mirror of
https://github.com/UberGames/lilium-voyager.git
synced 2025-01-05 16:30:51 +00:00
03201aff22
- Clean up ftol()/snapvector() mess - Make use of SSE instructions for ftol()/snapvector() if available - move ftol/snapvector pure assembler to inline assembler, this will add x86_64 and improve support for different calling conventions - Set FPU control word at program startup to get consistent behaviour on all platforms
251 lines
5.8 KiB
C
251 lines
5.8 KiB
C
/*
|
|
===========================================================================
|
|
Copyright (C) 1999-2005 Id Software, Inc.
|
|
|
|
This file is part of Quake III Arena source code.
|
|
|
|
Quake III Arena source code is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
Quake III Arena source code is distributed in the hope that it will be
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Quake III Arena source code; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
===========================================================================
|
|
*/
|
|
|
|
#include "snd_local.h"
|
|
|
|
#define C0 0.4829629131445341
|
|
#define C1 0.8365163037378079
|
|
#define C2 0.2241438680420134
|
|
#define C3 -0.1294095225512604
|
|
|
|
void daub4(float b[], unsigned long n, int isign)
|
|
{
|
|
float wksp[4097];
|
|
float *a=b-1; // numerical recipies so a[1] = b[0]
|
|
|
|
unsigned long nh,nh1,i,j;
|
|
|
|
if (n < 4) return;
|
|
|
|
nh1=(nh=n >> 1)+1;
|
|
if (isign >= 0) {
|
|
for (i=1,j=1;j<=n-3;j+=2,i++) {
|
|
wksp[i] = C0*a[j]+C1*a[j+1]+C2*a[j+2]+C3*a[j+3];
|
|
wksp[i+nh] = C3*a[j]-C2*a[j+1]+C1*a[j+2]-C0*a[j+3];
|
|
}
|
|
wksp[i ] = C0*a[n-1]+C1*a[n]+C2*a[1]+C3*a[2];
|
|
wksp[i+nh] = C3*a[n-1]-C2*a[n]+C1*a[1]-C0*a[2];
|
|
} else {
|
|
wksp[1] = C2*a[nh]+C1*a[n]+C0*a[1]+C3*a[nh1];
|
|
wksp[2] = C3*a[nh]-C0*a[n]+C1*a[1]-C2*a[nh1];
|
|
for (i=1,j=3;i<nh;i++) {
|
|
wksp[j++] = C2*a[i]+C1*a[i+nh]+C0*a[i+1]+C3*a[i+nh1];
|
|
wksp[j++] = C3*a[i]-C0*a[i+nh]+C1*a[i+1]-C2*a[i+nh1];
|
|
}
|
|
}
|
|
for (i=1;i<=n;i++) {
|
|
a[i]=wksp[i];
|
|
}
|
|
}
|
|
|
|
void wt1(float a[], unsigned long n, int isign)
|
|
{
|
|
unsigned long nn;
|
|
int inverseStartLength = n/4;
|
|
if (n < inverseStartLength) return;
|
|
if (isign >= 0) {
|
|
for (nn=n;nn>=inverseStartLength;nn>>=1) daub4(a,nn,isign);
|
|
} else {
|
|
for (nn=inverseStartLength;nn<=n;nn<<=1) daub4(a,nn,isign);
|
|
}
|
|
}
|
|
|
|
/* The number of bits required by each value */
|
|
static unsigned char numBits[] = {
|
|
0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
|
|
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
|
|
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
|
|
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
|
|
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
|
|
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
|
|
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
|
|
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
|
|
};
|
|
|
|
byte MuLawEncode(short s) {
|
|
unsigned long adjusted;
|
|
byte sign, exponent, mantissa;
|
|
|
|
sign = (s<0)?0:0x80;
|
|
|
|
if (s<0) s=-s;
|
|
adjusted = (long)s << (16-sizeof(short)*8);
|
|
adjusted += 128L + 4L;
|
|
if (adjusted > 32767) adjusted = 32767;
|
|
exponent = numBits[(adjusted>>7)&0xff] - 1;
|
|
mantissa = (adjusted>>(exponent+3))&0xf;
|
|
return ~(sign | (exponent<<4) | mantissa);
|
|
}
|
|
|
|
short MuLawDecode(byte uLaw) {
|
|
signed long adjusted;
|
|
byte exponent, mantissa;
|
|
|
|
uLaw = ~uLaw;
|
|
exponent = (uLaw>>4) & 0x7;
|
|
mantissa = (uLaw&0xf) + 16;
|
|
adjusted = (mantissa << (exponent +3)) - 128 - 4;
|
|
|
|
return (uLaw & 0x80)? adjusted : -adjusted;
|
|
}
|
|
|
|
short mulawToShort[256];
|
|
static qboolean madeTable = qfalse;
|
|
|
|
static int NXStreamCount;
|
|
|
|
void NXPutc(NXStream *stream, char out) {
|
|
stream[NXStreamCount++] = out;
|
|
}
|
|
|
|
|
|
void encodeWavelet( sfx_t *sfx, short *packets) {
|
|
float wksp[4097], temp;
|
|
int i, samples, size;
|
|
sndBuffer *newchunk, *chunk;
|
|
byte *out;
|
|
|
|
if (!madeTable) {
|
|
for (i=0;i<256;i++) {
|
|
mulawToShort[i] = (float)MuLawDecode((byte)i);
|
|
}
|
|
madeTable = qtrue;
|
|
}
|
|
chunk = NULL;
|
|
|
|
samples = sfx->soundLength;
|
|
while(samples>0) {
|
|
size = samples;
|
|
if (size>(SND_CHUNK_SIZE*2)) {
|
|
size = (SND_CHUNK_SIZE*2);
|
|
}
|
|
|
|
if (size<4) {
|
|
size = 4;
|
|
}
|
|
|
|
newchunk = SND_malloc();
|
|
if (sfx->soundData == NULL) {
|
|
sfx->soundData = newchunk;
|
|
} else {
|
|
chunk->next = newchunk;
|
|
}
|
|
chunk = newchunk;
|
|
for(i=0; i<size; i++) {
|
|
wksp[i] = *packets;
|
|
packets++;
|
|
}
|
|
wt1(wksp, size, 1);
|
|
out = (byte *)chunk->sndChunk;
|
|
|
|
for(i=0;i<size;i++) {
|
|
temp = wksp[i];
|
|
if (temp > 32767) temp = 32767; else if (temp<-32768) temp = -32768;
|
|
out[i] = MuLawEncode((short)temp);
|
|
}
|
|
|
|
chunk->size = size;
|
|
samples -= size;
|
|
}
|
|
}
|
|
|
|
void decodeWavelet(sndBuffer *chunk, short *to) {
|
|
float wksp[4097];
|
|
int i;
|
|
byte *out;
|
|
|
|
int size = chunk->size;
|
|
|
|
out = (byte *)chunk->sndChunk;
|
|
for(i=0;i<size;i++) {
|
|
wksp[i] = mulawToShort[out[i]];
|
|
}
|
|
|
|
wt1(wksp, size, -1);
|
|
|
|
if (!to) return;
|
|
|
|
for(i=0; i<size; i++) {
|
|
to[i] = wksp[i];
|
|
}
|
|
}
|
|
|
|
|
|
void encodeMuLaw( sfx_t *sfx, short *packets) {
|
|
int i, samples, size, grade, poop;
|
|
sndBuffer *newchunk, *chunk;
|
|
byte *out;
|
|
|
|
if (!madeTable) {
|
|
for (i=0;i<256;i++) {
|
|
mulawToShort[i] = (float)MuLawDecode((byte)i);
|
|
}
|
|
madeTable = qtrue;
|
|
}
|
|
|
|
chunk = NULL;
|
|
samples = sfx->soundLength;
|
|
grade = 0;
|
|
|
|
while(samples>0) {
|
|
size = samples;
|
|
if (size>(SND_CHUNK_SIZE*2)) {
|
|
size = (SND_CHUNK_SIZE*2);
|
|
}
|
|
|
|
newchunk = SND_malloc();
|
|
if (sfx->soundData == NULL) {
|
|
sfx->soundData = newchunk;
|
|
} else {
|
|
chunk->next = newchunk;
|
|
}
|
|
chunk = newchunk;
|
|
out = (byte *)chunk->sndChunk;
|
|
for(i=0; i<size; i++) {
|
|
poop = packets[0]+grade;
|
|
if (poop>32767) {
|
|
poop = 32767;
|
|
} else if (poop<-32768) {
|
|
poop = -32768;
|
|
}
|
|
out[i] = MuLawEncode((short)poop);
|
|
grade = poop - mulawToShort[out[i]];
|
|
packets++;
|
|
}
|
|
chunk->size = size;
|
|
samples -= size;
|
|
}
|
|
}
|
|
|
|
void decodeMuLaw(sndBuffer *chunk, short *to) {
|
|
int i;
|
|
byte *out;
|
|
|
|
int size = chunk->size;
|
|
|
|
out = (byte *)chunk->sndChunk;
|
|
for(i=0;i<size;i++) {
|
|
to[i] = mulawToShort[out[i]];
|
|
}
|
|
}
|
|
|
|
|