GT_0 | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL );
}
else {
GL_State( GLS_ATEST_GT_0 | GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL );
}
GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 1);
R_DrawElements(tess.numIndexes, tess.firstIndex);
backEnd.pc.c_totalIndexes += tess.numIndexes;
backEnd.pc.c_dlightIndexes += tess.numIndexes;
backEnd.pc.c_dlightVertexes += tess.numVertexes;
}
}
static void ComputeShaderColors( shaderStage_t *pStage, vec4_t baseColor, vec4_t vertColor, int blend )
{
qboolean isBlend = ((blend & GLS_SRCBLEND_BITS) == GLS_SRCBLEND_DST_COLOR)
|| ((blend & GLS_SRCBLEND_BITS) == GLS_SRCBLEND_ONE_MINUS_DST_COLOR)
|| ((blend & GLS_DSTBLEND_BITS) == GLS_DSTBLEND_SRC_COLOR)
|| ((blend & GLS_DSTBLEND_BITS) == GLS_DSTBLEND_ONE_MINUS_SRC_COLOR);
qboolean is2DDraw = backEnd.currentEntity == &backEnd.entity2D;
float overbright = (isBlend || is2DDraw) ? 1.0f : (float)(1 << tr.overbrightBits);
fog_t *fog;
baseColor[0] =
baseColor[1] =
baseColor[2] =
baseColor[3] = 1.0f;
vertColor[0] =
vertColor[1] =
vertColor[2] =
vertColor[3] = 0.0f;
//
// rgbGen
//
switch ( pStage->rgbGen )
{
case CGEN_EXACT_VERTEX:
case CGEN_EXACT_VERTEX_LIT:
baseColor[0] =
baseColor[1] =
baseColor[2] =
baseColor[3] = 0.0f;
vertColor[0] =
vertColor[1] =
vertColor[2] = overbright;
vertColor[3] = 1.0f;
break;
case CGEN_CONST:
baseColor[0] = pStage->constantColor[0] / 255.0f;
baseColor[1] = pStage->constantColor[1] / 255.0f;
baseColor[2] = pStage->constantColor[2] / 255.0f;
baseColor[3] = pStage->constantColor[3] / 255.0f;
break;
case CGEN_VERTEX:
case CGEN_VERTEX_LIT:
baseColor[0] =
baseColor[1] =
baseColor[2] =
baseColor[3] = 0.0f;
vertColor[0] =
vertColor[1] =
vertColor[2] =
vertColor[3] = 1.0f;
break;
case CGEN_ONE_MINUS_VERTEX:
baseColor[0] =
baseColor[1] =
baseColor[2] = 1.0f;
vertColor[0] =
vertColor[1] =
vertColor[2] = -1.0f;
break;
case CGEN_FOG:
fog = tr.world->fogs + tess.fogNum;
baseColor[0] = ((unsigned char *)(&fog->colorInt))[0] / 255.0f;
baseColor[1] = ((unsigned char *)(&fog->colorInt))[1] / 255.0f;
baseColor[2] = ((unsigned char *)(&fog->colorInt))[2] / 255.0f;
baseColor[3] = ((unsigned char *)(&fog->colorInt))[3] / 255.0f;
break;
case CGEN_WAVEFORM:
baseColor[0] =
baseColor[1] =
baseColor[2] = RB_CalcWaveColorSingle( &pStage->rgbWave );
break;
case CGEN_ENTITY:
if (backEnd.currentEntity)
{
baseColor[0] = ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[0] / 255.0f;
baseColor[1] = ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[1] / 255.0f;
baseColor[2] = ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[2] / 255.0f;
baseColor[3] = ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[3] / 255.0f;
}
break;
case CGEN_ONE_MINUS_ENTITY:
if (backEnd.currentEntity)
{
baseColor[0] = 1.0f - ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[0] / 255.0f;
baseColor[1] = 1.0f - ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[1] / 255.0f;
baseColor[2] = 1.0f - ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[2] / 255.0f;
baseColor[3] = 1.0f - ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[3] / 255.0f;
}
break;
case CGEN_IDENTITY:
case CGEN_LIGHTING_DIFFUSE:
baseColor[0] =
baseColor[1] =
baseColor[2] = overbright;
break;
case CGEN_IDENTITY_LIGHTING:
case CGEN_BAD:
break;
}
//
// alphaGen
//
switch ( pStage->alphaGen )
{
case AGEN_SKIP:
break;
case AGEN_CONST:
baseColor[3] = pStage->constantColor[3] / 255.0f;
vertColor[3] = 0.0f;
break;
case AGEN_WAVEFORM:
baseColor[3] = RB_CalcWaveAlphaSingle( &pStage->alphaWave );
vertColor[3] = 0.0f;
break;
case AGEN_ENTITY:
if (backEnd.currentEntity)
{
baseColor[3] = ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[3] / 255.0f;
}
vertColor[3] = 0.0f;
break;
case AGEN_ONE_MINUS_ENTITY:
if (backEnd.currentEntity)
{
baseColor[3] = 1.0f - ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[3] / 255.0f;
}
vertColor[3] = 0.0f;
break;
case AGEN_VERTEX:
baseColor[3] = 0.0f;
vertColor[3] = 1.0f;
break;
case AGEN_ONE_MINUS_VERTEX:
baseColor[3] = 1.0f;
vertColor[3] = -1.0f;
break;
case AGEN_IDENTITY:
case AGEN_LIGHTING_SPECULAR:
case AGEN_PORTAL:
// Done entirely in vertex program
baseColor[3] = 1.0f;
vertColor[3] = 0.0f;
break;
}
// FIXME: find some way to implement this.
#if 0
// if in greyscale rendering mode turn all color values into greyscale.
if(r_greyscale->integer)
{
int scale;
for(i = 0; i < tess.numVertexes; i++)
{
scale = (tess.svars.colors[i][0] + tess.svars.colors[i][1] + tess.svars.colors[i][2]) / 3;
tess.svars.colors[i][0] = tess.svars.colors[i][1] = tess.svars.colors[i][2] = scale;
}
}
#endif
}
static void ComputeFogValues(vec4_t fogDistanceVector, vec4_t fogDepthVector, float *eyeT)
{
// from RB_CalcFogTexCoords()
fog_t *fog;
vec3_t local;
if (!tess.fogNum)
return;
fog = tr.world->fogs + tess.fogNum;
VectorSubtract( backEnd.or.origin, backEnd.viewParms.or.origin, local );
fogDistanceVector[0] = -backEnd.or.modelMatrix[2];
fogDistanceVector[1] = -backEnd.or.modelMatrix[6];
fogDistanceVector[2] = -backEnd.or.modelMatrix[10];
fogDistanceVector[3] = DotProduct( local, backEnd.viewParms.or.axis[0] );
// scale the fog vectors based on the fog's thickness
VectorScale4(fogDistanceVector, fog->tcScale, fogDistanceVector);
// rotate the gradient vector for this orientation
if ( fog->hasSurface ) {
fogDepthVector[0] = fog->surface[0] * backEnd.or.axis[0][0] +
fog->surface[1] * backEnd.or.axis[0][1] + fog->surface[2] * backEnd.or.axis[0][2];
fogDepthVector[1] = fog->surface[0] * backEnd.or.axis[1][0] +
fog->surface[1] * backEnd.or.axis[1][1] + fog->surface[2] * backEnd.or.axis[1][2];
fogDepthVector[2] = fog->surface[0] * backEnd.or.axis[2][0] +
fog->surface[1] * backEnd.or.axis[2][1] + fog->surface[2] * backEnd.or.axis[2][2];
fogDepthVector[3] = -fog->surface[3] + DotProduct( backEnd.or.origin, fog->surface );
*eyeT = DotProduct( backEnd.or.viewOrigin, fogDepthVector ) + fogDepthVector[3];
} else {
*eyeT = 1; // non-surface fog always has eye inside
}
}
static void ComputeFogColorMask( shaderStage_t *pStage, vec4_t fogColorMask )
{
switch(pStage->adjustColorsForFog)
{
case ACFF_MODULATE_RGB:
fogColorMask[0] =
fogColorMask[1] =
fogColorMask[2] = 1.0f;
fogColorMask[3] = 0.0f;
break;
case ACFF_MODULATE_ALPHA:
fogColorMask[0] =
fogColorMask[1] =
fogColorMask[2] = 0.0f;
fogColorMask[3] = 1.0f;
break;
case ACFF_MODULATE_RGBA:
fogColorMask[0] =
fogColorMask[1] =
fogColorMask[2] =
fogColorMask[3] = 1.0f;
break;
default:
fogColorMask[0] =
fogColorMask[1] =
fogColorMask[2] =
fogColorMask[3] = 0.0f;
break;
}
}
static void ForwardDlight( void ) {
int l;
//vec3_t origin;
//float scale;
float radius;
int deformGen;
vec5_t deformParams;
vec4_t fogDistanceVector, fogDepthVector = {0, 0, 0, 0};
float eyeT = 0;
shaderCommands_t *input = &tess;
shaderStage_t *pStage = tess.xstages[0];
if ( !backEnd.refdef.num_dlights ) {
return;
}
ComputeDeformValues(&deformGen, deformParams);
ComputeFogValues(fogDistanceVector, fogDepthVector, &eyeT);
for ( l = 0 ; l < backEnd.refdef.num_dlights ; l++ ) {
dlight_t *dl;
shaderProgram_t *sp;
vec4_t vector;
vec4_t texMatrix;
vec4_t texOffTurb;
if ( !( tess.dlightBits & ( 1 << l ) ) ) {
continue; // this surface definitely doesn't have any of this light
}
dl = &backEnd.refdef.dlights[l];
//VectorCopy( dl->transformed, origin );
radius = dl->radius;
//scale = 1.0f / radius;
//if (pStage->glslShaderGroup == tr.lightallShader)
{
int index = pStage->glslShaderIndex;
index &= ~LIGHTDEF_LIGHTTYPE_MASK;
index |= LIGHTDEF_USE_LIGHT_VECTOR;
sp = &tr.lightallShader[index];
}
backEnd.pc.c_lightallDraws++;
GLSL_BindProgram(sp);
GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection);
GLSL_SetUniformVec3(sp, UNIFORM_VIEWORIGIN, backEnd.viewParms.or.origin);
GLSL_SetUniformVec3(sp, UNIFORM_LOCALVIEWORIGIN, backEnd.or.viewOrigin);
GLSL_SetUniformFloat(sp, UNIFORM_VERTEXLERP, glState.vertexAttribsInterpolation);
GLSL_SetUniformInt(sp, UNIFORM_DEFORMGEN, deformGen);
if (deformGen != DGEN_NONE)
{
GLSL_SetUniformFloat5(sp, UNIFORM_DEFORMPARAMS, deformParams);
GLSL_SetUniformFloat(sp, UNIFORM_TIME, tess.shaderTime);
}
if ( input->fogNum ) {
vec4_t fogColorMask;
GLSL_SetUniformVec4(sp, UNIFORM_FOGDISTANCE, fogDistanceVector);
GLSL_SetUniformVec4(sp, UNIFORM_FOGDEPTH, fogDepthVector);
GLSL_SetUniformFloat(sp, UNIFORM_FOGEYET, eyeT);
ComputeFogColorMask(pStage, fogColorMask);
GLSL_SetUniformVec4(sp, UNIFORM_FOGCOLORMASK, fogColorMask);
}
{
vec4_t baseColor;
vec4_t vertColor;
ComputeShaderColors(pStage, baseColor, vertColor, GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE);
GLSL_SetUniformVec4(sp, UNIFORM_BASECOLOR, baseColor);
GLSL_SetUniformVec4(sp, UNIFORM_VERTCOLOR, vertColor);
}
if (pStage->alphaGen == AGEN_PORTAL)
{
GLSL_SetUniformFloat(sp, UNIFORM_PORTALRANGE, tess.shader->portalRange);
}
GLSL_SetUniformInt(sp, UNIFORM_COLORGEN, pStage->rgbGen);
GLSL_SetUniformInt(sp, UNIFORM_ALPHAGEN, pStage->alphaGen);
GLSL_SetUniformVec3(sp, UNIFORM_DIRECTEDLIGHT, dl->color);
VectorSet(vector, 0, 0, 0);
GLSL_SetUniformVec3(sp, UNIFORM_AMBIENTLIGHT, vector);
VectorCopy(dl->origin, vector);
vector[3] = 1.0f;
GLSL_SetUniformVec4(sp, UNIFORM_LIGHTORIGIN, vector);
GLSL_SetUniformFloat(sp, UNIFORM_LIGHTRADIUS, radius);
GLSL_SetUniformVec4(sp, UNIFORM_NORMALSCALE, pStage->normalScale);
GLSL_SetUniformVec4(sp, UNIFORM_SPECULARSCALE, pStage->specularScale);
// include GLS_DEPTHFUNC_EQUAL so alpha tested surfaces don't add light
// where they aren't rendered
GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL );
GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 0);
GLSL_SetUniformMat4(sp, UNIFORM_MODELMATRIX, backEnd.or.transformMatrix);
if (pStage->bundle[TB_DIFFUSEMAP].image[0])
R_BindAnimatedImageToTMU( &pStage->bundle[TB_DIFFUSEMAP], TB_DIFFUSEMAP);
// bind textures that are sampled and used in the glsl shader, and
// bind whiteImage to textures that are sampled but zeroed in the glsl shader
//
// alternatives:
// - use the last bound texture
// -> costs more to sample a higher res texture then throw out the result
// - disable texture sampling in glsl shader with #ifdefs, as before
// -> increases the number of shaders that must be compiled
//
if (pStage->bundle[TB_NORMALMAP].image[0])
{
R_BindAnimatedImageToTMU( &pStage->bundle[TB_NORMALMAP], TB_NORMALMAP);
}
else if (r_normalMapping->integer)
GL_BindToTMU( tr.whiteImage, TB_NORMALMAP );
if (pStage->bundle[TB_SPECULARMAP].image[0])
{
R_BindAnimatedImageToTMU( &pStage->bundle[TB_SPECULARMAP], TB_SPECULARMAP);
}
else if (r_specularMapping->integer)
GL_BindToTMU( tr.whiteImage, TB_SPECULARMAP );
{
vec4_t enableTextures;
VectorSet4(enableTextures, 0.0f, 0.0f, 0.0f, 0.0f);
GLSL_SetUniformVec4(sp, UNIFORM_ENABLETEXTURES, enableTextures);
}
if (r_dlightMode->integer >= 2)
GL_BindToTMU(tr.shadowCubemaps[l], TB_SHADOWMAP);
ComputeTexMods( pStage, TB_DIFFUSEMAP, texMatrix, texOffTurb );
GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXMATRIX, texMatrix);
GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXOFFTURB, texOffTurb);
GLSL_SetUniformInt(sp, UNIFORM_TCGEN0, pStage->bundle[0].tcGen);
//
// draw
//
R_DrawElements(input->numIndexes, input->firstIndex);
backEnd.pc.c_totalIndexes += tess.numIndexes;
backEnd.pc.c_dlightIndexes += tess.numIndexes;
backEnd.pc.c_dlightVertexes += tess.numVertexes;
}
}
static void ProjectPshadowVBOGLSL( void ) {
int l;
vec3_t origin;
float radius;
int deformGen;
vec5_t deformParams;
shaderCommands_t *input = &tess;
if ( !backEnd.refdef.num_pshadows ) {
return;
}
ComputeDeformValues(&deformGen, deformParams);
for ( l = 0 ; l < backEnd.refdef.num_pshadows ; l++ ) {
pshadow_t *ps;
shaderProgram_t *sp;
vec4_t vector;
if ( !( tess.pshadowBits & ( 1 << l ) ) ) {
continue; // this surface definitely doesn't have any of this shadow
}
ps = &backEnd.refdef.pshadows[l];
VectorCopy( ps->lightOrigin, origin );
radius = ps->lightRadius;
sp = &tr.pshadowShader;
GLSL_BindProgram(sp);
GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection);
VectorCopy(origin, vector);
vector[3] = 1.0f;
GLSL_SetUniformVec4(sp, UNIFORM_LIGHTORIGIN, vector);
VectorScale(ps->lightViewAxis[0], 1.0f / ps->viewRadius, vector);
GLSL_SetUniformVec3(sp, UNIFORM_LIGHTFORWARD, vector);
VectorScale(ps->lightViewAxis[1], 1.0f / ps->viewRadius, vector);
GLSL_SetUniformVec3(sp, UNIFORM_LIGHTRIGHT, vector);
VectorScale(ps->lightViewAxis[2], 1.0f / ps->viewRadius, vector);
GLSL_SetUniformVec3(sp, UNIFORM_LIGHTUP, vector);
GLSL_SetUniformFloat(sp, UNIFORM_LIGHTRADIUS, radius);
// include GLS_DEPTHFUNC_EQUAL so alpha tested surfaces don't add light
// where they aren't rendered
GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_EQUAL );
GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 0);
GL_BindToTMU( tr.pshadowMaps[l], TB_DIFFUSEMAP );
//
// draw
//
R_DrawElements(input->numIndexes, input->firstIndex);
backEnd.pc.c_totalIndexes += tess.numIndexes;
//backEnd.pc.c_dlightIndexes += tess.numIndexes;
}
}
/*
===================
RB_FogPass
Blends a fog texture on top of everything else
===================
*/
static void RB_FogPass( void ) {
fog_t *fog;
vec4_t color;
vec4_t fogDistanceVector, fogDepthVector = {0, 0, 0, 0};
float eyeT = 0;
shaderProgram_t *sp;
int deformGen;
vec5_t deformParams;
ComputeDeformValues(&deformGen, deformParams);
{
int index = 0;
if (deformGen != DGEN_NONE)
index |= FOGDEF_USE_DEFORM_VERTEXES;
if (glState.vertexAnimation)
index |= FOGDEF_USE_VERTEX_ANIMATION;
sp = &tr.fogShader[index];
}
backEnd.pc.c_fogDraws++;
GLSL_BindProgram(sp);
fog = tr.world->fogs + tess.fogNum;
GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection);
GLSL_SetUniformFloat(sp, UNIFORM_VERTEXLERP, glState.vertexAttribsInterpolation);
GLSL_SetUniformInt(sp, UNIFORM_DEFORMGEN, deformGen);
if (deformGen != DGEN_NONE)
{
GLSL_SetUniformFloat5(sp, UNIFORM_DEFORMPARAMS, deformParams);
GLSL_SetUniformFloat(sp, UNIFORM_TIME, tess.shaderTime);
}
color[0] = ((unsigned char *)(&fog->colorInt))[0] / 255.0f;
color[1] = ((unsigned char *)(&fog->colorInt))[1] / 255.0f;
color[2] = ((unsigned char *)(&fog->colorInt))[2] / 255.0f;
color[3] = ((unsigned char *)(&fog->colorInt))[3] / 255.0f;
GLSL_SetUniformVec4(sp, UNIFORM_COLOR, color);
ComputeFogValues(fogDistanceVector, fogDepthVector, &eyeT);
GLSL_SetUniformVec4(sp, UNIFORM_FOGDISTANCE, fogDistanceVector);
GLSL_SetUniformVec4(sp, UNIFORM_FOGDEPTH, fogDepthVector);
GLSL_SetUniformFloat(sp, UNIFORM_FOGEYET, eyeT);
if ( tess.shader->fogPass == FP_EQUAL ) {
GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_EQUAL );
} else {
GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA );
}
GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 0);
R_DrawElements(tess.numIndexes, tess.firstIndex);
}
static unsigned int RB_CalcShaderVertexAttribs( shaderCommands_t *input )
{
unsigned int vertexAttribs = input->shader->vertexAttribs;
if(glState.vertexAnimation)
{
vertexAttribs |= ATTR_POSITION2;
if (vertexAttribs & ATTR_NORMAL)
{
vertexAttribs |= ATTR_NORMAL2;
vertexAttribs |= ATTR_TANGENT2;
}
}
return vertexAttribs;
}
static void RB_IterateStagesGeneric( shaderCommands_t *input )
{
int stage;
vec4_t fogDistanceVector, fogDepthVector = {0, 0, 0, 0};
float eyeT = 0;
int deformGen;
vec5_t deformParams;
qboolean renderToCubemap = tr.renderCubeFbo && glState.currentFBO == tr.renderCubeFbo;
ComputeDeformValues(&deformGen, deformParams);
ComputeFogValues(fogDistanceVector, fogDepthVector, &eyeT);
for ( stage = 0; stage < MAX_SHADER_STAGES; stage++ )
{
shaderStage_t *pStage = input->xstages[stage];
shaderProgram_t *sp;
vec4_t texMatrix;
vec4_t texOffTurb;
if ( !pStage )
{
break;
}
if (backEnd.depthFill)
{
if (pStage->glslShaderGroup == tr.lightallShader)
{
int index = 0;
if (backEnd.currentEntity && backEnd.currentEntity != &tr.worldEntity)
{
index |= LIGHTDEF_ENTITY;
}
if (pStage->stateBits & GLS_ATEST_BITS)
{
index |= LIGHTDEF_USE_TCGEN_AND_TCMOD;
}
sp = &pStage->glslShaderGroup[index];
}
else
{
int shaderAttribs = 0;
if (tess.shader->numDeforms && !ShaderRequiresCPUDeforms(tess.shader))
{
shaderAttribs |= GENERICDEF_USE_DEFORM_VERTEXES;
}
if (glState.vertexAnimation)
{
shaderAttribs |= GENERICDEF_USE_VERTEX_ANIMATION;
}
if (pStage->stateBits & GLS_ATEST_BITS)
{
shaderAttribs |= GENERICDEF_USE_TCGEN_AND_TCMOD;
}
sp = &tr.genericShader[shaderAttribs];
}
}
else if (pStage->glslShaderGroup == tr.lightallShader)
{
int index = pStage->glslShaderIndex;
if (backEnd.currentEntity && backEnd.currentEntity != &tr.worldEntity)
{
index |= LIGHTDEF_ENTITY;
}
if (r_sunlightMode->integer && (backEnd.viewParms.flags & VPF_USESUNLIGHT) && (index & LIGHTDEF_LIGHTTYPE_MASK))
{
index |= LIGHTDEF_USE_SHADOWMAP;
}
if (r_lightmap->integer && ((index & LIGHTDEF_LIGHTTYPE_MASK) == LIGHTDEF_USE_LIGHTMAP))
{
index = LIGHTDEF_USE_TCGEN_AND_TCMOD;
}
sp = &pStage->glslShaderGroup[index];
backEnd.pc.c_lightallDraws++;
}
else
{
sp = GLSL_GetGenericShaderProgram(stage);
backEnd.pc.c_genericDraws++;
}
GLSL_BindProgram(sp);
GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection);
GLSL_SetUniformVec3(sp, UNIFORM_VIEWORIGIN, backEnd.viewParms.or.origin);
GLSL_SetUniformVec3(sp, UNIFORM_LOCALVIEWORIGIN, backEnd.or.viewOrigin);
GLSL_SetUniformFloat(sp, UNIFORM_VERTEXLERP, glState.vertexAttribsInterpolation);
GLSL_SetUniformInt(sp, UNIFORM_DEFORMGEN, deformGen);
if (deformGen != DGEN_NONE)
{
GLSL_SetUniformFloat5(sp, UNIFORM_DEFORMPARAMS, deformParams);
GLSL_SetUniformFloat(sp, UNIFORM_TIME, tess.shaderTime);
}
if ( input->fogNum ) {
GLSL_SetUniformVec4(sp, UNIFORM_FOGDISTANCE, fogDistanceVector);
GLSL_SetUniformVec4(sp, UNIFORM_FOGDEPTH, fogDepthVector);
GLSL_SetUniformFloat(sp, UNIFORM_FOGEYET, eyeT);
}
GL_State( pStage->stateBits );
if ((pStage->stateBits & GLS_ATEST_BITS) == GLS_ATEST_GT_0)
{
GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 1);
}
else if ((pStage->stateBits & GLS_ATEST_BITS) == GLS_ATEST_LT_80)
{
GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 2);
}
else if ((pStage->stateBits & GLS_ATEST_BITS) == GLS_ATEST_GE_80)
{
GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 3);
}
else
{
GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 0);
}
{
vec4_t baseColor;
vec4_t vertColor;
ComputeShaderColors(pStage, baseColor, vertColor, pStage->stateBits);
GLSL_SetUniformVec4(sp, UNIFORM_BASECOLOR, baseColor);
GLSL_SetUniformVec4(sp, UNIFORM_VERTCOLOR, vertColor);
}
if (pStage->rgbGen == CGEN_LIGHTING_DIFFUSE)
{
vec4_t vec;
VectorScale(backEnd.currentEntity->ambientLight, 1.0f / 255.0f, vec);
GLSL_SetUniformVec3(sp, UNIFORM_AMBIENTLIGHT, vec);
VectorScale(backEnd.currentEntity->directedLight, 1.0f / 255.0f, vec);
GLSL_SetUniformVec3(sp, UNIFORM_DIRECTEDLIGHT, vec);
VectorCopy(backEnd.currentEntity->lightDir, vec);
vec[3] = 0.0f;
GLSL_SetUniformVec4(sp, UNIFORM_LIGHTORIGIN, vec);
GLSL_SetUniformVec3(sp, UNIFORM_MODELLIGHTDIR, backEnd.currentEntity->modelLightDir);
GLSL_SetUniformFloat(sp, UNIFORM_LIGHTRADIUS, 0.0f);
}
if (pStage->alphaGen == AGEN_PORTAL)
{
GLSL_SetUniformFloat(sp, UNIFORM_PORTALRANGE, tess.shader->portalRange);
}
GLSL_SetUniformInt(sp, UNIFORM_COLORGEN, pStage->rgbGen);
GLSL_SetUniformInt(sp, UNIFORM_ALPHAGEN, pStage->alphaGen);
if ( input->fogNum )
{
vec4_t fogColorMask;
ComputeFogColorMask(pStage, fogColorMask);
GLSL_SetUniformVec4(sp, UNIFORM_FOGCOLORMASK, fogColorMask);
}
if (r_lightmap->integer)
{
vec4_t v;
VectorSet4(v, 1.0f, 0.0f, 0.0f, 1.0f);
GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXMATRIX, v);
VectorSet4(v, 0.0f, 0.0f, 0.0f, 0.0f);
GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXOFFTURB, v);
GLSL_SetUniformInt(sp, UNIFORM_TCGEN0, TCGEN_LIGHTMAP);
}
else
{
ComputeTexMods(pStage, TB_DIFFUSEMAP, texMatrix, texOffTurb);
GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXMATRIX, texMatrix);
GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXOFFTURB, texOffTurb);
GLSL_SetUniformInt(sp, UNIFORM_TCGEN0, pStage->bundle[0].tcGen);
if (pStage->bundle[0].tcGen == TCGEN_VECTOR)
{
vec3_t vec;
VectorCopy(pStage->bundle[0].tcGenVectors[0], vec);
GLSL_SetUniformVec3(sp, UNIFORM_TCGEN0VECTOR0, vec);
VectorCopy(pStage->bundle[0].tcGenVectors[1], vec);
GLSL_SetUniformVec3(sp, UNIFORM_TCGEN0VECTOR1, vec);
}
}
GLSL_SetUniformMat4(sp, UNIFORM_MODELMATRIX, backEnd.or.transformMatrix);
GLSL_SetUniformVec4(sp, UNIFORM_NORMALSCALE, pStage->normalScale);
{
vec4_t specularScale;
Vector4Copy(pStage->specularScale, specularScale);
if (renderToCubemap)
{
// force specular to nonmetal if rendering cubemaps
if (r_pbr->integer)
specularScale[1] = 0.0f;
}
GLSL_SetUniformVec4(sp, UNIFORM_SPECULARSCALE, specularScale);
}
//GLSL_SetUniformFloat(sp, UNIFORM_MAPLIGHTSCALE, backEnd.refdef.mapLightScale);
//
// do multitexture
//
if ( backEnd.depthFill )
{
if (!(pStage->stateBits & GLS_ATEST_BITS))
GL_BindToTMU( tr.whiteImage, TB_COLORMAP );
else if ( pStage->bundle[TB_COLORMAP].image[0] != 0 )
R_BindAnimatedImageToTMU( &pStage->bundle[TB_COLORMAP], TB_COLORMAP );
}
else if ( pStage->glslShaderGroup == tr.lightallShader )
{
int i;
vec4_t enableTextures;
if (r_sunlightMode->integer && (backEnd.viewParms.flags & VPF_USESUNLIGHT) && (pStage->glslShaderIndex & LIGHTDEF_LIGHTTYPE_MASK))
{
// FIXME: screenShadowImage is NULL if no framebuffers
if (tr.screenShadowImage)
GL_BindToTMU(tr.screenShadowImage, TB_SHADOWMAP);
GLSL_SetUniformVec3(sp, UNIFORM_PRIMARYLIGHTAMBIENT, backEnd.refdef.sunAmbCol);
if (r_pbr->integer)
{
vec3_t color;
color[0] = backEnd.refdef.sunCol[0] * backEnd.refdef.sunCol[0];
color[1] = backEnd.refdef.sunCol[1] * backEnd.refdef.sunCol[1];
color[2] = backEnd.refdef.sunCol[2] * backEnd.refdef.sunCol[2];
GLSL_SetUniformVec3(sp, UNIFORM_PRIMARYLIGHTCOLOR, color);
}
else
{
GLSL_SetUniformVec3(sp, UNIFORM_PRIMARYLIGHTCOLOR, backEnd.refdef.sunCol);
}
GLSL_SetUniformVec4(sp, UNIFORM_PRIMARYLIGHTORIGIN, backEnd.refdef.sunDir);
}
VectorSet4(enableTextures, 0, 0, 0, 0);
if ((r_lightmap->integer == 1 || r_lightmap->integer == 2) && pStage->bundle[TB_LIGHTMAP].image[0])
{
for (i = 0; i < NUM_TEXTURE_BUNDLES; i++)
{
if (i == TB_COLORMAP)
R_BindAnimatedImageToTMU( &pStage->bundle[TB_LIGHTMAP], i);
else
GL_BindToTMU( tr.whiteImage, i );
}
}
else if (r_lightmap->integer == 3 && pStage->bundle[TB_DELUXEMAP].image[0])
{
for (i = 0; i < NUM_TEXTURE_BUNDLES; i++)
{
if (i == TB_COLORMAP)
R_BindAnimatedImageToTMU( &pStage->bundle[TB_DELUXEMAP], i);
else
GL_BindToTMU( tr.whiteImage, i );
}
}
else
{
qboolean light = (pStage->glslShaderIndex & LIGHTDEF_LIGHTTYPE_MASK) != 0;
qboolean fastLight = !(r_normalMapping->integer || r_specularMapping->integer);
if (pStage->bundle[TB_DIFFUSEMAP].image[0])
R_BindAnimatedImageToTMU( &pStage->bundle[TB_DIFFUSEMAP], TB_DIFFUSEMAP);
if (pStage->bundle[TB_LIGHTMAP].image[0])
R_BindAnimatedImageToTMU( &pStage->bundle[TB_LIGHTMAP], TB_LIGHTMAP);
// bind textures that are sampled and used in the glsl shader, and
// bind whiteImage to textures that are sampled but zeroed in the glsl shader
//
// alternatives:
// - use the last bound texture
// -> costs more to sample a higher res texture then throw out the result
// - disable texture sampling in glsl shader with #ifdefs, as before
// -> increases the number of shaders that must be compiled
//
if (light && !fastLight)
{
if (pStage->bundle[TB_NORMALMAP].image[0])
{
R_BindAnimatedImageToTMU( &pStage->bundle[TB_NORMALMAP], TB_NORMALMAP);
enableTextures[0] = 1.0f;
}
else if (r_normalMapping->integer)
GL_BindToTMU( tr.whiteImage, TB_NORMALMAP );
if (pStage->bundle[TB_DELUXEMAP].image[0])
{
R_BindAnimatedImageToTMU( &pStage->bundle[TB_DELUXEMAP], TB_DELUXEMAP);
enableTextures[1] = 1.0f;
}
else if (r_deluxeMapping->integer)
GL_BindToTMU( tr.whiteImage, TB_DELUXEMAP );
if (pStage->bundle[TB_SPECULARMAP].image[0])
{
R_BindAnimatedImageToTMU( &pStage->bundle[TB_SPECULARMAP], TB_SPECULARMAP);
enableTextures[2] = 1.0f;
}
else if (r_specularMapping->integer)
GL_BindToTMU( tr.whiteImage, TB_SPECULARMAP );
}
enableTextures[3] = (r_cubeMapping->integer && !(tr.viewParms.flags & VPF_NOCUBEMAPS) && input->cubemapIndex) ? 1.0f : 0.0f;
}
GLSL_SetUniformVec4(sp, UNIFORM_ENABLETEXTURES, enableTextures);
}
else if ( pStage->bundle[1].image[0] != 0 )
{
R_BindAnimatedImageToTMU( &pStage->bundle[0], 0 );
R_BindAnimatedImageToTMU( &pStage->bundle[1], 1 );
}
else
{
//
// set state
//
R_BindAnimatedImageToTMU( &pStage->bundle[0], 0 );
}
//
// testing cube map
//
if (!(tr.viewParms.flags & VPF_NOCUBEMAPS) && input->cubemapIndex && r_cubeMapping->integer)
{
vec4_t vec;
cubemap_t *cubemap = &tr.cubemaps[input->cubemapIndex - 1];
// FIXME: cubemap image could be NULL if cubemap isn't renderer or loaded
if (cubemap->image)
GL_BindToTMU( cubemap->image, TB_CUBEMAP);
VectorSubtract(cubemap->origin, backEnd.viewParms.or.origin, vec);
vec[3] = 1.0f;
VectorScale4(vec, 1.0f / cubemap->parallaxRadius, vec);
GLSL_SetUniformVec4(sp, UNIFORM_CUBEMAPINFO, vec);
}
//
// draw
//
R_DrawElements(input->numIndexes, input->firstIndex);
// allow skipping out to show just lightmaps during development
if ( r_lightmap->integer && ( pStage->bundle[0].isLightmap || pStage->bundle[1].isLightmap ) )
{
break;
}
if (backEnd.depthFill)
break;
}
}
static void RB_RenderShadowmap( shaderCommands_t *input )
{
int deformGen;
vec5_t deformParams;
ComputeDeformValues(&deformGen, deformParams);
{
shaderProgram_t *sp = &tr.shadowmapShader;
vec4_t vector;
GLSL_BindProgram(sp);
GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection);
GLSL_SetUniformMat4(sp, UNIFORM_MODELMATRIX, backEnd.or.transformMatrix);
GLSL_SetUniformFloat(sp, UNIFORM_VERTEXLERP, glState.vertexAttribsInterpolation);
GLSL_SetUniformInt(sp, UNIFORM_DEFORMGEN, deformGen);
if (deformGen != DGEN_NONE)
{
GLSL_SetUniformFloat5(sp, UNIFORM_DEFORMPARAMS, deformParams);
GLSL_SetUniformFloat(sp, UNIFORM_TIME, tess.shaderTime);
}
VectorCopy(backEnd.viewParms.or.origin, vector);
vector[3] = 1.0f;
GLSL_SetUniformVec4(sp, UNIFORM_LIGHTORIGIN, vector);
GLSL_SetUniformFloat(sp, UNIFORM_LIGHTRADIUS, backEnd.viewParms.zFar);
GL_State( 0 );
GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 0);
//
// do multitexture
//
//if ( pStage->glslShaderGroup )
{
//
// draw
//
R_DrawElements(input->numIndexes, input->firstIndex);
}
}
}
/*
** RB_StageIteratorGeneric
*/
void RB_StageIteratorGeneric( void )
{
shaderCommands_t *input;
unsigned int vertexAttribs = 0;
input = &tess;
if (!input->numVertexes || !input->numIndexes)
{
return;
}
if (tess.useInternalVao)
{
RB_DeformTessGeometry();
}
vertexAttribs = RB_CalcShaderVertexAttribs( input );
if (tess.useInternalVao)
{
RB_UpdateTessVao(vertexAttribs);
}
else
{
backEnd.pc.c_staticVaoDraws++;
}
//
// log this call
//
if ( r_logFile->integer )
{
// don't just call LogComment, or we will get
// a call to va() every frame!
GLimp_LogComment( va("--- RB_StageIteratorGeneric( %s ) ---\n", tess.shader->name) );
}
//
// set face culling appropriately
//
if (input->shader->cullType == CT_TWO_SIDED)
{
GL_Cull( CT_TWO_SIDED );
}
else
{
qboolean cullFront = (input->shader->cullType == CT_FRONT_SIDED);
if ( backEnd.viewParms.flags & VPF_DEPTHSHADOW )
cullFront = !cullFront;
if ( backEnd.viewParms.isMirror )
cullFront = !cullFront;
if ( backEnd.currentEntity && backEnd.currentEntity->mirrored )
cullFront = !cullFront;
if (cullFront)
GL_Cull( CT_FRONT_SIDED );
else
GL_Cull( CT_BACK_SIDED );
}
// set polygon offset if necessary
if ( input->shader->polygonOffset )
{
qglEnable( GL_POLYGON_OFFSET_FILL );
}
//
// render depth if in depthfill mode
//
if (backEnd.depthFill)
{
RB_IterateStagesGeneric( input );
//
// reset polygon offset
//
if ( input->shader->polygonOffset )
{
qglDisable( GL_POLYGON_OFFSET_FILL );
}
return;
}
//
// render shadowmap if in shadowmap mode
//
if (backEnd.viewParms.flags & VPF_SHADOWMAP)
{
if ( input->shader->sort == SS_OPAQUE )
{
RB_RenderShadowmap( input );
}
//
// reset polygon offset
//
if ( input->shader->polygonOffset )
{
qglDisable( GL_POLYGON_OFFSET_FILL );
}
return;
}
//
//
// call shader function
//
RB_IterateStagesGeneric( input );
//
// pshadows!
//
if (glRefConfig.framebufferObject && r_shadows->integer == 4 && tess.pshadowBits
&& tess.shader->sort <= SS_OPAQUE && !(tess.shader->surfaceFlags & (SURF_NODLIGHT | SURF_SKY) ) ) {
ProjectPshadowVBOGLSL();
}
//
// now do any dynamic lighting needed
//
if ( tess.dlightBits && tess.shader->sort <= SS_OPAQUE && r_lightmap->integer == 0
&& !(tess.shader->surfaceFlags & (SURF_NODLIGHT | SURF_SKY) ) ) {
if (tess.shader->numUnfoggedPasses == 1 && tess.xstages[0]->glslShaderGroup == tr.lightallShader
&& (tess.xstages[0]->glslShaderIndex & LIGHTDEF_LIGHTTYPE_MASK) && r_dlightMode->integer)
{
ForwardDlight();
}
else
{
ProjectDlightTexture();
}
}
//
// now do fog
//
if ( tess.fogNum && tess.shader->fogPass ) {
RB_FogPass();
}
//
// reset polygon offset
//
if ( input->shader->polygonOffset )
{
qglDisable( GL_POLYGON_OFFSET_FILL );
}
}
/*
** RB_EndSurface
*/
void RB_EndSurface( void ) {
shaderCommands_t *input;
input = &tess;
if (input->numIndexes == 0 || input->numVertexes == 0) {
return;
}
if (input->indexes[SHADER_MAX_INDEXES-1] != 0) {
ri.Error (ERR_DROP, "RB_EndSurface() - SHADER_MAX_INDEXES hit");
}
if (input->xyz[SHADER_MAX_VERTEXES-1][0] != 0) {
ri.Error (ERR_DROP, "RB_EndSurface() - SHADER_MAX_VERTEXES hit");
}
if ( tess.shader == tr.shadowShader ) {
RB_ShadowTessEnd();
return;
}
// for debugging of sort order issues, stop rendering after a given sort value
if ( r_debugSort->integer && r_debugSort->integer < tess.shader->sort ) {
return;
}
if (tess.useCacheVao)
{
// upload indexes now
VaoCache_Commit();
}
//
// update performance counters
//
backEnd.pc.c_shaders++;
backEnd.pc.c_vertexes += tess.numVertexes;
backEnd.pc.c_indexes += tess.numIndexes;
backEnd.pc.c_totalIndexes += tess.numIndexes * tess.numPasses;
//
// call off to shader specific tess end function
//
tess.currentStageIteratorFunc();
//
// draw debugging stuff
//
if ( r_showtris->integer ) {
DrawTris (input);
}
if ( r_shownormals->integer ) {
DrawNormals (input);
}
// clear shader so we can tell we don't have any unclosed surfaces
tess.numIndexes = 0;
tess.numVertexes = 0;
tess.firstIndex = 0;
GLimp_LogComment( "----------\n" );
}