mirror of
https://github.com/UberGames/lilium-voyager.git
synced 2024-12-16 15:11:30 +00:00
610 lines
17 KiB
GLSL
610 lines
17 KiB
GLSL
uniform sampler2D u_DiffuseMap;
|
|
|
|
#if defined(USE_LIGHTMAP)
|
|
uniform sampler2D u_LightMap;
|
|
#endif
|
|
|
|
#if defined(USE_NORMALMAP)
|
|
uniform sampler2D u_NormalMap;
|
|
#endif
|
|
|
|
#if defined(USE_DELUXEMAP)
|
|
uniform sampler2D u_DeluxeMap;
|
|
#endif
|
|
|
|
#if defined(USE_SPECULARMAP)
|
|
uniform sampler2D u_SpecularMap;
|
|
#endif
|
|
|
|
#if defined(USE_SHADOWMAP)
|
|
uniform sampler2D u_ShadowMap;
|
|
#endif
|
|
|
|
#if defined(USE_CUBEMAP)
|
|
uniform samplerCube u_CubeMap;
|
|
#endif
|
|
|
|
#if defined(USE_NORMALMAP) || defined(USE_DELUXEMAP) || defined(USE_SPECULARMAP) || defined(USE_CUBEMAP)
|
|
// y = deluxe, w = cube
|
|
uniform vec4 u_EnableTextures;
|
|
#endif
|
|
|
|
#if defined(USE_LIGHT_VECTOR) && !defined(USE_FAST_LIGHT)
|
|
uniform vec3 u_DirectedLight;
|
|
uniform vec3 u_AmbientLight;
|
|
#endif
|
|
|
|
#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
|
|
uniform vec3 u_PrimaryLightColor;
|
|
uniform vec3 u_PrimaryLightAmbient;
|
|
#endif
|
|
|
|
#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
|
|
uniform vec4 u_NormalScale;
|
|
uniform vec4 u_SpecularScale;
|
|
#endif
|
|
|
|
#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
|
|
#if defined(USE_CUBEMAP)
|
|
uniform vec4 u_CubeMapInfo;
|
|
#endif
|
|
#endif
|
|
|
|
varying vec4 var_TexCoords;
|
|
|
|
varying vec4 var_Color;
|
|
|
|
#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
|
|
#if defined(USE_VERT_TANGENT_SPACE)
|
|
varying vec4 var_Normal;
|
|
varying vec4 var_Tangent;
|
|
varying vec4 var_Bitangent;
|
|
#else
|
|
varying vec3 var_Normal;
|
|
varying vec3 var_ViewDir;
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
|
|
varying vec4 var_LightDir;
|
|
#endif
|
|
|
|
#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
|
|
varying vec4 var_PrimaryLightDir;
|
|
#endif
|
|
|
|
|
|
#define EPSILON 0.00000001
|
|
|
|
#if defined(USE_PARALLAXMAP)
|
|
float SampleDepth(sampler2D normalMap, vec2 t)
|
|
{
|
|
#if defined(SWIZZLE_NORMALMAP)
|
|
return 1.0 - texture2D(normalMap, t).r;
|
|
#else
|
|
return 1.0 - texture2D(normalMap, t).a;
|
|
#endif
|
|
}
|
|
|
|
float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap)
|
|
{
|
|
const int linearSearchSteps = 16;
|
|
const int binarySearchSteps = 6;
|
|
|
|
// current size of search window
|
|
float size = 1.0 / float(linearSearchSteps);
|
|
|
|
// current depth position
|
|
float depth = 0.0;
|
|
|
|
// best match found (starts with last position 1.0)
|
|
float bestDepth = 1.0;
|
|
|
|
// texture depth at best depth
|
|
float texDepth = 0.0;
|
|
|
|
float prevT = SampleDepth(normalMap, dp);
|
|
float prevTexDepth = prevT;
|
|
|
|
// search front to back for first point inside object
|
|
for(int i = 0; i < linearSearchSteps - 1; ++i)
|
|
{
|
|
depth += size;
|
|
|
|
float t = SampleDepth(normalMap, dp + ds * depth);
|
|
|
|
if(bestDepth > 0.996) // if no depth found yet
|
|
if(depth >= t)
|
|
{
|
|
bestDepth = depth; // store best depth
|
|
texDepth = t;
|
|
prevTexDepth = prevT;
|
|
}
|
|
prevT = t;
|
|
}
|
|
|
|
depth = bestDepth;
|
|
|
|
#if !defined (USE_RELIEFMAP)
|
|
float div = 1.0 / (1.0 + (prevTexDepth - texDepth) * float(linearSearchSteps));
|
|
bestDepth -= (depth - size - prevTexDepth) * div;
|
|
#else
|
|
// recurse around first point (depth) for closest match
|
|
for(int i = 0; i < binarySearchSteps; ++i)
|
|
{
|
|
size *= 0.5;
|
|
|
|
float t = SampleDepth(normalMap, dp + ds * depth);
|
|
|
|
if(depth >= t)
|
|
{
|
|
bestDepth = depth;
|
|
depth -= 2.0 * size;
|
|
}
|
|
|
|
depth += size;
|
|
}
|
|
#endif
|
|
|
|
return bestDepth;
|
|
}
|
|
#endif
|
|
|
|
vec3 CalcDiffuse(vec3 diffuseAlbedo, vec3 N, vec3 L, vec3 E, float NE, float NL, float shininess)
|
|
{
|
|
#if defined(USE_OREN_NAYAR) || defined(USE_TRIACE_OREN_NAYAR)
|
|
float gamma = dot(E, L) - NE * NL;
|
|
float B = 2.22222 + 0.1 * shininess;
|
|
|
|
#if defined(USE_OREN_NAYAR)
|
|
float A = 1.0 - 1.0 / (2.0 + 0.33 * shininess);
|
|
gamma = clamp(gamma, 0.0, 1.0);
|
|
#endif
|
|
|
|
#if defined(USE_TRIACE_OREN_NAYAR)
|
|
float A = 1.0 - 1.0 / (2.0 + 0.65 * shininess);
|
|
|
|
if (gamma >= 0.0)
|
|
#endif
|
|
{
|
|
B = max(B * max(NL, NE), EPSILON);
|
|
}
|
|
|
|
return diffuseAlbedo * (A + gamma / B);
|
|
#else
|
|
return diffuseAlbedo;
|
|
#endif
|
|
}
|
|
|
|
vec3 EnvironmentBRDF(float gloss, float NE, vec3 specular)
|
|
{
|
|
#if 1
|
|
// from http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
|
|
vec4 t = vec4( 1.0/0.96, 0.475, (0.0275 - 0.25 * 0.04)/0.96,0.25 ) * gloss;
|
|
t += vec4( 0.0, 0.0, (0.015 - 0.75 * 0.04)/0.96,0.75 );
|
|
float a0 = t.x * min( t.y, exp2( -9.28 * NE ) ) + t.z;
|
|
float a1 = t.w;
|
|
return clamp( a0 + specular * ( a1 - a0 ), 0.0, 1.0 );
|
|
#elif 0
|
|
// from http://seblagarde.wordpress.com/2011/08/17/hello-world/
|
|
return specular + CalcFresnel(NE) * clamp(vec3(gloss) - specular, 0.0, 1.0);
|
|
#else
|
|
// from http://advances.realtimerendering.com/s2011/Lazarov-Physically-Based-Lighting-in-Black-Ops%20%28Siggraph%202011%20Advances%20in%20Real-Time%20Rendering%20Course%29.pptx
|
|
return mix(specular.rgb, vec3(1.0), CalcFresnel(NE) / (4.0 - 3.0 * gloss));
|
|
#endif
|
|
}
|
|
|
|
float CalcBlinn(float NH, float shininess)
|
|
{
|
|
#if defined(USE_BLINN) || defined(USE_BLINN_FRESNEL)
|
|
// Normalized Blinn-Phong
|
|
float norm = shininess * 0.125 + 1.0;
|
|
#elif defined(USE_MCAULEY)
|
|
// Cook-Torrance as done by Stephen McAuley
|
|
// http://blog.selfshadow.com/publications/s2012-shading-course/mcauley/s2012_pbs_farcry3_notes_v2.pdf
|
|
float norm = shininess * 0.25 + 0.125;
|
|
#elif defined(USE_GOTANDA)
|
|
// Neumann-Neumann as done by Yoshiharu Gotanda
|
|
// http://research.tri-ace.com/Data/s2012_beyond_CourseNotes.pdf
|
|
float norm = shininess * 0.124858 + 0.269182;
|
|
#elif defined(USE_LAZAROV)
|
|
// Cook-Torrance as done by Dimitar Lazarov
|
|
// http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
|
|
float norm = shininess * 0.125 + 0.25;
|
|
#else
|
|
float norm = 1.0;
|
|
#endif
|
|
|
|
#if 0
|
|
// from http://seblagarde.wordpress.com/2012/06/03/spherical-gaussien-approximation-for-blinn-phong-phong-and-fresnel/
|
|
float a = shininess + 0.775;
|
|
return norm * exp(a * NH - a);
|
|
#else
|
|
return norm * pow(NH, shininess);
|
|
#endif
|
|
}
|
|
|
|
float CalcGGX(float NH, float gloss)
|
|
{
|
|
// from http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
|
|
float a_sq = exp2(gloss * -13.0 + 1.0);
|
|
float d = ((NH * NH) * (a_sq - 1.0) + 1.0);
|
|
return a_sq / (d * d);
|
|
}
|
|
|
|
float CalcFresnel(float EH)
|
|
{
|
|
#if 1
|
|
// From http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
|
|
// not accurate, but fast
|
|
return exp2(-10.0 * EH);
|
|
#elif 0
|
|
// From http://seblagarde.wordpress.com/2012/06/03/spherical-gaussien-approximation-for-blinn-phong-phong-and-fresnel/
|
|
return exp2((-5.55473 * EH - 6.98316) * EH);
|
|
#elif 0
|
|
float blend = 1.0 - EH;
|
|
float blend2 = blend * blend;
|
|
blend *= blend2 * blend2;
|
|
|
|
return blend;
|
|
#else
|
|
return pow(1.0 - EH, 5.0);
|
|
#endif
|
|
}
|
|
|
|
float CalcVisibility(float NH, float NL, float NE, float EH, float gloss)
|
|
{
|
|
#if defined(USE_GOTANDA)
|
|
// Neumann-Neumann as done by Yoshiharu Gotanda
|
|
// http://research.tri-ace.com/Data/s2012_beyond_CourseNotes.pdf
|
|
return 1.0 / max(max(NL, NE), EPSILON);
|
|
#elif defined(USE_LAZAROV)
|
|
// Cook-Torrance as done by Dimitar Lazarov
|
|
// http://blog.selfshadow.com/publications/s2013-shading-course/lazarov/s2013_pbs_black_ops_2_notes.pdf
|
|
float k = min(1.0, gloss + 0.545);
|
|
return 1.0 / (k * (EH * EH - 1.0) + 1.0);
|
|
#elif defined(USE_GGX)
|
|
float roughness = exp2(gloss * -6.5);
|
|
|
|
// Modified from http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
|
|
// NL, NE in numerator factored out from cook-torrance
|
|
float k = roughness + 1.0;
|
|
k *= k * 0.125;
|
|
|
|
float k2 = 1.0 - k;
|
|
|
|
float invGeo1 = NL * k2 + k;
|
|
float invGeo2 = NE * k2 + k;
|
|
|
|
return 1.0 / (invGeo1 * invGeo2);
|
|
#else
|
|
return 1.0;
|
|
#endif
|
|
}
|
|
|
|
|
|
vec3 CalcSpecular(vec3 specular, float NH, float NL, float NE, float EH, float gloss, float shininess)
|
|
{
|
|
#if defined(USE_GGX)
|
|
float distrib = CalcGGX(NH, gloss);
|
|
#else
|
|
float distrib = CalcBlinn(NH, shininess);
|
|
#endif
|
|
|
|
#if defined(USE_BLINN)
|
|
vec3 fSpecular = specular;
|
|
#else
|
|
vec3 fSpecular = mix(specular, vec3(1.0), CalcFresnel(EH));
|
|
#endif
|
|
|
|
float vis = CalcVisibility(NH, NL, NE, EH, gloss);
|
|
|
|
return fSpecular * (distrib * vis);
|
|
}
|
|
|
|
|
|
float CalcLightAttenuation(float point, float normDist)
|
|
{
|
|
// zero light at 1.0, approximating q3 style
|
|
// also don't attenuate directional light
|
|
float attenuation = (0.5 * normDist - 1.5) * point + 1.0;
|
|
|
|
// clamp attenuation
|
|
#if defined(NO_LIGHT_CLAMP)
|
|
attenuation = max(attenuation, 0.0);
|
|
#else
|
|
attenuation = clamp(attenuation, 0.0, 1.0);
|
|
#endif
|
|
|
|
return attenuation;
|
|
}
|
|
|
|
// from http://www.thetenthplanet.de/archives/1180
|
|
mat3 cotangent_frame( vec3 N, vec3 p, vec2 uv )
|
|
{
|
|
// get edge vectors of the pixel triangle
|
|
vec3 dp1 = dFdx( p );
|
|
vec3 dp2 = dFdy( p );
|
|
vec2 duv1 = dFdx( uv );
|
|
vec2 duv2 = dFdy( uv );
|
|
|
|
// solve the linear system
|
|
vec3 dp2perp = cross( dp2, N );
|
|
vec3 dp1perp = cross( N, dp1 );
|
|
vec3 T = dp2perp * duv1.x + dp1perp * duv2.x;
|
|
vec3 B = dp2perp * duv1.y + dp1perp * duv2.y;
|
|
|
|
// construct a scale-invariant frame
|
|
float invmax = inversesqrt( max( dot(T,T), dot(B,B) ) );
|
|
return mat3( T * invmax, B * invmax, N );
|
|
}
|
|
|
|
void main()
|
|
{
|
|
vec3 viewDir, lightColor, ambientColor;
|
|
vec3 L, N, E, H;
|
|
float NL, NH, NE, EH, attenuation;
|
|
|
|
#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
|
|
#if defined(USE_VERT_TANGENT_SPACE)
|
|
mat3 tangentToWorld = mat3(var_Tangent.xyz, var_Bitangent.xyz, var_Normal.xyz);
|
|
viewDir = vec3(var_Normal.w, var_Tangent.w, var_Bitangent.w);
|
|
#else
|
|
mat3 tangentToWorld = cotangent_frame(var_Normal, -var_ViewDir, var_TexCoords.xy);
|
|
viewDir = var_ViewDir;
|
|
#endif
|
|
|
|
E = normalize(viewDir);
|
|
|
|
L = var_LightDir.xyz;
|
|
#if defined(USE_DELUXEMAP)
|
|
L += (texture2D(u_DeluxeMap, var_TexCoords.zw).xyz - vec3(0.5)) * u_EnableTextures.y;
|
|
#endif
|
|
float sqrLightDist = dot(L, L);
|
|
#endif
|
|
|
|
#if defined(USE_LIGHTMAP)
|
|
vec4 lightmapColor = texture2D(u_LightMap, var_TexCoords.zw);
|
|
#if defined(RGBM_LIGHTMAP)
|
|
lightmapColor.rgb *= lightmapColor.a;
|
|
#endif
|
|
#endif
|
|
|
|
vec2 texCoords = var_TexCoords.xy;
|
|
|
|
#if defined(USE_PARALLAXMAP)
|
|
vec3 offsetDir = viewDir * tangentToWorld;
|
|
|
|
offsetDir.xy *= -u_NormalScale.a / offsetDir.z;
|
|
|
|
texCoords += offsetDir.xy * RayIntersectDisplaceMap(texCoords, offsetDir.xy, u_NormalMap);
|
|
#endif
|
|
|
|
vec4 diffuse = texture2D(u_DiffuseMap, texCoords);
|
|
|
|
#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
|
|
#if defined(USE_LIGHTMAP)
|
|
lightColor = lightmapColor.rgb * var_Color.rgb;
|
|
ambientColor = vec3(0.0);
|
|
attenuation = 1.0;
|
|
#elif defined(USE_LIGHT_VECTOR)
|
|
lightColor = u_DirectedLight * var_Color.rgb;
|
|
ambientColor = u_AmbientLight * var_Color.rgb;
|
|
attenuation = CalcLightAttenuation(float(var_LightDir.w > 0.0), var_LightDir.w / sqrLightDist);
|
|
#elif defined(USE_LIGHT_VERTEX)
|
|
lightColor = var_Color.rgb;
|
|
ambientColor = vec3(0.0);
|
|
attenuation = 1.0;
|
|
#endif
|
|
|
|
#if defined(USE_NORMALMAP)
|
|
#if defined(SWIZZLE_NORMALMAP)
|
|
N.xy = texture2D(u_NormalMap, texCoords).ag - vec2(0.5);
|
|
#else
|
|
N.xy = texture2D(u_NormalMap, texCoords).rg - vec2(0.5);
|
|
#endif
|
|
N.xy *= u_NormalScale.xy;
|
|
N.z = sqrt(clamp((0.25 - N.x * N.x) - N.y * N.y, 0.0, 1.0));
|
|
N = tangentToWorld * N;
|
|
#else
|
|
N = var_Normal.xyz;
|
|
#endif
|
|
|
|
N = normalize(N);
|
|
L /= sqrt(sqrLightDist);
|
|
|
|
#if defined(USE_SHADOWMAP)
|
|
vec2 shadowTex = gl_FragCoord.xy * r_FBufScale;
|
|
float shadowValue = texture2D(u_ShadowMap, shadowTex).r;
|
|
|
|
// surfaces not facing the light are always shadowed
|
|
shadowValue *= float(dot(var_Normal.xyz, var_PrimaryLightDir.xyz) > 0.0);
|
|
|
|
#if defined(SHADOWMAP_MODULATE)
|
|
//vec3 shadowColor = min(u_PrimaryLightAmbient, lightColor);
|
|
vec3 shadowColor = u_PrimaryLightAmbient * lightColor;
|
|
|
|
#if 0
|
|
// Only shadow when the world light is parallel to the primary light
|
|
shadowValue = 1.0 + (shadowValue - 1.0) * clamp(dot(L, var_PrimaryLightDir.xyz), 0.0, 1.0);
|
|
#endif
|
|
lightColor = mix(shadowColor, lightColor, shadowValue);
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(r_lightGamma)
|
|
lightColor = pow(lightColor, vec3(r_lightGamma));
|
|
ambientColor = pow(ambientColor, vec3(r_lightGamma));
|
|
#endif
|
|
|
|
#if defined(USE_LIGHTMAP) || defined(USE_LIGHT_VERTEX)
|
|
ambientColor = lightColor;
|
|
float surfNL = clamp(dot(var_Normal.xyz, L), 0.0, 1.0);
|
|
|
|
// Scale the incoming light to compensate for the baked-in light angle
|
|
// attenuation.
|
|
lightColor /= max(surfNL, 0.25);
|
|
|
|
// Recover any unused light as ambient, in case attenuation is over 4x or
|
|
// light is below the surface
|
|
ambientColor = clamp(ambientColor - lightColor * surfNL, 0.0, 1.0);
|
|
#endif
|
|
|
|
vec3 reflectance;
|
|
|
|
NL = clamp(dot(N, L), 0.0, 1.0);
|
|
NE = clamp(dot(N, E), 0.0, 1.0);
|
|
|
|
#if defined(USE_SPECULARMAP)
|
|
vec4 specular = texture2D(u_SpecularMap, texCoords);
|
|
#else
|
|
vec4 specular = vec4(1.0);
|
|
#endif
|
|
|
|
specular *= u_SpecularScale;
|
|
|
|
#if defined(r_materialGamma)
|
|
diffuse.rgb = pow(diffuse.rgb, vec3(r_materialGamma));
|
|
specular.rgb = pow(specular.rgb, vec3(r_materialGamma));
|
|
#endif
|
|
|
|
float gloss = specular.a;
|
|
float shininess = exp2(gloss * 13.0);
|
|
|
|
#if defined(SPECULAR_IS_METALLIC)
|
|
// diffuse is actually base color, and red of specular is metallicness
|
|
float metallic = specular.r;
|
|
|
|
specular.rgb = (0.96 * metallic) * diffuse.rgb + vec3(0.04);
|
|
diffuse.rgb *= 1.0 - metallic;
|
|
#else
|
|
// adjust diffuse by specular reflectance, to maintain energy conservation
|
|
diffuse.rgb *= vec3(1.0) - specular.rgb;
|
|
#endif
|
|
|
|
reflectance = CalcDiffuse(diffuse.rgb, N, L, E, NE, NL, shininess);
|
|
|
|
#if defined(r_deluxeSpecular) || defined(USE_LIGHT_VECTOR)
|
|
float adjGloss = gloss;
|
|
float adjShininess = shininess;
|
|
|
|
#if !defined(USE_LIGHT_VECTOR)
|
|
adjGloss *= r_deluxeSpecular;
|
|
adjShininess = exp2(adjGloss * 13.0);
|
|
#endif
|
|
|
|
H = normalize(L + E);
|
|
|
|
EH = clamp(dot(E, H), 0.0, 1.0);
|
|
NH = clamp(dot(N, H), 0.0, 1.0);
|
|
|
|
#if !defined(USE_LIGHT_VECTOR)
|
|
reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, adjGloss, adjShininess) * r_deluxeSpecular;
|
|
#else
|
|
reflectance += CalcSpecular(specular.rgb, NH, NL, NE, EH, adjGloss, adjShininess);
|
|
#endif
|
|
#endif
|
|
|
|
gl_FragColor.rgb = lightColor * reflectance * (attenuation * NL);
|
|
|
|
#if 0
|
|
vec3 aSpecular = EnvironmentBRDF(gloss, NE, specular.rgb);
|
|
|
|
// do ambient as two hemisphere lights, one straight up one straight down
|
|
float hemiDiffuseUp = N.z * 0.5 + 0.5;
|
|
float hemiDiffuseDown = 1.0 - hemiDiffuseUp;
|
|
float hemiSpecularUp = mix(hemiDiffuseUp, float(N.z >= 0.0), gloss);
|
|
float hemiSpecularDown = 1.0 - hemiSpecularUp;
|
|
|
|
gl_FragColor.rgb += ambientColor * 0.75 * (diffuse.rgb * hemiDiffuseUp + aSpecular * hemiSpecularUp);
|
|
gl_FragColor.rgb += ambientColor * 0.25 * (diffuse.rgb * hemiDiffuseDown + aSpecular * hemiSpecularDown);
|
|
#else
|
|
gl_FragColor.rgb += ambientColor * (diffuse.rgb + specular.rgb);
|
|
#endif
|
|
|
|
#if defined(USE_CUBEMAP)
|
|
reflectance = EnvironmentBRDF(gloss, NE, specular.rgb);
|
|
|
|
vec3 R = reflect(E, N);
|
|
|
|
// parallax corrected cubemap (cheaper trick)
|
|
// from http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
|
|
vec3 parallax = u_CubeMapInfo.xyz + u_CubeMapInfo.w * viewDir;
|
|
|
|
vec3 cubeLightColor = textureCubeLod(u_CubeMap, R + parallax, 7.0 - gloss * 7.0).rgb * u_EnableTextures.w;
|
|
|
|
// normalize cubemap based on lowest mip (~diffuse)
|
|
// multiplying cubemap values by lighting below depends on either this or the cubemap being normalized at generation
|
|
//vec3 cubeLightDiffuse = max(textureCubeLod(u_CubeMap, N, 6.0).rgb, 0.5 / 255.0);
|
|
//cubeLightColor /= dot(cubeLightDiffuse, vec3(0.2125, 0.7154, 0.0721));
|
|
|
|
#if defined(r_framebufferGamma)
|
|
cubeLightColor = pow(cubeLightColor, vec3(r_framebufferGamma));
|
|
#endif
|
|
|
|
// multiply cubemap values by lighting
|
|
// not technically correct, but helps make reflections look less unnatural
|
|
//cubeLightColor *= lightColor * (attenuation * NL) + ambientColor;
|
|
|
|
gl_FragColor.rgb += cubeLightColor * reflectance;
|
|
#endif
|
|
|
|
#if defined(USE_PRIMARY_LIGHT)
|
|
vec3 L2, H2;
|
|
float NL2, EH2, NH2;
|
|
|
|
L2 = var_PrimaryLightDir.xyz;
|
|
|
|
// enable when point lights are supported as primary lights
|
|
//sqrLightDist = dot(L2, L2);
|
|
//L2 /= sqrt(sqrLightDist);
|
|
|
|
NL2 = clamp(dot(N, L2), 0.0, 1.0);
|
|
|
|
H2 = normalize(L2 + E);
|
|
EH2 = clamp(dot(E, H2), 0.0, 1.0);
|
|
NH2 = clamp(dot(N, H2), 0.0, 1.0);
|
|
|
|
reflectance = CalcDiffuse(diffuse.rgb, N, L2, E, NE, NL2, shininess);
|
|
reflectance += CalcSpecular(specular.rgb, NH2, NL2, NE, EH2, gloss, shininess);
|
|
|
|
lightColor = u_PrimaryLightColor * var_Color.rgb;
|
|
|
|
#if defined(r_lightGamma)
|
|
lightColor = pow(lightColor, vec3(r_lightGamma));
|
|
#endif
|
|
|
|
#if defined(USE_SHADOWMAP)
|
|
lightColor *= shadowValue;
|
|
#endif
|
|
|
|
// enable when point lights are supported as primary lights
|
|
//lightColor *= CalcLightAttenuation(float(u_PrimaryLightDir.w > 0.0), u_PrimaryLightDir.w / sqrLightDist);
|
|
|
|
gl_FragColor.rgb += lightColor * reflectance * NL2;
|
|
#endif
|
|
#else
|
|
lightColor = var_Color.rgb;
|
|
|
|
#if defined(USE_LIGHTMAP)
|
|
lightColor *= lightmapColor.rgb;
|
|
#endif
|
|
|
|
#if defined(r_lightGamma)
|
|
lightColor = pow(lightColor, vec3(r_lightGamma));
|
|
#endif
|
|
|
|
#if defined(r_materialGamma)
|
|
diffuse.rgb = pow(diffuse.rgb, vec3(r_materialGamma));
|
|
#endif
|
|
|
|
gl_FragColor.rgb = diffuse.rgb * lightColor;
|
|
|
|
#endif
|
|
|
|
#if defined(r_framebufferGamma)
|
|
gl_FragColor.rgb = pow(gl_FragColor.rgb, vec3(1.0 / r_framebufferGamma));
|
|
#endif
|
|
|
|
gl_FragColor.a = diffuse.a * var_Color.a;
|
|
}
|