mirror of
https://github.com/UberGames/lilium-voyager.git
synced 2024-12-13 13:40:56 +00:00
3206 lines
75 KiB
C
3206 lines
75 KiB
C
/*
|
|
===========================================================================
|
|
Copyright (C) 1999-2005 Id Software, Inc.
|
|
|
|
This file is part of Quake III Arena source code.
|
|
|
|
Quake III Arena source code is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
Quake III Arena source code is distributed in the hope that it will be
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Quake III Arena source code; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
===========================================================================
|
|
*/
|
|
// tr_image.c
|
|
#include "tr_local.h"
|
|
|
|
#include "tr_dsa.h"
|
|
|
|
static byte s_intensitytable[256];
|
|
static unsigned char s_gammatable[256];
|
|
|
|
int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
|
|
int gl_filter_max = GL_LINEAR;
|
|
|
|
#define FILE_HASH_SIZE 1024
|
|
static image_t* hashTable[FILE_HASH_SIZE];
|
|
|
|
/*
|
|
** R_GammaCorrect
|
|
*/
|
|
void R_GammaCorrect( byte *buffer, int bufSize ) {
|
|
int i;
|
|
|
|
for ( i = 0; i < bufSize; i++ ) {
|
|
buffer[i] = s_gammatable[buffer[i]];
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
char *name;
|
|
int minimize, maximize;
|
|
} textureMode_t;
|
|
|
|
textureMode_t modes[] = {
|
|
{"GL_NEAREST", GL_NEAREST, GL_NEAREST},
|
|
{"GL_LINEAR", GL_LINEAR, GL_LINEAR},
|
|
{"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST},
|
|
{"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR},
|
|
{"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST},
|
|
{"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}
|
|
};
|
|
|
|
/*
|
|
================
|
|
return a hash value for the filename
|
|
================
|
|
*/
|
|
static long generateHashValue( const char *fname ) {
|
|
int i;
|
|
long hash;
|
|
char letter;
|
|
|
|
hash = 0;
|
|
i = 0;
|
|
while (fname[i] != '\0') {
|
|
letter = tolower(fname[i]);
|
|
if (letter =='.') break; // don't include extension
|
|
if (letter =='\\') letter = '/'; // damn path names
|
|
hash+=(long)(letter)*(i+119);
|
|
i++;
|
|
}
|
|
hash &= (FILE_HASH_SIZE-1);
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
GL_TextureMode
|
|
===============
|
|
*/
|
|
void GL_TextureMode( const char *string ) {
|
|
int i;
|
|
image_t *glt;
|
|
|
|
for ( i=0 ; i< 6 ; i++ ) {
|
|
if ( !Q_stricmp( modes[i].name, string ) ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// hack to prevent trilinear from being set on voodoo,
|
|
// because their driver freaks...
|
|
if ( i == 5 && glConfig.hardwareType == GLHW_3DFX_2D3D ) {
|
|
ri.Printf( PRINT_ALL, "Refusing to set trilinear on a voodoo.\n" );
|
|
i = 3;
|
|
}
|
|
|
|
|
|
if ( i == 6 ) {
|
|
ri.Printf (PRINT_ALL, "bad filter name\n");
|
|
return;
|
|
}
|
|
|
|
gl_filter_min = modes[i].minimize;
|
|
gl_filter_max = modes[i].maximize;
|
|
|
|
// change all the existing mipmap texture objects
|
|
for ( i = 0 ; i < tr.numImages ; i++ ) {
|
|
glt = tr.images[ i ];
|
|
if ( glt->flags & IMGFLAG_MIPMAP && !(glt->flags & IMGFLAG_CUBEMAP)) {
|
|
qglTextureParameterfEXT(glt->texnum, GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
|
|
qglTextureParameterfEXT(glt->texnum, GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_SumOfUsedImages
|
|
===============
|
|
*/
|
|
int R_SumOfUsedImages( void ) {
|
|
int total;
|
|
int i;
|
|
|
|
total = 0;
|
|
for ( i = 0; i < tr.numImages; i++ ) {
|
|
if ( tr.images[i]->frameUsed == tr.frameCount ) {
|
|
total += tr.images[i]->uploadWidth * tr.images[i]->uploadHeight;
|
|
}
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_ImageList_f
|
|
===============
|
|
*/
|
|
void R_ImageList_f( void ) {
|
|
int i;
|
|
int estTotalSize = 0;
|
|
|
|
ri.Printf(PRINT_ALL, "\n -w-- -h-- type -size- --name-------\n");
|
|
|
|
for ( i = 0 ; i < tr.numImages ; i++ )
|
|
{
|
|
image_t *image = tr.images[i];
|
|
char *format = "???? ";
|
|
char *sizeSuffix;
|
|
int estSize;
|
|
int displaySize;
|
|
|
|
estSize = image->uploadHeight * image->uploadWidth;
|
|
|
|
switch(image->internalFormat)
|
|
{
|
|
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT:
|
|
format = "sDXT1";
|
|
// 64 bits per 16 pixels, so 4 bits per pixel
|
|
estSize /= 2;
|
|
break;
|
|
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT:
|
|
format = "sDXT5";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB:
|
|
format = "sBPTC";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_COMPRESSED_RG_RGTC2:
|
|
format = "RGTC2";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
|
|
format = "DXT1 ";
|
|
// 64 bits per 16 pixels, so 4 bits per pixel
|
|
estSize /= 2;
|
|
break;
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
|
|
format = "DXT1a";
|
|
// 64 bits per 16 pixels, so 4 bits per pixel
|
|
estSize /= 2;
|
|
break;
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
|
|
format = "DXT5 ";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_COMPRESSED_RGBA_BPTC_UNORM_ARB:
|
|
format = "BPTC ";
|
|
// 128 bits per 16 pixels, so 1 byte per pixel
|
|
break;
|
|
case GL_RGB4_S3TC:
|
|
format = "S3TC ";
|
|
// same as DXT1?
|
|
estSize /= 2;
|
|
break;
|
|
case GL_RGBA4:
|
|
case GL_RGBA8:
|
|
case GL_RGBA:
|
|
format = "RGBA ";
|
|
// 4 bytes per pixel
|
|
estSize *= 4;
|
|
break;
|
|
case GL_LUMINANCE8:
|
|
case GL_LUMINANCE16:
|
|
case GL_LUMINANCE:
|
|
format = "L ";
|
|
// 1 byte per pixel?
|
|
break;
|
|
case GL_RGB5:
|
|
case GL_RGB8:
|
|
case GL_RGB:
|
|
format = "RGB ";
|
|
// 3 bytes per pixel?
|
|
estSize *= 3;
|
|
break;
|
|
case GL_LUMINANCE8_ALPHA8:
|
|
case GL_LUMINANCE16_ALPHA16:
|
|
case GL_LUMINANCE_ALPHA:
|
|
format = "LA ";
|
|
// 2 bytes per pixel?
|
|
estSize *= 2;
|
|
break;
|
|
case GL_SRGB_EXT:
|
|
case GL_SRGB8_EXT:
|
|
format = "sRGB ";
|
|
// 3 bytes per pixel?
|
|
estSize *= 3;
|
|
break;
|
|
case GL_SRGB_ALPHA_EXT:
|
|
case GL_SRGB8_ALPHA8_EXT:
|
|
format = "sRGBA";
|
|
// 4 bytes per pixel?
|
|
estSize *= 4;
|
|
break;
|
|
case GL_SLUMINANCE_EXT:
|
|
case GL_SLUMINANCE8_EXT:
|
|
format = "sL ";
|
|
// 1 byte per pixel?
|
|
break;
|
|
case GL_SLUMINANCE_ALPHA_EXT:
|
|
case GL_SLUMINANCE8_ALPHA8_EXT:
|
|
format = "sLA ";
|
|
// 2 byte per pixel?
|
|
estSize *= 2;
|
|
break;
|
|
}
|
|
|
|
// mipmap adds about 50%
|
|
if (image->flags & IMGFLAG_MIPMAP)
|
|
estSize += estSize / 2;
|
|
|
|
sizeSuffix = "b ";
|
|
displaySize = estSize;
|
|
|
|
if (displaySize > 1024)
|
|
{
|
|
displaySize /= 1024;
|
|
sizeSuffix = "kb";
|
|
}
|
|
|
|
if (displaySize > 1024)
|
|
{
|
|
displaySize /= 1024;
|
|
sizeSuffix = "Mb";
|
|
}
|
|
|
|
if (displaySize > 1024)
|
|
{
|
|
displaySize /= 1024;
|
|
sizeSuffix = "Gb";
|
|
}
|
|
|
|
ri.Printf(PRINT_ALL, "%4i: %4ix%4i %s %4i%s %s\n", i, image->uploadWidth, image->uploadHeight, format, displaySize, sizeSuffix, image->imgName);
|
|
estTotalSize += estSize;
|
|
}
|
|
|
|
ri.Printf (PRINT_ALL, " ---------\n");
|
|
ri.Printf (PRINT_ALL, " approx %i bytes\n", estTotalSize);
|
|
ri.Printf (PRINT_ALL, " %i total images\n\n", tr.numImages );
|
|
}
|
|
|
|
//=======================================================================
|
|
|
|
/*
|
|
================
|
|
ResampleTexture
|
|
|
|
Used to resample images in a more general than quartering fashion.
|
|
|
|
This will only be filtered properly if the resampled size
|
|
is greater than half the original size.
|
|
|
|
If a larger shrinking is needed, use the mipmap function
|
|
before or after.
|
|
================
|
|
*/
|
|
static void ResampleTexture( byte *in, int inwidth, int inheight, byte *out,
|
|
int outwidth, int outheight ) {
|
|
int i, j;
|
|
byte *inrow, *inrow2;
|
|
int frac, fracstep;
|
|
int p1[2048], p2[2048];
|
|
byte *pix1, *pix2, *pix3, *pix4;
|
|
|
|
if (outwidth>2048)
|
|
ri.Error(ERR_DROP, "ResampleTexture: max width");
|
|
|
|
fracstep = inwidth*0x10000/outwidth;
|
|
|
|
frac = fracstep>>2;
|
|
for ( i=0 ; i<outwidth ; i++ ) {
|
|
p1[i] = 4*(frac>>16);
|
|
frac += fracstep;
|
|
}
|
|
frac = 3*(fracstep>>2);
|
|
for ( i=0 ; i<outwidth ; i++ ) {
|
|
p2[i] = 4*(frac>>16);
|
|
frac += fracstep;
|
|
}
|
|
|
|
for (i=0 ; i<outheight ; i++) {
|
|
inrow = in + 4*inwidth*(int)((i+0.25)*inheight/outheight);
|
|
inrow2 = in + 4*inwidth*(int)((i+0.75)*inheight/outheight);
|
|
for (j=0 ; j<outwidth ; j++) {
|
|
pix1 = inrow + p1[j];
|
|
pix2 = inrow + p2[j];
|
|
pix3 = inrow2 + p1[j];
|
|
pix4 = inrow2 + p2[j];
|
|
*out++ = (pix1[0] + pix2[0] + pix3[0] + pix4[0])>>2;
|
|
*out++ = (pix1[1] + pix2[1] + pix3[1] + pix4[1])>>2;
|
|
*out++ = (pix1[2] + pix2[2] + pix3[2] + pix4[2])>>2;
|
|
*out++ = (pix1[3] + pix2[3] + pix3[3] + pix4[3])>>2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void RGBAtoYCoCgA(const byte *in, byte *out, int width, int height)
|
|
{
|
|
int x, y;
|
|
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
const byte *inbyte = in + y * width * 4;
|
|
byte *outbyte = out + y * width * 4;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
byte r, g, b, a, rb2;
|
|
|
|
r = *inbyte++;
|
|
g = *inbyte++;
|
|
b = *inbyte++;
|
|
a = *inbyte++;
|
|
rb2 = (r + b) >> 1;
|
|
|
|
*outbyte++ = (g + rb2) >> 1; // Y = R/4 + G/2 + B/4
|
|
*outbyte++ = (r - b + 256) >> 1; // Co = R/2 - B/2
|
|
*outbyte++ = (g - rb2 + 256) >> 1; // Cg = -R/4 + G/2 - B/4
|
|
*outbyte++ = a;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void YCoCgAtoRGBA(const byte *in, byte *out, int width, int height)
|
|
{
|
|
int x, y;
|
|
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
const byte *inbyte = in + y * width * 4;
|
|
byte *outbyte = out + y * width * 4;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
byte _Y, Co, Cg, a;
|
|
|
|
_Y = *inbyte++;
|
|
Co = *inbyte++;
|
|
Cg = *inbyte++;
|
|
a = *inbyte++;
|
|
|
|
*outbyte++ = CLAMP(_Y + Co - Cg, 0, 255); // R = Y + Co - Cg
|
|
*outbyte++ = CLAMP(_Y + Cg - 128, 0, 255); // G = Y + Cg
|
|
*outbyte++ = CLAMP(_Y - Co - Cg + 256, 0, 255); // B = Y - Co - Cg
|
|
*outbyte++ = a;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// uses a sobel filter to change a texture to a normal map
|
|
static void RGBAtoNormal(const byte *in, byte *out, int width, int height, qboolean clampToEdge)
|
|
{
|
|
int x, y, max;
|
|
|
|
// convert to heightmap, storing in alpha
|
|
// same as converting to Y in YCoCg
|
|
max = 1;
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
const byte *inbyte = in + y * width * 4;
|
|
byte *outbyte = out + y * width * 4 + 3;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
byte result = (inbyte[0] >> 2) + (inbyte[1] >> 1) + (inbyte[2] >> 2);
|
|
result = result * result / 255; // Make linear
|
|
*outbyte = result;
|
|
max = MAX(max, *outbyte);
|
|
outbyte += 4;
|
|
inbyte += 4;
|
|
}
|
|
}
|
|
|
|
// level out heights
|
|
if (max < 255)
|
|
{
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
byte *outbyte = out + y * width * 4 + 3;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
*outbyte = *outbyte + (255 - max);
|
|
outbyte += 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// now run sobel filter over height values to generate X and Y
|
|
// then normalize
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
byte *outbyte = out + y * width * 4;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
// 0 1 2
|
|
// 3 4 5
|
|
// 6 7 8
|
|
|
|
byte s[9];
|
|
int x2, y2, i;
|
|
vec3_t normal;
|
|
|
|
i = 0;
|
|
for (y2 = -1; y2 <= 1; y2++)
|
|
{
|
|
int src_y = y + y2;
|
|
|
|
if (clampToEdge)
|
|
{
|
|
src_y = CLAMP(src_y, 0, height - 1);
|
|
}
|
|
else
|
|
{
|
|
src_y = (src_y + height) % height;
|
|
}
|
|
|
|
|
|
for (x2 = -1; x2 <= 1; x2++)
|
|
{
|
|
int src_x = x + x2;
|
|
|
|
if (clampToEdge)
|
|
{
|
|
src_x = CLAMP(src_x, 0, height - 1);
|
|
}
|
|
else
|
|
{
|
|
src_x = (src_x + height) % height;
|
|
}
|
|
|
|
s[i++] = *(out + (src_y * width + src_x) * 4 + 3);
|
|
}
|
|
}
|
|
|
|
normal[0] = s[0] - s[2]
|
|
+ 2 * s[3] - 2 * s[5]
|
|
+ s[6] - s[8];
|
|
|
|
normal[1] = s[0] + 2 * s[1] + s[2]
|
|
|
|
- s[6] - 2 * s[7] - s[8];
|
|
|
|
normal[2] = s[4] * 4;
|
|
|
|
if (!VectorNormalize2(normal, normal))
|
|
{
|
|
VectorSet(normal, 0, 0, 1);
|
|
}
|
|
|
|
*outbyte++ = FloatToOffsetByte(normal[0]);
|
|
*outbyte++ = FloatToOffsetByte(normal[1]);
|
|
*outbyte++ = FloatToOffsetByte(normal[2]);
|
|
outbyte++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define COPYSAMPLE(a,b) *(unsigned int *)(a) = *(unsigned int *)(b)
|
|
|
|
// based on Fast Curve Based Interpolation
|
|
// from Fast Artifacts-Free Image Interpolation (http://www.andreagiachetti.it/icbi/)
|
|
// assumes data has a 2 pixel thick border of clamped or wrapped data
|
|
// expects data to be a grid with even (0, 0), (2, 0), (0, 2), (2, 2) etc pixels filled
|
|
// only performs FCBI on specified component
|
|
static void DoFCBI(byte *in, byte *out, int width, int height, int component)
|
|
{
|
|
int x, y;
|
|
byte *outbyte, *inbyte;
|
|
|
|
// copy in to out
|
|
for (y = 2; y < height - 2; y += 2)
|
|
{
|
|
inbyte = in + (y * width + 2) * 4 + component;
|
|
outbyte = out + (y * width + 2) * 4 + component;
|
|
|
|
for (x = 2; x < width - 2; x += 2)
|
|
{
|
|
*outbyte = *inbyte;
|
|
outbyte += 8;
|
|
inbyte += 8;
|
|
}
|
|
}
|
|
|
|
for (y = 3; y < height - 3; y += 2)
|
|
{
|
|
// diagonals
|
|
//
|
|
// NWp - northwest interpolated pixel
|
|
// NEp - northeast interpolated pixel
|
|
// NWd - northwest first derivative
|
|
// NEd - northeast first derivative
|
|
// NWdd - northwest second derivative
|
|
// NEdd - northeast second derivative
|
|
//
|
|
// Uses these samples:
|
|
//
|
|
// 0
|
|
// - - a - b - -
|
|
// - - - - - - -
|
|
// c - d - e - f
|
|
// 0 - - - - - - -
|
|
// g - h - i - j
|
|
// - - - - - - -
|
|
// - - k - l - -
|
|
//
|
|
// x+2 uses these samples:
|
|
//
|
|
// 0
|
|
// - - - - a - b - -
|
|
// - - - - - - - - -
|
|
// - - c - d - e - f
|
|
// 0 - - - - - - - - -
|
|
// - - g - h - i - j
|
|
// - - - - - - - - -
|
|
// - - - - k - l - -
|
|
//
|
|
// so we can reuse 8 of them on next iteration
|
|
//
|
|
// a=b, c=d, d=e, e=f, g=h, h=i, i=j, k=l
|
|
//
|
|
// only b, f, j, and l need to be sampled on next iteration
|
|
|
|
byte sa, sb, sc, sd, se, sf, sg, sh, si, sj, sk, sl;
|
|
byte *line1, *line2, *line3, *line4;
|
|
|
|
x = 3;
|
|
|
|
// optimization one
|
|
// SAMPLE2(sa, x-1, y-3);
|
|
//SAMPLE2(sc, x-3, y-1); SAMPLE2(sd, x-1, y-1); SAMPLE2(se, x+1, y-1);
|
|
//SAMPLE2(sg, x-3, y+1); SAMPLE2(sh, x-1, y+1); SAMPLE2(si, x+1, y+1);
|
|
// SAMPLE2(sk, x-1, y+3);
|
|
|
|
// optimization two
|
|
line1 = in + ((y - 3) * width + (x - 1)) * 4 + component;
|
|
line2 = in + ((y - 1) * width + (x - 3)) * 4 + component;
|
|
line3 = in + ((y + 1) * width + (x - 3)) * 4 + component;
|
|
line4 = in + ((y + 3) * width + (x - 1)) * 4 + component;
|
|
|
|
// COPYSAMPLE(sa, line1); line1 += 8;
|
|
//COPYSAMPLE(sc, line2); line2 += 8; COPYSAMPLE(sd, line2); line2 += 8; COPYSAMPLE(se, line2); line2 += 8;
|
|
//COPYSAMPLE(sg, line3); line3 += 8; COPYSAMPLE(sh, line3); line3 += 8; COPYSAMPLE(si, line3); line3 += 8;
|
|
// COPYSAMPLE(sk, line4); line4 += 8;
|
|
|
|
sa = *line1; line1 += 8;
|
|
sc = *line2; line2 += 8; sd = *line2; line2 += 8; se = *line2; line2 += 8;
|
|
sg = *line3; line3 += 8; sh = *line3; line3 += 8; si = *line3; line3 += 8;
|
|
sk = *line4; line4 += 8;
|
|
|
|
outbyte = out + (y * width + x) * 4 + component;
|
|
|
|
for ( ; x < width - 3; x += 2)
|
|
{
|
|
int NWd, NEd, NWp, NEp;
|
|
|
|
// original
|
|
// SAMPLE2(sa, x-1, y-3); SAMPLE2(sb, x+1, y-3);
|
|
//SAMPLE2(sc, x-3, y-1); SAMPLE2(sd, x-1, y-1); SAMPLE2(se, x+1, y-1); SAMPLE2(sf, x+3, y-1);
|
|
//SAMPLE2(sg, x-3, y+1); SAMPLE2(sh, x-1, y+1); SAMPLE2(si, x+1, y+1); SAMPLE2(sj, x+3, y+1);
|
|
// SAMPLE2(sk, x-1, y+3); SAMPLE2(sl, x+1, y+3);
|
|
|
|
// optimization one
|
|
//SAMPLE2(sb, x+1, y-3);
|
|
//SAMPLE2(sf, x+3, y-1);
|
|
//SAMPLE2(sj, x+3, y+1);
|
|
//SAMPLE2(sl, x+1, y+3);
|
|
|
|
// optimization two
|
|
//COPYSAMPLE(sb, line1); line1 += 8;
|
|
//COPYSAMPLE(sf, line2); line2 += 8;
|
|
//COPYSAMPLE(sj, line3); line3 += 8;
|
|
//COPYSAMPLE(sl, line4); line4 += 8;
|
|
|
|
sb = *line1; line1 += 8;
|
|
sf = *line2; line2 += 8;
|
|
sj = *line3; line3 += 8;
|
|
sl = *line4; line4 += 8;
|
|
|
|
NWp = sd + si;
|
|
NEp = se + sh;
|
|
NWd = abs(sd - si);
|
|
NEd = abs(se - sh);
|
|
|
|
if (NWd > 100 || NEd > 100 || abs(NWp-NEp) > 200)
|
|
{
|
|
if (NWd < NEd)
|
|
*outbyte = NWp >> 1;
|
|
else
|
|
*outbyte = NEp >> 1;
|
|
}
|
|
else
|
|
{
|
|
int NWdd, NEdd;
|
|
|
|
//NEdd = abs(sg + sd + sb - 3 * (se + sh) + sk + si + sf);
|
|
//NWdd = abs(sa + se + sj - 3 * (sd + si) + sc + sh + sl);
|
|
NEdd = abs(sg + sb - 3 * NEp + sk + sf + NWp);
|
|
NWdd = abs(sa + sj - 3 * NWp + sc + sl + NEp);
|
|
|
|
if (NWdd > NEdd)
|
|
*outbyte = NWp >> 1;
|
|
else
|
|
*outbyte = NEp >> 1;
|
|
}
|
|
|
|
outbyte += 8;
|
|
|
|
// COPYSAMPLE(sa, sb);
|
|
//COPYSAMPLE(sc, sd); COPYSAMPLE(sd, se); COPYSAMPLE(se, sf);
|
|
//COPYSAMPLE(sg, sh); COPYSAMPLE(sh, si); COPYSAMPLE(si, sj);
|
|
// COPYSAMPLE(sk, sl);
|
|
|
|
sa = sb;
|
|
sc = sd; sd = se; se = sf;
|
|
sg = sh; sh = si; si = sj;
|
|
sk = sl;
|
|
}
|
|
}
|
|
|
|
// hack: copy out to in again
|
|
for (y = 3; y < height - 3; y += 2)
|
|
{
|
|
inbyte = out + (y * width + 3) * 4 + component;
|
|
outbyte = in + (y * width + 3) * 4 + component;
|
|
|
|
for (x = 3; x < width - 3; x += 2)
|
|
{
|
|
*outbyte = *inbyte;
|
|
outbyte += 8;
|
|
inbyte += 8;
|
|
}
|
|
}
|
|
|
|
for (y = 2; y < height - 3; y++)
|
|
{
|
|
// horizontal & vertical
|
|
//
|
|
// hp - horizontally interpolated pixel
|
|
// vp - vertically interpolated pixel
|
|
// hd - horizontal first derivative
|
|
// vd - vertical first derivative
|
|
// hdd - horizontal second derivative
|
|
// vdd - vertical second derivative
|
|
// Uses these samples:
|
|
//
|
|
// 0
|
|
// - a - b -
|
|
// c - d - e
|
|
// 0 - f - g -
|
|
// h - i - j
|
|
// - k - l -
|
|
//
|
|
// x+2 uses these samples:
|
|
//
|
|
// 0
|
|
// - - - a - b -
|
|
// - - c - d - e
|
|
// 0 - - - f - g -
|
|
// - - h - i - j
|
|
// - - - k - l -
|
|
//
|
|
// so we can reuse 7 of them on next iteration
|
|
//
|
|
// a=b, c=d, d=e, f=g, h=i, i=j, k=l
|
|
//
|
|
// only b, e, g, j, and l need to be sampled on next iteration
|
|
|
|
byte sa, sb, sc, sd, se, sf, sg, sh, si, sj, sk, sl;
|
|
byte *line1, *line2, *line3, *line4, *line5;
|
|
|
|
//x = (y + 1) % 2;
|
|
x = (y + 1) % 2 + 2;
|
|
|
|
// optimization one
|
|
// SAMPLE2(sa, x-1, y-2);
|
|
//SAMPLE2(sc, x-2, y-1); SAMPLE2(sd, x, y-1);
|
|
// SAMPLE2(sf, x-1, y );
|
|
//SAMPLE2(sh, x-2, y+1); SAMPLE2(si, x, y+1);
|
|
// SAMPLE2(sk, x-1, y+2);
|
|
|
|
line1 = in + ((y - 2) * width + (x - 1)) * 4 + component;
|
|
line2 = in + ((y - 1) * width + (x - 2)) * 4 + component;
|
|
line3 = in + ((y ) * width + (x - 1)) * 4 + component;
|
|
line4 = in + ((y + 1) * width + (x - 2)) * 4 + component;
|
|
line5 = in + ((y + 2) * width + (x - 1)) * 4 + component;
|
|
|
|
// COPYSAMPLE(sa, line1); line1 += 8;
|
|
//COPYSAMPLE(sc, line2); line2 += 8; COPYSAMPLE(sd, line2); line2 += 8;
|
|
// COPYSAMPLE(sf, line3); line3 += 8;
|
|
//COPYSAMPLE(sh, line4); line4 += 8; COPYSAMPLE(si, line4); line4 += 8;
|
|
// COPYSAMPLE(sk, line5); line5 += 8;
|
|
|
|
sa = *line1; line1 += 8;
|
|
sc = *line2; line2 += 8; sd = *line2; line2 += 8;
|
|
sf = *line3; line3 += 8;
|
|
sh = *line4; line4 += 8; si = *line4; line4 += 8;
|
|
sk = *line5; line5 += 8;
|
|
|
|
outbyte = out + (y * width + x) * 4 + component;
|
|
|
|
for ( ; x < width - 3; x+=2)
|
|
{
|
|
int hd, vd, hp, vp;
|
|
|
|
// SAMPLE2(sa, x-1, y-2); SAMPLE2(sb, x+1, y-2);
|
|
//SAMPLE2(sc, x-2, y-1); SAMPLE2(sd, x, y-1); SAMPLE2(se, x+2, y-1);
|
|
// SAMPLE2(sf, x-1, y ); SAMPLE2(sg, x+1, y );
|
|
//SAMPLE2(sh, x-2, y+1); SAMPLE2(si, x, y+1); SAMPLE2(sj, x+2, y+1);
|
|
// SAMPLE2(sk, x-1, y+2); SAMPLE2(sl, x+1, y+2);
|
|
|
|
// optimization one
|
|
//SAMPLE2(sb, x+1, y-2);
|
|
//SAMPLE2(se, x+2, y-1);
|
|
//SAMPLE2(sg, x+1, y );
|
|
//SAMPLE2(sj, x+2, y+1);
|
|
//SAMPLE2(sl, x+1, y+2);
|
|
|
|
//COPYSAMPLE(sb, line1); line1 += 8;
|
|
//COPYSAMPLE(se, line2); line2 += 8;
|
|
//COPYSAMPLE(sg, line3); line3 += 8;
|
|
//COPYSAMPLE(sj, line4); line4 += 8;
|
|
//COPYSAMPLE(sl, line5); line5 += 8;
|
|
|
|
sb = *line1; line1 += 8;
|
|
se = *line2; line2 += 8;
|
|
sg = *line3; line3 += 8;
|
|
sj = *line4; line4 += 8;
|
|
sl = *line5; line5 += 8;
|
|
|
|
hp = sf + sg;
|
|
vp = sd + si;
|
|
hd = abs(sf - sg);
|
|
vd = abs(sd - si);
|
|
|
|
if (hd > 100 || vd > 100 || abs(hp-vp) > 200)
|
|
{
|
|
if (hd < vd)
|
|
*outbyte = hp >> 1;
|
|
else
|
|
*outbyte = vp >> 1;
|
|
}
|
|
else
|
|
{
|
|
int hdd, vdd;
|
|
|
|
//hdd = abs(sc[i] + sd[i] + se[i] - 3 * (sf[i] + sg[i]) + sh[i] + si[i] + sj[i]);
|
|
//vdd = abs(sa[i] + sf[i] + sk[i] - 3 * (sd[i] + si[i]) + sb[i] + sg[i] + sl[i]);
|
|
|
|
hdd = abs(sc + se - 3 * hp + sh + sj + vp);
|
|
vdd = abs(sa + sk - 3 * vp + sb + sl + hp);
|
|
|
|
if (hdd > vdd)
|
|
*outbyte = hp >> 1;
|
|
else
|
|
*outbyte = vp >> 1;
|
|
}
|
|
|
|
outbyte += 8;
|
|
|
|
// COPYSAMPLE(sa, sb);
|
|
//COPYSAMPLE(sc, sd); COPYSAMPLE(sd, se);
|
|
// COPYSAMPLE(sf, sg);
|
|
//COPYSAMPLE(sh, si); COPYSAMPLE(si, sj);
|
|
// COPYSAMPLE(sk, sl);
|
|
sa = sb;
|
|
sc = sd; sd = se;
|
|
sf = sg;
|
|
sh = si; si = sj;
|
|
sk = sl;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Similar to FCBI, but throws out the second order derivatives for speed
|
|
static void DoFCBIQuick(byte *in, byte *out, int width, int height, int component)
|
|
{
|
|
int x, y;
|
|
byte *outbyte, *inbyte;
|
|
|
|
// copy in to out
|
|
for (y = 2; y < height - 2; y += 2)
|
|
{
|
|
inbyte = in + (y * width + 2) * 4 + component;
|
|
outbyte = out + (y * width + 2) * 4 + component;
|
|
|
|
for (x = 2; x < width - 2; x += 2)
|
|
{
|
|
*outbyte = *inbyte;
|
|
outbyte += 8;
|
|
inbyte += 8;
|
|
}
|
|
}
|
|
|
|
for (y = 3; y < height - 4; y += 2)
|
|
{
|
|
byte sd, se, sh, si;
|
|
byte *line2, *line3;
|
|
|
|
x = 3;
|
|
|
|
line2 = in + ((y - 1) * width + (x - 1)) * 4 + component;
|
|
line3 = in + ((y + 1) * width + (x - 1)) * 4 + component;
|
|
|
|
sd = *line2; line2 += 8;
|
|
sh = *line3; line3 += 8;
|
|
|
|
outbyte = out + (y * width + x) * 4 + component;
|
|
|
|
for ( ; x < width - 4; x += 2)
|
|
{
|
|
int NWd, NEd, NWp, NEp;
|
|
|
|
se = *line2; line2 += 8;
|
|
si = *line3; line3 += 8;
|
|
|
|
NWp = sd + si;
|
|
NEp = se + sh;
|
|
NWd = abs(sd - si);
|
|
NEd = abs(se - sh);
|
|
|
|
if (NWd < NEd)
|
|
*outbyte = NWp >> 1;
|
|
else
|
|
*outbyte = NEp >> 1;
|
|
|
|
outbyte += 8;
|
|
|
|
sd = se;
|
|
sh = si;
|
|
}
|
|
}
|
|
|
|
// hack: copy out to in again
|
|
for (y = 3; y < height - 3; y += 2)
|
|
{
|
|
inbyte = out + (y * width + 3) * 4 + component;
|
|
outbyte = in + (y * width + 3) * 4 + component;
|
|
|
|
for (x = 3; x < width - 3; x += 2)
|
|
{
|
|
*outbyte = *inbyte;
|
|
outbyte += 8;
|
|
inbyte += 8;
|
|
}
|
|
}
|
|
|
|
for (y = 2; y < height - 3; y++)
|
|
{
|
|
byte sd, sf, sg, si;
|
|
byte *line2, *line3, *line4;
|
|
|
|
x = (y + 1) % 2 + 2;
|
|
|
|
line2 = in + ((y - 1) * width + (x )) * 4 + component;
|
|
line3 = in + ((y ) * width + (x - 1)) * 4 + component;
|
|
line4 = in + ((y + 1) * width + (x )) * 4 + component;
|
|
|
|
outbyte = out + (y * width + x) * 4 + component;
|
|
|
|
sf = *line3; line3 += 8;
|
|
|
|
for ( ; x < width - 3; x+=2)
|
|
{
|
|
int hd, vd, hp, vp;
|
|
|
|
sd = *line2; line2 += 8;
|
|
sg = *line3; line3 += 8;
|
|
si = *line4; line4 += 8;
|
|
|
|
hp = sf + sg;
|
|
vp = sd + si;
|
|
hd = abs(sf - sg);
|
|
vd = abs(sd - si);
|
|
|
|
if (hd < vd)
|
|
*outbyte = hp >> 1;
|
|
else
|
|
*outbyte = vp >> 1;
|
|
|
|
outbyte += 8;
|
|
|
|
sf = sg;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Similar to DoFCBIQuick, but just takes the average instead of checking derivatives
|
|
// as well, this operates on all four components
|
|
static void DoLinear(byte *in, byte *out, int width, int height)
|
|
{
|
|
int x, y, i;
|
|
byte *outbyte, *inbyte;
|
|
|
|
// copy in to out
|
|
for (y = 2; y < height - 2; y += 2)
|
|
{
|
|
x = 2;
|
|
|
|
inbyte = in + (y * width + x) * 4;
|
|
outbyte = out + (y * width + x) * 4;
|
|
|
|
for ( ; x < width - 2; x += 2)
|
|
{
|
|
COPYSAMPLE(outbyte, inbyte);
|
|
outbyte += 8;
|
|
inbyte += 8;
|
|
}
|
|
}
|
|
|
|
for (y = 1; y < height - 1; y += 2)
|
|
{
|
|
byte sd[4] = {0}, se[4] = {0}, sh[4] = {0}, si[4] = {0};
|
|
byte *line2, *line3;
|
|
|
|
x = 1;
|
|
|
|
line2 = in + ((y - 1) * width + (x - 1)) * 4;
|
|
line3 = in + ((y + 1) * width + (x - 1)) * 4;
|
|
|
|
COPYSAMPLE(sd, line2); line2 += 8;
|
|
COPYSAMPLE(sh, line3); line3 += 8;
|
|
|
|
outbyte = out + (y * width + x) * 4;
|
|
|
|
for ( ; x < width - 1; x += 2)
|
|
{
|
|
COPYSAMPLE(se, line2); line2 += 8;
|
|
COPYSAMPLE(si, line3); line3 += 8;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
*outbyte++ = (sd[i] + si[i] + se[i] + sh[i]) >> 2;
|
|
}
|
|
|
|
outbyte += 4;
|
|
|
|
COPYSAMPLE(sd, se);
|
|
COPYSAMPLE(sh, si);
|
|
}
|
|
}
|
|
|
|
// hack: copy out to in again
|
|
for (y = 1; y < height - 1; y += 2)
|
|
{
|
|
x = 1;
|
|
|
|
inbyte = out + (y * width + x) * 4;
|
|
outbyte = in + (y * width + x) * 4;
|
|
|
|
for ( ; x < width - 1; x += 2)
|
|
{
|
|
COPYSAMPLE(outbyte, inbyte);
|
|
outbyte += 8;
|
|
inbyte += 8;
|
|
}
|
|
}
|
|
|
|
for (y = 1; y < height - 1; y++)
|
|
{
|
|
byte sd[4], sf[4], sg[4], si[4];
|
|
byte *line2, *line3, *line4;
|
|
|
|
x = y % 2 + 1;
|
|
|
|
line2 = in + ((y - 1) * width + (x )) * 4;
|
|
line3 = in + ((y ) * width + (x - 1)) * 4;
|
|
line4 = in + ((y + 1) * width + (x )) * 4;
|
|
|
|
COPYSAMPLE(sf, line3); line3 += 8;
|
|
|
|
outbyte = out + (y * width + x) * 4;
|
|
|
|
for ( ; x < width - 1; x += 2)
|
|
{
|
|
COPYSAMPLE(sd, line2); line2 += 8;
|
|
COPYSAMPLE(sg, line3); line3 += 8;
|
|
COPYSAMPLE(si, line4); line4 += 8;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
*outbyte++ = (sf[i] + sg[i] + sd[i] + si[i]) >> 2;
|
|
}
|
|
|
|
outbyte += 4;
|
|
|
|
COPYSAMPLE(sf, sg);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void ExpandHalfTextureToGrid( byte *data, int width, int height)
|
|
{
|
|
int x, y;
|
|
|
|
for (y = height / 2; y > 0; y--)
|
|
{
|
|
byte *outbyte = data + ((y * 2 - 1) * (width) - 2) * 4;
|
|
byte *inbyte = data + (y * (width / 2) - 1) * 4;
|
|
|
|
for (x = width / 2; x > 0; x--)
|
|
{
|
|
COPYSAMPLE(outbyte, inbyte);
|
|
|
|
outbyte -= 8;
|
|
inbyte -= 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void FillInNormalizedZ(const byte *in, byte *out, int width, int height)
|
|
{
|
|
int x, y;
|
|
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
const byte *inbyte = in + y * width * 4;
|
|
byte *outbyte = out + y * width * 4;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
byte nx, ny, nz, h;
|
|
float fnx, fny, fll, fnz;
|
|
|
|
nx = *inbyte++;
|
|
ny = *inbyte++;
|
|
inbyte++;
|
|
h = *inbyte++;
|
|
|
|
fnx = OffsetByteToFloat(nx);
|
|
fny = OffsetByteToFloat(ny);
|
|
fll = 1.0f - fnx * fnx - fny * fny;
|
|
if (fll >= 0.0f)
|
|
fnz = (float)sqrt(fll);
|
|
else
|
|
fnz = 0.0f;
|
|
|
|
nz = FloatToOffsetByte(fnz);
|
|
|
|
*outbyte++ = nx;
|
|
*outbyte++ = ny;
|
|
*outbyte++ = nz;
|
|
*outbyte++ = h;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// size must be even
|
|
#define WORKBLOCK_SIZE 128
|
|
#define WORKBLOCK_BORDER 4
|
|
#define WORKBLOCK_REALSIZE (WORKBLOCK_SIZE + WORKBLOCK_BORDER * 2)
|
|
|
|
// assumes that data has already been expanded into a 2x2 grid
|
|
static void FCBIByBlock(byte *data, int width, int height, qboolean clampToEdge, qboolean normalized)
|
|
{
|
|
byte workdata[WORKBLOCK_REALSIZE * WORKBLOCK_REALSIZE * 4];
|
|
byte outdata[WORKBLOCK_REALSIZE * WORKBLOCK_REALSIZE * 4];
|
|
byte *inbyte, *outbyte;
|
|
int x, y;
|
|
int srcx, srcy;
|
|
|
|
ExpandHalfTextureToGrid(data, width, height);
|
|
|
|
for (y = 0; y < height; y += WORKBLOCK_SIZE)
|
|
{
|
|
for (x = 0; x < width; x += WORKBLOCK_SIZE)
|
|
{
|
|
int x2, y2;
|
|
int workwidth, workheight, fullworkwidth, fullworkheight;
|
|
|
|
workwidth = MIN(WORKBLOCK_SIZE, width - x);
|
|
workheight = MIN(WORKBLOCK_SIZE, height - y);
|
|
|
|
fullworkwidth = workwidth + WORKBLOCK_BORDER * 2;
|
|
fullworkheight = workheight + WORKBLOCK_BORDER * 2;
|
|
|
|
//memset(workdata, 0, WORKBLOCK_REALSIZE * WORKBLOCK_REALSIZE * 4);
|
|
|
|
// fill in work block
|
|
for (y2 = 0; y2 < fullworkheight; y2 += 2)
|
|
{
|
|
srcy = y + y2 - WORKBLOCK_BORDER;
|
|
|
|
if (clampToEdge)
|
|
{
|
|
srcy = CLAMP(srcy, 0, height - 2);
|
|
}
|
|
else
|
|
{
|
|
srcy = (srcy + height) % height;
|
|
}
|
|
|
|
outbyte = workdata + y2 * fullworkwidth * 4;
|
|
inbyte = data + srcy * width * 4;
|
|
|
|
for (x2 = 0; x2 < fullworkwidth; x2 += 2)
|
|
{
|
|
srcx = x + x2 - WORKBLOCK_BORDER;
|
|
|
|
if (clampToEdge)
|
|
{
|
|
srcx = CLAMP(srcx, 0, width - 2);
|
|
}
|
|
else
|
|
{
|
|
srcx = (srcx + width) % width;
|
|
}
|
|
|
|
COPYSAMPLE(outbyte, inbyte + srcx * 4);
|
|
outbyte += 8;
|
|
}
|
|
}
|
|
|
|
// submit work block
|
|
DoLinear(workdata, outdata, fullworkwidth, fullworkheight);
|
|
|
|
if (!normalized)
|
|
{
|
|
switch (r_imageUpsampleType->integer)
|
|
{
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
DoFCBIQuick(workdata, outdata, fullworkwidth, fullworkheight, 0);
|
|
break;
|
|
case 2:
|
|
default:
|
|
DoFCBI(workdata, outdata, fullworkwidth, fullworkheight, 0);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (r_imageUpsampleType->integer)
|
|
{
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
DoFCBIQuick(workdata, outdata, fullworkwidth, fullworkheight, 0);
|
|
DoFCBIQuick(workdata, outdata, fullworkwidth, fullworkheight, 1);
|
|
break;
|
|
case 2:
|
|
default:
|
|
DoFCBI(workdata, outdata, fullworkwidth, fullworkheight, 0);
|
|
DoFCBI(workdata, outdata, fullworkwidth, fullworkheight, 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// copy back work block
|
|
for (y2 = 0; y2 < workheight; y2++)
|
|
{
|
|
inbyte = outdata + ((y2 + WORKBLOCK_BORDER) * fullworkwidth + WORKBLOCK_BORDER) * 4;
|
|
outbyte = data + ((y + y2) * width + x) * 4;
|
|
for (x2 = 0; x2 < workwidth; x2++)
|
|
{
|
|
COPYSAMPLE(outbyte, inbyte);
|
|
outbyte += 4;
|
|
inbyte += 4;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#undef COPYSAMPLE
|
|
|
|
/*
|
|
================
|
|
R_LightScaleTexture
|
|
|
|
Scale up the pixel values in a texture to increase the
|
|
lighting range
|
|
================
|
|
*/
|
|
void R_LightScaleTexture (byte *in, int inwidth, int inheight, qboolean only_gamma )
|
|
{
|
|
if ( only_gamma )
|
|
{
|
|
if ( !glConfig.deviceSupportsGamma )
|
|
{
|
|
int i, c;
|
|
byte *p;
|
|
|
|
p = in;
|
|
|
|
c = inwidth*inheight;
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_gammatable[p[0]];
|
|
p[1] = s_gammatable[p[1]];
|
|
p[2] = s_gammatable[p[2]];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int i, c;
|
|
byte *p;
|
|
|
|
p = in;
|
|
|
|
c = inwidth*inheight;
|
|
|
|
if ( glConfig.deviceSupportsGamma )
|
|
{
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_intensitytable[p[0]];
|
|
p[1] = s_intensitytable[p[1]];
|
|
p[2] = s_intensitytable[p[2]];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_gammatable[s_intensitytable[p[0]]];
|
|
p[1] = s_gammatable[s_intensitytable[p[1]]];
|
|
p[2] = s_gammatable[s_intensitytable[p[2]]];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_MipMapsRGB
|
|
|
|
Operates in place, quartering the size of the texture
|
|
Colors are gamma correct
|
|
================
|
|
*/
|
|
static void R_MipMapsRGB( byte *in, int inWidth, int inHeight)
|
|
{
|
|
int x, y, c, stride;
|
|
const byte *in2;
|
|
float total;
|
|
static float downmipSrgbLookup[256];
|
|
static int downmipSrgbLookupSet = 0;
|
|
byte *out = in;
|
|
|
|
if (!downmipSrgbLookupSet) {
|
|
for (x = 0; x < 256; x++)
|
|
downmipSrgbLookup[x] = powf(x / 255.0f, 2.2f) * 0.25f;
|
|
downmipSrgbLookupSet = 1;
|
|
}
|
|
|
|
if (inWidth == 1 && inHeight == 1)
|
|
return;
|
|
|
|
if (inWidth == 1 || inHeight == 1) {
|
|
for (x = (inWidth * inHeight) >> 1; x; x--) {
|
|
for (c = 3; c; c--, in++) {
|
|
total = (downmipSrgbLookup[*(in)] + downmipSrgbLookup[*(in + 4)]) * 2.0f;
|
|
|
|
*out++ = (byte)(powf(total, 1.0f / 2.2f) * 255.0f);
|
|
}
|
|
*out++ = (*(in) + *(in + 4)) >> 1; in += 5;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
stride = inWidth * 4;
|
|
inWidth >>= 1; inHeight >>= 1;
|
|
|
|
in2 = in + stride;
|
|
for (y = inHeight; y; y--, in += stride, in2 += stride) {
|
|
for (x = inWidth; x; x--) {
|
|
for (c = 3; c; c--, in++, in2++) {
|
|
total = downmipSrgbLookup[*(in)] + downmipSrgbLookup[*(in + 4)]
|
|
+ downmipSrgbLookup[*(in2)] + downmipSrgbLookup[*(in2 + 4)];
|
|
|
|
*out++ = (byte)(powf(total, 1.0f / 2.2f) * 255.0f);
|
|
}
|
|
|
|
*out++ = (*(in) + *(in + 4) + *(in2) + *(in2 + 4)) >> 2; in += 5, in2 += 5;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void R_MipMapNormalHeight (const byte *in, byte *out, int width, int height, qboolean swizzle)
|
|
{
|
|
int i, j;
|
|
int row;
|
|
int sx = swizzle ? 3 : 0;
|
|
int sa = swizzle ? 0 : 3;
|
|
|
|
if ( width == 1 && height == 1 ) {
|
|
return;
|
|
}
|
|
|
|
row = width * 4;
|
|
width >>= 1;
|
|
height >>= 1;
|
|
|
|
for (i=0 ; i<height ; i++, in+=row) {
|
|
for (j=0 ; j<width ; j++, out+=4, in+=8) {
|
|
vec3_t v;
|
|
|
|
v[0] = OffsetByteToFloat(in[sx ]);
|
|
v[1] = OffsetByteToFloat(in[ 1]);
|
|
v[2] = OffsetByteToFloat(in[ 2]);
|
|
|
|
v[0] += OffsetByteToFloat(in[sx +4]);
|
|
v[1] += OffsetByteToFloat(in[ 5]);
|
|
v[2] += OffsetByteToFloat(in[ 6]);
|
|
|
|
v[0] += OffsetByteToFloat(in[sx+row ]);
|
|
v[1] += OffsetByteToFloat(in[ row+1]);
|
|
v[2] += OffsetByteToFloat(in[ row+2]);
|
|
|
|
v[0] += OffsetByteToFloat(in[sx+row+4]);
|
|
v[1] += OffsetByteToFloat(in[ row+5]);
|
|
v[2] += OffsetByteToFloat(in[ row+6]);
|
|
|
|
VectorNormalizeFast(v);
|
|
|
|
//v[0] *= 0.25f;
|
|
//v[1] *= 0.25f;
|
|
//v[2] = 1.0f - v[0] * v[0] - v[1] * v[1];
|
|
//v[2] = sqrt(MAX(v[2], 0.0f));
|
|
|
|
out[sx] = FloatToOffsetByte(v[0]);
|
|
out[1 ] = FloatToOffsetByte(v[1]);
|
|
out[2 ] = FloatToOffsetByte(v[2]);
|
|
out[sa] = MAX(MAX(in[sa], in[sa+4]), MAX(in[sa+row], in[sa+row+4]));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
==================
|
|
R_BlendOverTexture
|
|
|
|
Apply a color blend over a set of pixels
|
|
==================
|
|
*/
|
|
static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) {
|
|
int i;
|
|
int inverseAlpha;
|
|
int premult[3];
|
|
|
|
inverseAlpha = 255 - blend[3];
|
|
premult[0] = blend[0] * blend[3];
|
|
premult[1] = blend[1] * blend[3];
|
|
premult[2] = blend[2] * blend[3];
|
|
|
|
for ( i = 0 ; i < pixelCount ; i++, data+=4 ) {
|
|
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
|
|
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
|
|
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
|
|
}
|
|
}
|
|
|
|
byte mipBlendColors[16][4] = {
|
|
{0,0,0,0},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
};
|
|
|
|
static void RawImage_SwizzleRA( byte *data, int width, int height )
|
|
{
|
|
int i;
|
|
byte *ptr = data, swap;
|
|
|
|
for (i=0; i<width*height; i++, ptr+=4)
|
|
{
|
|
// swap red and alpha
|
|
swap = ptr[0];
|
|
ptr[0] = ptr[3];
|
|
ptr[3] = swap;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
RawImage_ScaleToPower2
|
|
|
|
===============
|
|
*/
|
|
static qboolean RawImage_ScaleToPower2( byte **data, int *inout_width, int *inout_height, imgType_t type, imgFlags_t flags, byte **resampledBuffer)
|
|
{
|
|
int width = *inout_width;
|
|
int height = *inout_height;
|
|
int scaled_width;
|
|
int scaled_height;
|
|
qboolean picmip = flags & IMGFLAG_PICMIP;
|
|
qboolean mipmap = flags & IMGFLAG_MIPMAP;
|
|
qboolean clampToEdge = flags & IMGFLAG_CLAMPTOEDGE;
|
|
qboolean scaled;
|
|
|
|
//
|
|
// convert to exact power of 2 sizes
|
|
//
|
|
if (glRefConfig.textureNonPowerOfTwo && !mipmap)
|
|
{
|
|
scaled_width = width;
|
|
scaled_height = height;
|
|
}
|
|
else
|
|
{
|
|
scaled_width = NextPowerOfTwo(width);
|
|
scaled_height = NextPowerOfTwo(height);
|
|
}
|
|
|
|
if ( r_roundImagesDown->integer && scaled_width > width )
|
|
scaled_width >>= 1;
|
|
if ( r_roundImagesDown->integer && scaled_height > height )
|
|
scaled_height >>= 1;
|
|
|
|
if ( picmip && data && resampledBuffer && r_imageUpsample->integer &&
|
|
scaled_width < r_imageUpsampleMaxSize->integer && scaled_height < r_imageUpsampleMaxSize->integer)
|
|
{
|
|
int finalwidth, finalheight;
|
|
//int startTime, endTime;
|
|
|
|
//startTime = ri.Milliseconds();
|
|
|
|
finalwidth = scaled_width << r_imageUpsample->integer;
|
|
finalheight = scaled_height << r_imageUpsample->integer;
|
|
|
|
while ( finalwidth > r_imageUpsampleMaxSize->integer
|
|
|| finalheight > r_imageUpsampleMaxSize->integer ) {
|
|
finalwidth >>= 1;
|
|
finalheight >>= 1;
|
|
}
|
|
|
|
while ( finalwidth > glConfig.maxTextureSize
|
|
|| finalheight > glConfig.maxTextureSize ) {
|
|
finalwidth >>= 1;
|
|
finalheight >>= 1;
|
|
}
|
|
|
|
*resampledBuffer = ri.Hunk_AllocateTempMemory( finalwidth * finalheight * 4 );
|
|
|
|
if (scaled_width != width || scaled_height != height)
|
|
ResampleTexture (*data, width, height, *resampledBuffer, scaled_width, scaled_height);
|
|
else
|
|
Com_Memcpy(*resampledBuffer, *data, width * height * 4);
|
|
|
|
if (type == IMGTYPE_COLORALPHA)
|
|
RGBAtoYCoCgA(*resampledBuffer, *resampledBuffer, scaled_width, scaled_height);
|
|
|
|
while (scaled_width < finalwidth || scaled_height < finalheight)
|
|
{
|
|
scaled_width <<= 1;
|
|
scaled_height <<= 1;
|
|
|
|
FCBIByBlock(*resampledBuffer, scaled_width, scaled_height, clampToEdge, (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT));
|
|
}
|
|
|
|
if (type == IMGTYPE_COLORALPHA)
|
|
YCoCgAtoRGBA(*resampledBuffer, *resampledBuffer, scaled_width, scaled_height);
|
|
else if (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT)
|
|
FillInNormalizedZ(*resampledBuffer, *resampledBuffer, scaled_width, scaled_height);
|
|
|
|
//endTime = ri.Milliseconds();
|
|
|
|
//ri.Printf(PRINT_ALL, "upsampled %dx%d to %dx%d in %dms\n", width, height, scaled_width, scaled_height, endTime - startTime);
|
|
|
|
*data = *resampledBuffer;
|
|
}
|
|
else if ( scaled_width != width || scaled_height != height )
|
|
{
|
|
if (data && resampledBuffer)
|
|
{
|
|
*resampledBuffer = ri.Hunk_AllocateTempMemory( scaled_width * scaled_height * 4 );
|
|
ResampleTexture (*data, width, height, *resampledBuffer, scaled_width, scaled_height);
|
|
*data = *resampledBuffer;
|
|
}
|
|
}
|
|
|
|
width = scaled_width;
|
|
height = scaled_height;
|
|
|
|
//
|
|
// perform optional picmip operation
|
|
//
|
|
if ( picmip ) {
|
|
scaled_width >>= r_picmip->integer;
|
|
scaled_height >>= r_picmip->integer;
|
|
}
|
|
|
|
//
|
|
// clamp to the current upper OpenGL limit
|
|
// scale both axis down equally so we don't have to
|
|
// deal with a half mip resampling
|
|
//
|
|
while ( scaled_width > glConfig.maxTextureSize
|
|
|| scaled_height > glConfig.maxTextureSize ) {
|
|
scaled_width >>= 1;
|
|
scaled_height >>= 1;
|
|
}
|
|
|
|
//
|
|
// clamp to minimum size
|
|
//
|
|
scaled_width = MAX(1, scaled_width);
|
|
scaled_height = MAX(1, scaled_height);
|
|
|
|
scaled = (width != scaled_width) || (height != scaled_height);
|
|
|
|
//
|
|
// rescale texture to new size using existing mipmap functions
|
|
//
|
|
if (data)
|
|
{
|
|
while (width > scaled_width || height > scaled_height)
|
|
{
|
|
if (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT)
|
|
R_MipMapNormalHeight(*data, *data, width, height, qfalse);
|
|
else
|
|
R_MipMapsRGB(*data, width, height);
|
|
|
|
width = MAX(1, width >> 1);
|
|
height = MAX(1, height >> 1);
|
|
}
|
|
}
|
|
|
|
*inout_width = width;
|
|
*inout_height = height;
|
|
|
|
return scaled;
|
|
}
|
|
|
|
|
|
static qboolean RawImage_HasAlpha(const byte *scan, int numPixels)
|
|
{
|
|
int i;
|
|
|
|
if (!scan)
|
|
return qtrue;
|
|
|
|
for ( i = 0; i < numPixels; i++ )
|
|
{
|
|
if ( scan[i*4 + 3] != 255 )
|
|
{
|
|
return qtrue;
|
|
}
|
|
}
|
|
|
|
return qfalse;
|
|
}
|
|
|
|
static GLenum RawImage_GetFormat(const byte *data, int numPixels, GLenum picFormat, qboolean lightMap, imgType_t type, imgFlags_t flags)
|
|
{
|
|
int samples = 3;
|
|
GLenum internalFormat = GL_RGB;
|
|
qboolean forceNoCompression = (flags & IMGFLAG_NO_COMPRESSION);
|
|
qboolean normalmap = (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT);
|
|
|
|
if (picFormat != GL_RGBA8)
|
|
return picFormat;
|
|
|
|
if(normalmap)
|
|
{
|
|
if ((type == IMGTYPE_NORMALHEIGHT) && RawImage_HasAlpha(data, numPixels) && r_parallaxMapping->integer)
|
|
{
|
|
if (!forceNoCompression && glRefConfig.textureCompression & TCR_BPTC)
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_BPTC_UNORM_ARB;
|
|
}
|
|
else if (!forceNoCompression && glConfig.textureCompression == TC_S3TC_ARB)
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
|
|
}
|
|
else if ( r_texturebits->integer == 16 )
|
|
{
|
|
internalFormat = GL_RGBA4;
|
|
}
|
|
else if ( r_texturebits->integer == 32 )
|
|
{
|
|
internalFormat = GL_RGBA8;
|
|
}
|
|
else
|
|
{
|
|
internalFormat = GL_RGBA;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!forceNoCompression && glRefConfig.textureCompression & TCR_RGTC)
|
|
{
|
|
internalFormat = GL_COMPRESSED_RG_RGTC2;
|
|
}
|
|
else if (!forceNoCompression && glRefConfig.textureCompression & TCR_BPTC)
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_BPTC_UNORM_ARB;
|
|
}
|
|
else if (!forceNoCompression && glConfig.textureCompression == TC_S3TC_ARB)
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
|
|
}
|
|
else if (r_texturebits->integer == 16)
|
|
{
|
|
internalFormat = GL_RGB5;
|
|
}
|
|
else if (r_texturebits->integer == 32)
|
|
{
|
|
internalFormat = GL_RGB8;
|
|
}
|
|
else
|
|
{
|
|
internalFormat = GL_RGB;
|
|
}
|
|
}
|
|
}
|
|
else if(lightMap)
|
|
{
|
|
if(r_greyscale->integer)
|
|
internalFormat = GL_LUMINANCE;
|
|
else
|
|
internalFormat = GL_RGBA;
|
|
}
|
|
else
|
|
{
|
|
if (RawImage_HasAlpha(data, numPixels))
|
|
{
|
|
samples = 4;
|
|
}
|
|
|
|
// select proper internal format
|
|
if ( samples == 3 )
|
|
{
|
|
if(r_greyscale->integer)
|
|
{
|
|
if(r_texturebits->integer == 16)
|
|
internalFormat = GL_LUMINANCE8;
|
|
else if(r_texturebits->integer == 32)
|
|
internalFormat = GL_LUMINANCE16;
|
|
else
|
|
internalFormat = GL_LUMINANCE;
|
|
}
|
|
else
|
|
{
|
|
if ( !forceNoCompression && (glRefConfig.textureCompression & TCR_BPTC) )
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_BPTC_UNORM_ARB;
|
|
}
|
|
else if ( !forceNoCompression && glConfig.textureCompression == TC_S3TC_ARB )
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
|
|
}
|
|
else if ( !forceNoCompression && glConfig.textureCompression == TC_S3TC )
|
|
{
|
|
internalFormat = GL_RGB4_S3TC;
|
|
}
|
|
else if ( r_texturebits->integer == 16 )
|
|
{
|
|
internalFormat = GL_RGB5;
|
|
}
|
|
else if ( r_texturebits->integer == 32 )
|
|
{
|
|
internalFormat = GL_RGB8;
|
|
}
|
|
else
|
|
{
|
|
internalFormat = GL_RGB;
|
|
}
|
|
}
|
|
}
|
|
else if ( samples == 4 )
|
|
{
|
|
if(r_greyscale->integer)
|
|
{
|
|
if(r_texturebits->integer == 16)
|
|
internalFormat = GL_LUMINANCE8_ALPHA8;
|
|
else if(r_texturebits->integer == 32)
|
|
internalFormat = GL_LUMINANCE16_ALPHA16;
|
|
else
|
|
internalFormat = GL_LUMINANCE_ALPHA;
|
|
}
|
|
else
|
|
{
|
|
if ( !forceNoCompression && (glRefConfig.textureCompression & TCR_BPTC) )
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_BPTC_UNORM_ARB;
|
|
}
|
|
else if ( !forceNoCompression && glConfig.textureCompression == TC_S3TC_ARB )
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
|
|
}
|
|
else if ( r_texturebits->integer == 16 )
|
|
{
|
|
internalFormat = GL_RGBA4;
|
|
}
|
|
else if ( r_texturebits->integer == 32 )
|
|
{
|
|
internalFormat = GL_RGBA8;
|
|
}
|
|
else
|
|
{
|
|
internalFormat = GL_RGBA;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return internalFormat;
|
|
}
|
|
|
|
static void CompressMonoBlock(byte outdata[8], const byte indata[16])
|
|
{
|
|
int hi, lo, diff, bias, outbyte, shift, i;
|
|
byte *p = outdata;
|
|
|
|
hi = lo = indata[0];
|
|
for (i = 1; i < 16; i++)
|
|
{
|
|
hi = MAX(indata[i], hi);
|
|
lo = MIN(indata[i], lo);
|
|
}
|
|
|
|
*p++ = hi;
|
|
*p++ = lo;
|
|
|
|
diff = hi - lo;
|
|
|
|
if (diff == 0)
|
|
{
|
|
outbyte = (hi == 255) ? 255 : 0;
|
|
|
|
for (i = 0; i < 6; i++)
|
|
*p++ = outbyte;
|
|
|
|
return;
|
|
}
|
|
|
|
bias = diff / 2 - lo * 7;
|
|
outbyte = shift = 0;
|
|
for (i = 0; i < 16; i++)
|
|
{
|
|
const byte fixIndex[8] = { 1, 7, 6, 5, 4, 3, 2, 0 };
|
|
byte index = fixIndex[(indata[i] * 7 + bias) / diff];
|
|
|
|
outbyte |= index << shift;
|
|
shift += 3;
|
|
if (shift >= 8)
|
|
{
|
|
*p++ = outbyte & 0xff;
|
|
shift -= 8;
|
|
outbyte >>= 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void RawImage_UploadToRgtc2Texture(GLuint texture, int miplevel, int x, int y, int width, int height, byte *data)
|
|
{
|
|
int wBlocks, hBlocks, iy, ix, size;
|
|
byte *compressedData, *p;
|
|
|
|
wBlocks = (width + 3) / 4;
|
|
hBlocks = (height + 3) / 4;
|
|
size = wBlocks * hBlocks * 16;
|
|
|
|
p = compressedData = ri.Hunk_AllocateTempMemory(size);
|
|
for (iy = 0; iy < height; iy += 4)
|
|
{
|
|
int oh = MIN(4, height - iy);
|
|
|
|
for (ix = 0; ix < width; ix += 4)
|
|
{
|
|
byte workingData[16];
|
|
int component;
|
|
|
|
int ow = MIN(4, width - ix);
|
|
|
|
for (component = 0; component < 2; component++)
|
|
{
|
|
int ox, oy;
|
|
|
|
for (oy = 0; oy < oh; oy++)
|
|
for (ox = 0; ox < ow; ox++)
|
|
workingData[oy * 4 + ox] = data[((iy + oy) * width + ix + ox) * 4 + component];
|
|
|
|
// dupe data to fill
|
|
for (oy = 0; oy < 4; oy++)
|
|
for (ox = (oy < oh) ? ow : 0; ox < 4; ox++)
|
|
workingData[oy * 4 + ox] = workingData[(oy % oh) * 4 + ox % ow];
|
|
|
|
CompressMonoBlock(p, workingData);
|
|
p += 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: Won't work for x/y that aren't multiples of 4.
|
|
qglCompressedTextureSubImage2DEXT(texture, GL_TEXTURE_2D, miplevel, x, y, width, height, GL_COMPRESSED_RG_RGTC2, size, compressedData);
|
|
|
|
ri.Hunk_FreeTempMemory(compressedData);
|
|
}
|
|
|
|
static int CalculateMipSize(int width, int height, GLenum picFormat)
|
|
{
|
|
int numBlocks = ((width + 3) / 4) * ((height + 3) / 4);
|
|
int numPixels = width * height;
|
|
|
|
switch (picFormat)
|
|
{
|
|
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
|
|
case GL_COMPRESSED_SRGB_S3TC_DXT1_EXT:
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
|
|
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT:
|
|
case GL_COMPRESSED_RED_RGTC1:
|
|
case GL_COMPRESSED_SIGNED_RED_RGTC1:
|
|
return numBlocks * 8;
|
|
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT:
|
|
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT:
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
|
|
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT:
|
|
case GL_COMPRESSED_RG_RGTC2:
|
|
case GL_COMPRESSED_SIGNED_RG_RGTC2:
|
|
case GL_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB:
|
|
case GL_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB:
|
|
case GL_COMPRESSED_RGBA_BPTC_UNORM_ARB:
|
|
case GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB:
|
|
return numBlocks * 16;
|
|
|
|
case GL_RGBA8:
|
|
case GL_SRGB8_ALPHA8_EXT:
|
|
return numPixels * 4;
|
|
|
|
default:
|
|
ri.Printf(PRINT_ALL, "Unsupported texture format %08x\n", picFormat);
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static GLenum PixelDataFormatFromInternalFormat(GLenum internalFormat)
|
|
{
|
|
switch (internalFormat)
|
|
{
|
|
case GL_DEPTH_COMPONENT:
|
|
case GL_DEPTH_COMPONENT16_ARB:
|
|
case GL_DEPTH_COMPONENT24_ARB:
|
|
case GL_DEPTH_COMPONENT32_ARB:
|
|
return GL_DEPTH_COMPONENT;
|
|
default:
|
|
return GL_RGBA;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void RawImage_UploadTexture(GLuint texture, byte *data, int x, int y, int width, int height, GLenum target, GLenum picFormat, int numMips, GLenum internalFormat, imgType_t type, imgFlags_t flags, qboolean subtexture )
|
|
{
|
|
GLenum dataFormat, dataType;
|
|
qboolean rgtc = (internalFormat == GL_COMPRESSED_RG_RGTC2);
|
|
qboolean compressed = (!(picFormat == GL_RGBA8) || (picFormat == GL_SRGB8_ALPHA8_EXT));
|
|
qboolean mipmap = !!(flags & IMGFLAG_MIPMAP);
|
|
int size, miplevel;
|
|
qboolean lastMip = qfalse;
|
|
|
|
dataFormat = PixelDataFormatFromInternalFormat(internalFormat);
|
|
|
|
// FIXME: This is an old hack to use half floats with lightmaps, use picFormat to determine this instead.
|
|
dataType = (internalFormat == GL_RGBA16F_ARB) ? GL_HALF_FLOAT_ARB : GL_UNSIGNED_BYTE;
|
|
|
|
miplevel = 0;
|
|
do
|
|
{
|
|
lastMip = (width == 1 && height == 1) || !mipmap;
|
|
size = CalculateMipSize(width, height, picFormat);
|
|
|
|
if (compressed)
|
|
{
|
|
qglCompressedTextureSubImage2DEXT(texture, target, miplevel, x, y, width, height, picFormat, size, data);
|
|
}
|
|
else
|
|
{
|
|
if (miplevel != 0 && r_colorMipLevels->integer)
|
|
R_BlendOverTexture((byte *)data, width * height, mipBlendColors[miplevel]);
|
|
|
|
if (rgtc)
|
|
RawImage_UploadToRgtc2Texture(texture, miplevel, x, y, width, height, data);
|
|
else
|
|
qglTextureSubImage2DEXT(texture, target, miplevel, x, y, width, height, dataFormat, dataType, data);
|
|
|
|
if (!lastMip && numMips < 2)
|
|
{
|
|
if (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT)
|
|
R_MipMapNormalHeight(data, data, width, height, glRefConfig.swizzleNormalmap);
|
|
else
|
|
R_MipMapsRGB(data, width, height);
|
|
}
|
|
}
|
|
|
|
x >>= 1;
|
|
y >>= 1;
|
|
width = MAX(1, width >> 1);
|
|
height = MAX(1, height >> 1);
|
|
miplevel++;
|
|
|
|
if (numMips > 1)
|
|
{
|
|
data += size;
|
|
numMips--;
|
|
}
|
|
}
|
|
while (!lastMip);
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
Upload32
|
|
|
|
===============
|
|
*/
|
|
static void Upload32(byte *data, int x, int y, int width, int height, GLenum picFormat, int numMips, image_t *image, qboolean scaled)
|
|
{
|
|
int i, c;
|
|
byte *scan;
|
|
|
|
imgType_t type = image->type;
|
|
imgFlags_t flags = image->flags;
|
|
GLenum internalFormat = image->internalFormat;
|
|
qboolean compressed = (picFormat != GL_RGBA8 && picFormat != GL_SRGB8_ALPHA8_EXT);
|
|
qboolean mipmap = !!(flags & IMGFLAG_MIPMAP) && (!compressed || numMips > 1);
|
|
qboolean cubemap = !!(flags & IMGFLAG_CUBEMAP);
|
|
|
|
// These operations cannot be performed on pre-compressed images.
|
|
if (!compressed && !cubemap)
|
|
{
|
|
c = width*height;
|
|
scan = data;
|
|
|
|
if (type == IMGTYPE_COLORALPHA)
|
|
{
|
|
if( r_greyscale->integer )
|
|
{
|
|
for ( i = 0; i < c; i++ )
|
|
{
|
|
byte luma = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
|
|
scan[i*4] = luma;
|
|
scan[i*4 + 1] = luma;
|
|
scan[i*4 + 2] = luma;
|
|
}
|
|
}
|
|
else if( r_greyscale->value )
|
|
{
|
|
for ( i = 0; i < c; i++ )
|
|
{
|
|
float luma = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
|
|
scan[i*4] = LERP(scan[i*4], luma, r_greyscale->value);
|
|
scan[i*4 + 1] = LERP(scan[i*4 + 1], luma, r_greyscale->value);
|
|
scan[i*4 + 2] = LERP(scan[i*4 + 2], luma, r_greyscale->value);
|
|
}
|
|
}
|
|
|
|
// This corresponds to what the OpenGL1 renderer does.
|
|
if (!(flags & IMGFLAG_NOLIGHTSCALE) && (scaled || mipmap))
|
|
R_LightScaleTexture(data, width, height, !mipmap);
|
|
}
|
|
|
|
if (glRefConfig.swizzleNormalmap && (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT))
|
|
RawImage_SwizzleRA(data, width, height);
|
|
}
|
|
|
|
if (cubemap)
|
|
{
|
|
for (i = 0; i < 6; i++)
|
|
{
|
|
int w2 = width, h2 = height;
|
|
RawImage_UploadTexture(image->texnum, data, x, y, width, height, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, picFormat, numMips, internalFormat, type, flags, qfalse);
|
|
for (c = numMips; c; c--)
|
|
{
|
|
data += CalculateMipSize(w2, h2, picFormat);
|
|
w2 = MAX(1, w2 >> 1);
|
|
h2 = MAX(1, h2 >> 1);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
RawImage_UploadTexture(image->texnum, data, x, y, width, height, GL_TEXTURE_2D, picFormat, numMips, internalFormat, type, flags, qfalse);
|
|
}
|
|
|
|
GL_CheckErrors();
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_CreateImage2
|
|
|
|
This is the only way any image_t are created
|
|
================
|
|
*/
|
|
image_t *R_CreateImage2( const char *name, byte *pic, int width, int height, GLenum picFormat, int numMips, imgType_t type, imgFlags_t flags, int internalFormat ) {
|
|
byte *resampledBuffer = NULL;
|
|
image_t *image;
|
|
qboolean isLightmap = qfalse, scaled = qfalse;
|
|
long hash;
|
|
int glWrapClampMode, mipWidth, mipHeight, miplevel;
|
|
qboolean compressed = (!(picFormat == GL_RGBA8) || (picFormat == GL_SRGB8_ALPHA8_EXT));
|
|
qboolean mipmap = !!(flags & IMGFLAG_MIPMAP);
|
|
qboolean cubemap = !!(flags & IMGFLAG_CUBEMAP);
|
|
qboolean picmip = !!(flags & IMGFLAG_PICMIP);
|
|
qboolean lastMip;
|
|
GLenum textureTarget = cubemap ? GL_TEXTURE_CUBE_MAP : GL_TEXTURE_2D;
|
|
GLenum dataFormat;
|
|
|
|
if (strlen(name) >= MAX_QPATH ) {
|
|
ri.Error (ERR_DROP, "R_CreateImage: \"%s\" is too long", name);
|
|
}
|
|
if ( !strncmp( name, "*lightmap", 9 ) ) {
|
|
isLightmap = qtrue;
|
|
}
|
|
|
|
if ( tr.numImages == MAX_DRAWIMAGES ) {
|
|
ri.Error( ERR_DROP, "R_CreateImage: MAX_DRAWIMAGES hit");
|
|
}
|
|
|
|
image = tr.images[tr.numImages] = ri.Hunk_Alloc( sizeof( image_t ), h_low );
|
|
image->texnum = 1024 + tr.numImages;
|
|
tr.numImages++;
|
|
|
|
image->type = type;
|
|
image->flags = flags;
|
|
|
|
strcpy (image->imgName, name);
|
|
|
|
image->width = width;
|
|
image->height = height;
|
|
if (flags & IMGFLAG_CLAMPTOEDGE)
|
|
glWrapClampMode = GL_CLAMP_TO_EDGE;
|
|
else
|
|
glWrapClampMode = GL_REPEAT;
|
|
|
|
if (!internalFormat)
|
|
internalFormat = RawImage_GetFormat(pic, width * height, picFormat, isLightmap, image->type, image->flags);
|
|
|
|
image->internalFormat = internalFormat;
|
|
|
|
// Possibly scale image before uploading.
|
|
// if compressed and uploading an image, skip picmips.
|
|
if (!cubemap)
|
|
{
|
|
if (!compressed)
|
|
scaled = RawImage_ScaleToPower2(&pic, &width, &height, type, flags, &resampledBuffer);
|
|
else if (pic && picmip)
|
|
{
|
|
for (miplevel = r_picmip->integer; miplevel > 0 && numMips > 1; miplevel--, numMips--)
|
|
{
|
|
int size = CalculateMipSize(width, height, picFormat);
|
|
width = MAX(1, width >> 1);
|
|
height = MAX(1, height >> 1);
|
|
pic += size;
|
|
}
|
|
}
|
|
}
|
|
|
|
image->uploadWidth = width;
|
|
image->uploadHeight = height;
|
|
|
|
// Allocate texture storage so we don't have to worry about it later.
|
|
dataFormat = PixelDataFormatFromInternalFormat(internalFormat);
|
|
mipWidth = width;
|
|
mipHeight = height;
|
|
miplevel = 0;
|
|
do
|
|
{
|
|
lastMip = !mipmap || (mipWidth == 1 && mipHeight == 1);
|
|
if (cubemap)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 6; i++)
|
|
qglTextureImage2DEXT(image->texnum, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, miplevel, internalFormat, mipWidth, mipHeight, 0, dataFormat, GL_UNSIGNED_BYTE, NULL);
|
|
}
|
|
else
|
|
{
|
|
qglTextureImage2DEXT(image->texnum, GL_TEXTURE_2D, miplevel, internalFormat, mipWidth, mipHeight, 0, dataFormat, GL_UNSIGNED_BYTE, NULL);
|
|
}
|
|
|
|
mipWidth = MAX(1, mipWidth >> 1);
|
|
mipHeight = MAX(1, mipHeight >> 1);
|
|
miplevel++;
|
|
}
|
|
while (!lastMip);
|
|
|
|
// Upload data.
|
|
if (pic)
|
|
Upload32(pic, 0, 0, width, height, picFormat, numMips, image, scaled);
|
|
|
|
if (resampledBuffer != NULL)
|
|
ri.Hunk_FreeTempMemory(resampledBuffer);
|
|
|
|
// Set all necessary texture parameters.
|
|
qglTextureParameterfEXT(image->texnum, textureTarget, GL_TEXTURE_WRAP_S, glWrapClampMode);
|
|
qglTextureParameterfEXT(image->texnum, textureTarget, GL_TEXTURE_WRAP_T, glWrapClampMode);
|
|
|
|
if (cubemap)
|
|
qglTextureParameteriEXT(image->texnum, textureTarget, GL_TEXTURE_WRAP_R, glWrapClampMode);
|
|
|
|
if (textureFilterAnisotropic && !cubemap)
|
|
qglTextureParameteriEXT(image->texnum, textureTarget, GL_TEXTURE_MAX_ANISOTROPY_EXT,
|
|
mipmap ? (GLint)Com_Clamp(1, maxAnisotropy, r_ext_max_anisotropy->integer) : 1);
|
|
|
|
switch(internalFormat)
|
|
{
|
|
case GL_DEPTH_COMPONENT:
|
|
case GL_DEPTH_COMPONENT16_ARB:
|
|
case GL_DEPTH_COMPONENT24_ARB:
|
|
case GL_DEPTH_COMPONENT32_ARB:
|
|
// Fix for sampling depth buffer on old nVidia cards.
|
|
// from http://www.idevgames.com/forums/thread-4141-post-34844.html#pid34844
|
|
qglTextureParameterfEXT(image->texnum, textureTarget, GL_DEPTH_TEXTURE_MODE, GL_LUMINANCE);
|
|
qglTextureParameterfEXT(image->texnum, textureTarget, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
qglTextureParameterfEXT(image->texnum, textureTarget, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
break;
|
|
default:
|
|
qglTextureParameterfEXT(image->texnum, textureTarget, GL_TEXTURE_MIN_FILTER, mipmap ? gl_filter_min : GL_LINEAR);
|
|
qglTextureParameterfEXT(image->texnum, textureTarget, GL_TEXTURE_MAG_FILTER, mipmap ? gl_filter_max : GL_LINEAR);
|
|
break;
|
|
}
|
|
|
|
GL_CheckErrors();
|
|
|
|
hash = generateHashValue(name);
|
|
image->next = hashTable[hash];
|
|
hashTable[hash] = image;
|
|
|
|
return image;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_CreateImage
|
|
|
|
Wrapper for R_CreateImage2(), for the old parameters.
|
|
================
|
|
*/
|
|
image_t *R_CreateImage(const char *name, byte *pic, int width, int height, imgType_t type, imgFlags_t flags, int internalFormat)
|
|
{
|
|
return R_CreateImage2(name, pic, width, height, GL_RGBA8, 0, type, flags, internalFormat);
|
|
}
|
|
|
|
|
|
void R_UpdateSubImage( image_t *image, byte *pic, int x, int y, int width, int height )
|
|
{
|
|
Upload32(pic, x, y, width, height, GL_RGBA8, 0, image, qfalse);
|
|
}
|
|
|
|
//===================================================================
|
|
|
|
// Prototype for dds loader function which isn't common to both renderers
|
|
void R_LoadDDS(const char *filename, byte **pic, int *width, int *height, GLenum *picFormat, int *numMips);
|
|
|
|
typedef struct
|
|
{
|
|
char *ext;
|
|
void (*ImageLoader)( const char *, unsigned char **, int *, int * );
|
|
} imageExtToLoaderMap_t;
|
|
|
|
// Note that the ordering indicates the order of preference used
|
|
// when there are multiple images of different formats available
|
|
static imageExtToLoaderMap_t imageLoaders[ ] =
|
|
{
|
|
{ "tga", R_LoadTGA },
|
|
{ "jpg", R_LoadJPG },
|
|
{ "jpeg", R_LoadJPG },
|
|
{ "png", R_LoadPNG },
|
|
{ "pcx", R_LoadPCX },
|
|
{ "bmp", R_LoadBMP }
|
|
};
|
|
|
|
static int numImageLoaders = ARRAY_LEN( imageLoaders );
|
|
|
|
/*
|
|
=================
|
|
R_LoadImage
|
|
|
|
Loads any of the supported image types into a cannonical
|
|
32 bit format.
|
|
=================
|
|
*/
|
|
void R_LoadImage( const char *name, byte **pic, int *width, int *height, GLenum *picFormat, int *numMips )
|
|
{
|
|
qboolean orgNameFailed = qfalse;
|
|
int orgLoader = -1;
|
|
int i;
|
|
char localName[ MAX_QPATH ];
|
|
const char *ext;
|
|
char *altName;
|
|
|
|
*pic = NULL;
|
|
*width = 0;
|
|
*height = 0;
|
|
*picFormat = GL_RGBA8;
|
|
*numMips = 0;
|
|
|
|
Q_strncpyz( localName, name, MAX_QPATH );
|
|
|
|
ext = COM_GetExtension( localName );
|
|
|
|
// If compressed textures are enabled, try loading a DDS first, it'll load fastest
|
|
if (r_ext_compressed_textures->integer)
|
|
{
|
|
char ddsName[MAX_QPATH];
|
|
|
|
COM_StripExtension(name, ddsName, MAX_QPATH);
|
|
Q_strcat(ddsName, MAX_QPATH, ".dds");
|
|
|
|
R_LoadDDS(ddsName, pic, width, height, picFormat, numMips);
|
|
|
|
// If loaded, we're done.
|
|
if (*pic)
|
|
return;
|
|
}
|
|
|
|
if( *ext )
|
|
{
|
|
// Look for the correct loader and use it
|
|
for( i = 0; i < numImageLoaders; i++ )
|
|
{
|
|
if( !Q_stricmp( ext, imageLoaders[ i ].ext ) )
|
|
{
|
|
// Load
|
|
imageLoaders[ i ].ImageLoader( localName, pic, width, height );
|
|
break;
|
|
}
|
|
}
|
|
|
|
// A loader was found
|
|
if( i < numImageLoaders )
|
|
{
|
|
if( *pic == NULL )
|
|
{
|
|
// Loader failed, most likely because the file isn't there;
|
|
// try again without the extension
|
|
orgNameFailed = qtrue;
|
|
orgLoader = i;
|
|
COM_StripExtension( name, localName, MAX_QPATH );
|
|
}
|
|
else
|
|
{
|
|
// Something loaded
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try and find a suitable match using all
|
|
// the image formats supported
|
|
for( i = 0; i < numImageLoaders; i++ )
|
|
{
|
|
if (i == orgLoader)
|
|
continue;
|
|
|
|
altName = va( "%s.%s", localName, imageLoaders[ i ].ext );
|
|
|
|
// Load
|
|
imageLoaders[ i ].ImageLoader( altName, pic, width, height );
|
|
|
|
if( *pic )
|
|
{
|
|
if( orgNameFailed )
|
|
{
|
|
ri.Printf( PRINT_DEVELOPER, "WARNING: %s not present, using %s instead\n",
|
|
name, altName );
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_FindImageFile
|
|
|
|
Finds or loads the given image.
|
|
Returns NULL if it fails, not a default image.
|
|
==============
|
|
*/
|
|
image_t *R_FindImageFile( const char *name, imgType_t type, imgFlags_t flags )
|
|
{
|
|
image_t *image;
|
|
int width, height;
|
|
byte *pic;
|
|
GLenum picFormat;
|
|
int picNumMips;
|
|
long hash;
|
|
imgFlags_t checkFlagsTrue, checkFlagsFalse;
|
|
|
|
if (!name) {
|
|
return NULL;
|
|
}
|
|
|
|
hash = generateHashValue(name);
|
|
|
|
//
|
|
// see if the image is already loaded
|
|
//
|
|
for (image=hashTable[hash]; image; image=image->next) {
|
|
if ( !strcmp( name, image->imgName ) ) {
|
|
// the white image can be used with any set of parms, but other mismatches are errors
|
|
if ( strcmp( name, "*white" ) ) {
|
|
if ( image->flags != flags ) {
|
|
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed flags (%i vs %i)\n", name, image->flags, flags );
|
|
}
|
|
}
|
|
return image;
|
|
}
|
|
}
|
|
|
|
//
|
|
// load the pic from disk
|
|
//
|
|
R_LoadImage( name, &pic, &width, &height, &picFormat, &picNumMips );
|
|
if ( pic == NULL ) {
|
|
return NULL;
|
|
}
|
|
|
|
checkFlagsTrue = IMGFLAG_PICMIP | IMGFLAG_MIPMAP | IMGFLAG_GENNORMALMAP;
|
|
checkFlagsFalse = IMGFLAG_CUBEMAP;
|
|
if (r_normalMapping->integer && (picFormat == GL_RGBA8) && (type == IMGTYPE_COLORALPHA) &&
|
|
((flags & checkFlagsTrue) == checkFlagsTrue) && !(flags & checkFlagsFalse))
|
|
{
|
|
char normalName[MAX_QPATH];
|
|
image_t *normalImage;
|
|
int normalWidth, normalHeight;
|
|
imgFlags_t normalFlags;
|
|
|
|
normalFlags = (flags & ~IMGFLAG_GENNORMALMAP) | IMGFLAG_NOLIGHTSCALE;
|
|
|
|
COM_StripExtension(name, normalName, MAX_QPATH);
|
|
Q_strcat(normalName, MAX_QPATH, "_n");
|
|
|
|
// find normalmap in case it's there
|
|
normalImage = R_FindImageFile(normalName, IMGTYPE_NORMAL, normalFlags);
|
|
|
|
// if not, generate it
|
|
if (normalImage == NULL)
|
|
{
|
|
byte *normalPic;
|
|
int x, y;
|
|
|
|
normalWidth = width;
|
|
normalHeight = height;
|
|
normalPic = ri.Malloc(width * height * 4);
|
|
RGBAtoNormal(pic, normalPic, width, height, flags & IMGFLAG_CLAMPTOEDGE);
|
|
|
|
#if 1
|
|
// Brighten up the original image to work with the normal map
|
|
RGBAtoYCoCgA(pic, pic, width, height);
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
byte *picbyte = pic + y * width * 4;
|
|
byte *normbyte = normalPic + y * width * 4;
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
int div = MAX(normbyte[2] - 127, 16);
|
|
picbyte[0] = CLAMP(picbyte[0] * 128 / div, 0, 255);
|
|
picbyte += 4;
|
|
normbyte += 4;
|
|
}
|
|
}
|
|
YCoCgAtoRGBA(pic, pic, width, height);
|
|
#else
|
|
// Blur original image's luma to work with the normal map
|
|
{
|
|
byte *blurPic;
|
|
|
|
RGBAtoYCoCgA(pic, pic, width, height);
|
|
blurPic = ri.Malloc(width * height);
|
|
|
|
for (y = 1; y < height - 1; y++)
|
|
{
|
|
byte *picbyte = pic + y * width * 4;
|
|
byte *blurbyte = blurPic + y * width;
|
|
|
|
picbyte += 4;
|
|
blurbyte += 1;
|
|
|
|
for (x = 1; x < width - 1; x++)
|
|
{
|
|
int result;
|
|
|
|
result = *(picbyte - (width + 1) * 4) + *(picbyte - width * 4) + *(picbyte - (width - 1) * 4) +
|
|
*(picbyte - 1 * 4) + *(picbyte ) + *(picbyte + 1 * 4) +
|
|
*(picbyte + (width - 1) * 4) + *(picbyte + width * 4) + *(picbyte + (width + 1) * 4);
|
|
|
|
result /= 9;
|
|
|
|
*blurbyte = result;
|
|
picbyte += 4;
|
|
blurbyte += 1;
|
|
}
|
|
}
|
|
|
|
// FIXME: do borders
|
|
|
|
for (y = 1; y < height - 1; y++)
|
|
{
|
|
byte *picbyte = pic + y * width * 4;
|
|
byte *blurbyte = blurPic + y * width;
|
|
|
|
picbyte += 4;
|
|
blurbyte += 1;
|
|
|
|
for (x = 1; x < width - 1; x++)
|
|
{
|
|
picbyte[0] = *blurbyte;
|
|
picbyte += 4;
|
|
blurbyte += 1;
|
|
}
|
|
}
|
|
|
|
ri.Free(blurPic);
|
|
|
|
YCoCgAtoRGBA(pic, pic, width, height);
|
|
}
|
|
#endif
|
|
|
|
R_CreateImage( normalName, normalPic, normalWidth, normalHeight, IMGTYPE_NORMAL, normalFlags, 0 );
|
|
ri.Free( normalPic );
|
|
}
|
|
}
|
|
|
|
// force mipmaps off if image is compressed but doesn't have enough mips
|
|
if ((flags & IMGFLAG_MIPMAP) && picFormat != GL_RGBA8 && picFormat != GL_SRGB8_ALPHA8_EXT)
|
|
{
|
|
int wh = MAX(width, height);
|
|
int neededMips = 0;
|
|
while (wh)
|
|
{
|
|
neededMips++;
|
|
wh >>= 1;
|
|
}
|
|
if (neededMips > picNumMips)
|
|
flags &= ~IMGFLAG_MIPMAP;
|
|
}
|
|
|
|
image = R_CreateImage2( ( char * ) name, pic, width, height, picFormat, picNumMips, type, flags, 0 );
|
|
ri.Free( pic );
|
|
return image;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_CreateDlightImage
|
|
================
|
|
*/
|
|
#define DLIGHT_SIZE 16
|
|
static void R_CreateDlightImage( void ) {
|
|
int x,y;
|
|
byte data[DLIGHT_SIZE][DLIGHT_SIZE][4];
|
|
int b;
|
|
|
|
// make a centered inverse-square falloff blob for dynamic lighting
|
|
for (x=0 ; x<DLIGHT_SIZE ; x++) {
|
|
for (y=0 ; y<DLIGHT_SIZE ; y++) {
|
|
float d;
|
|
|
|
d = ( DLIGHT_SIZE/2 - 0.5f - x ) * ( DLIGHT_SIZE/2 - 0.5f - x ) +
|
|
( DLIGHT_SIZE/2 - 0.5f - y ) * ( DLIGHT_SIZE/2 - 0.5f - y );
|
|
b = 4000 / d;
|
|
if (b > 255) {
|
|
b = 255;
|
|
} else if ( b < 75 ) {
|
|
b = 0;
|
|
}
|
|
data[y][x][0] =
|
|
data[y][x][1] =
|
|
data[y][x][2] = b;
|
|
data[y][x][3] = 255;
|
|
}
|
|
}
|
|
tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE, 0 );
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
R_InitFogTable
|
|
=================
|
|
*/
|
|
void R_InitFogTable( void ) {
|
|
int i;
|
|
float d;
|
|
float exp;
|
|
|
|
exp = 0.5;
|
|
|
|
for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) {
|
|
d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp );
|
|
|
|
tr.fogTable[i] = d;
|
|
}
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_FogFactor
|
|
|
|
Returns a 0.0 to 1.0 fog density value
|
|
This is called for each texel of the fog texture on startup
|
|
and for each vertex of transparent shaders in fog dynamically
|
|
================
|
|
*/
|
|
float R_FogFactor( float s, float t ) {
|
|
float d;
|
|
|
|
s -= 1.0/512;
|
|
if ( s < 0 ) {
|
|
return 0;
|
|
}
|
|
if ( t < 1.0/32 ) {
|
|
return 0;
|
|
}
|
|
if ( t < 31.0/32 ) {
|
|
s *= (t - 1.0f/32.0f) / (30.0f/32.0f);
|
|
}
|
|
|
|
// we need to leave a lot of clamp range
|
|
s *= 8;
|
|
|
|
if ( s > 1.0 ) {
|
|
s = 1.0;
|
|
}
|
|
|
|
d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ];
|
|
|
|
return d;
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_CreateFogImage
|
|
================
|
|
*/
|
|
#define FOG_S 256
|
|
#define FOG_T 32
|
|
static void R_CreateFogImage( void ) {
|
|
int x,y;
|
|
byte *data;
|
|
float d;
|
|
|
|
data = ri.Hunk_AllocateTempMemory( FOG_S * FOG_T * 4 );
|
|
|
|
// S is distance, T is depth
|
|
for (x=0 ; x<FOG_S ; x++) {
|
|
for (y=0 ; y<FOG_T ; y++) {
|
|
d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
|
|
|
|
data[(y*FOG_S+x)*4+0] =
|
|
data[(y*FOG_S+x)*4+1] =
|
|
data[(y*FOG_S+x)*4+2] = 255;
|
|
data[(y*FOG_S+x)*4+3] = 255*d;
|
|
}
|
|
}
|
|
tr.fogImage = R_CreateImage("*fog", (byte *)data, FOG_S, FOG_T, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE, 0 );
|
|
ri.Hunk_FreeTempMemory( data );
|
|
}
|
|
|
|
/*
|
|
==================
|
|
R_CreateDefaultImage
|
|
==================
|
|
*/
|
|
#define DEFAULT_SIZE 16
|
|
static void R_CreateDefaultImage( void ) {
|
|
int x;
|
|
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
|
|
|
|
// the default image will be a box, to allow you to see the mapping coordinates
|
|
Com_Memset( data, 32, sizeof( data ) );
|
|
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
|
|
data[0][x][0] =
|
|
data[0][x][1] =
|
|
data[0][x][2] =
|
|
data[0][x][3] = 255;
|
|
|
|
data[x][0][0] =
|
|
data[x][0][1] =
|
|
data[x][0][2] =
|
|
data[x][0][3] = 255;
|
|
|
|
data[DEFAULT_SIZE-1][x][0] =
|
|
data[DEFAULT_SIZE-1][x][1] =
|
|
data[DEFAULT_SIZE-1][x][2] =
|
|
data[DEFAULT_SIZE-1][x][3] = 255;
|
|
|
|
data[x][DEFAULT_SIZE-1][0] =
|
|
data[x][DEFAULT_SIZE-1][1] =
|
|
data[x][DEFAULT_SIZE-1][2] =
|
|
data[x][DEFAULT_SIZE-1][3] = 255;
|
|
}
|
|
tr.defaultImage = R_CreateImage("*default", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_MIPMAP, 0);
|
|
}
|
|
|
|
/*
|
|
==================
|
|
R_CreateBuiltinImages
|
|
==================
|
|
*/
|
|
void R_CreateBuiltinImages( void ) {
|
|
int x,y;
|
|
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
|
|
|
|
R_CreateDefaultImage();
|
|
|
|
// we use a solid white image instead of disabling texturing
|
|
Com_Memset( data, 255, sizeof( data ) );
|
|
tr.whiteImage = R_CreateImage("*white", (byte *)data, 8, 8, IMGTYPE_COLORALPHA, IMGFLAG_NONE, 0);
|
|
|
|
if (r_dlightMode->integer >= 2)
|
|
{
|
|
for( x = 0; x < MAX_DLIGHTS; x++)
|
|
{
|
|
tr.shadowCubemaps[x] = R_CreateImage(va("*shadowcubemap%i", x), NULL, PSHADOW_MAP_SIZE, PSHADOW_MAP_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE | IMGFLAG_CUBEMAP, 0);
|
|
}
|
|
}
|
|
|
|
// with overbright bits active, we need an image which is some fraction of full color,
|
|
// for default lightmaps, etc
|
|
for (x=0 ; x<DEFAULT_SIZE ; x++) {
|
|
for (y=0 ; y<DEFAULT_SIZE ; y++) {
|
|
data[y][x][0] =
|
|
data[y][x][1] =
|
|
data[y][x][2] = tr.identityLightByte;
|
|
data[y][x][3] = 255;
|
|
}
|
|
}
|
|
|
|
tr.identityLightImage = R_CreateImage("*identityLight", (byte *)data, 8, 8, IMGTYPE_COLORALPHA, IMGFLAG_NONE, 0);
|
|
|
|
|
|
for(x=0;x<32;x++) {
|
|
// scratchimage is usually used for cinematic drawing
|
|
tr.scratchImage[x] = R_CreateImage("*scratch", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_PICMIP | IMGFLAG_CLAMPTOEDGE, 0);
|
|
}
|
|
|
|
R_CreateDlightImage();
|
|
R_CreateFogImage();
|
|
|
|
if (glRefConfig.framebufferObject)
|
|
{
|
|
int width, height, hdrFormat, rgbFormat;
|
|
|
|
if(glRefConfig.textureNonPowerOfTwo)
|
|
{
|
|
width = glConfig.vidWidth;
|
|
height = glConfig.vidHeight;
|
|
}
|
|
else
|
|
{
|
|
width = NextPowerOfTwo(glConfig.vidWidth);
|
|
height = NextPowerOfTwo(glConfig.vidHeight);
|
|
}
|
|
|
|
hdrFormat = GL_RGBA8;
|
|
if (r_hdr->integer && glRefConfig.framebufferObject && glRefConfig.textureFloat)
|
|
hdrFormat = GL_RGBA16F_ARB;
|
|
|
|
rgbFormat = GL_RGBA8;
|
|
|
|
tr.renderImage = R_CreateImage("_render", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, hdrFormat);
|
|
|
|
if (r_shadowBlur->integer)
|
|
tr.screenScratchImage = R_CreateImage("screenScratch", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, rgbFormat);
|
|
|
|
if (r_shadowBlur->integer || r_ssao->integer)
|
|
tr.hdrDepthImage = R_CreateImage("*hdrDepth", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_INTENSITY32F_ARB);
|
|
|
|
if (r_drawSunRays->integer)
|
|
tr.sunRaysImage = R_CreateImage("*sunRays", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, rgbFormat);
|
|
|
|
tr.renderDepthImage = R_CreateImage("*renderdepth", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_DEPTH_COMPONENT24_ARB);
|
|
tr.textureDepthImage = R_CreateImage("*texturedepth", NULL, PSHADOW_MAP_SIZE, PSHADOW_MAP_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_DEPTH_COMPONENT24_ARB);
|
|
|
|
{
|
|
unsigned short sdata[4];
|
|
void *p;
|
|
|
|
if (hdrFormat == GL_RGBA16F_ARB)
|
|
{
|
|
sdata[0] = FloatToHalf(0.0f);
|
|
sdata[1] = FloatToHalf(0.45f);
|
|
sdata[2] = FloatToHalf(1.0f);
|
|
sdata[3] = FloatToHalf(1.0f);
|
|
p = &sdata[0];
|
|
}
|
|
else
|
|
{
|
|
data[0][0][0] = 0;
|
|
data[0][0][1] = 0.45f * 255;
|
|
data[0][0][2] = 255;
|
|
data[0][0][3] = 255;
|
|
p = data;
|
|
}
|
|
|
|
tr.calcLevelsImage = R_CreateImage("*calcLevels", p, 1, 1, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, hdrFormat);
|
|
tr.targetLevelsImage = R_CreateImage("*targetLevels", p, 1, 1, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, hdrFormat);
|
|
tr.fixedLevelsImage = R_CreateImage("*fixedLevels", p, 1, 1, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, hdrFormat);
|
|
}
|
|
|
|
for (x = 0; x < 2; x++)
|
|
{
|
|
tr.textureScratchImage[x] = R_CreateImage(va("*textureScratch%d", x), NULL, 256, 256, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
|
|
}
|
|
for (x = 0; x < 2; x++)
|
|
{
|
|
tr.quarterImage[x] = R_CreateImage(va("*quarter%d", x), NULL, width / 2, height / 2, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
|
|
}
|
|
|
|
if (r_ssao->integer)
|
|
{
|
|
tr.screenSsaoImage = R_CreateImage("*screenSsao", NULL, width / 2, height / 2, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
|
|
}
|
|
|
|
if (r_shadows->integer == 4)
|
|
{
|
|
for( x = 0; x < MAX_DRAWN_PSHADOWS; x++)
|
|
{
|
|
tr.pshadowMaps[x] = R_CreateImage(va("*shadowmap%i", x), NULL, PSHADOW_MAP_SIZE, PSHADOW_MAP_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
|
|
}
|
|
}
|
|
|
|
if (r_sunlightMode->integer)
|
|
{
|
|
for ( x = 0; x < 4; x++)
|
|
{
|
|
tr.sunShadowDepthImage[x] = R_CreateImage(va("*sunshadowdepth%i", x), NULL, r_shadowMapSize->integer, r_shadowMapSize->integer, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_DEPTH_COMPONENT24_ARB);
|
|
qglTextureParameterfEXT(tr.sunShadowDepthImage[x]->texnum, GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE);
|
|
qglTextureParameterfEXT(tr.sunShadowDepthImage[x]->texnum, GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);
|
|
}
|
|
|
|
tr.screenShadowImage = R_CreateImage("*screenShadow", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
|
|
}
|
|
|
|
if (r_cubeMapping->integer)
|
|
{
|
|
tr.renderCubeImage = R_CreateImage("*renderCube", NULL, r_cubemapSize->integer, r_cubemapSize->integer, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE | IMGFLAG_MIPMAP | IMGFLAG_CUBEMAP, rgbFormat);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_SetColorMappings
|
|
===============
|
|
*/
|
|
void R_SetColorMappings( void ) {
|
|
int i, j;
|
|
float g;
|
|
int inf;
|
|
|
|
// setup the overbright lighting
|
|
tr.overbrightBits = r_overBrightBits->integer;
|
|
|
|
// allow 2 overbright bits
|
|
if ( tr.overbrightBits > 2 ) {
|
|
tr.overbrightBits = 2;
|
|
} else if ( tr.overbrightBits < 0 ) {
|
|
tr.overbrightBits = 0;
|
|
}
|
|
|
|
// don't allow more overbright bits than map overbright bits
|
|
if ( tr.overbrightBits > r_mapOverBrightBits->integer ) {
|
|
tr.overbrightBits = r_mapOverBrightBits->integer;
|
|
}
|
|
|
|
tr.identityLight = 1.0f / ( 1 << tr.overbrightBits );
|
|
tr.identityLightByte = 255 * tr.identityLight;
|
|
|
|
|
|
if ( r_intensity->value <= 1 ) {
|
|
ri.Cvar_Set( "r_intensity", "1" );
|
|
}
|
|
|
|
if ( r_gamma->value < 0.5f ) {
|
|
ri.Cvar_Set( "r_gamma", "0.5" );
|
|
} else if ( r_gamma->value > 3.0f ) {
|
|
ri.Cvar_Set( "r_gamma", "3.0" );
|
|
}
|
|
|
|
g = r_gamma->value;
|
|
|
|
for ( i = 0; i < 256; i++ ) {
|
|
if ( g == 1 ) {
|
|
inf = i;
|
|
} else {
|
|
inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f;
|
|
}
|
|
|
|
if (inf < 0) {
|
|
inf = 0;
|
|
}
|
|
if (inf > 255) {
|
|
inf = 255;
|
|
}
|
|
s_gammatable[i] = inf;
|
|
}
|
|
|
|
for (i=0 ; i<256 ; i++) {
|
|
j = i * r_intensity->value;
|
|
if (j > 255) {
|
|
j = 255;
|
|
}
|
|
s_intensitytable[i] = j;
|
|
}
|
|
|
|
if ( glConfig.deviceSupportsGamma )
|
|
{
|
|
GLimp_SetGamma( s_gammatable, s_gammatable, s_gammatable );
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_InitImages
|
|
===============
|
|
*/
|
|
void R_InitImages( void ) {
|
|
Com_Memset(hashTable, 0, sizeof(hashTable));
|
|
// build brightness translation tables
|
|
R_SetColorMappings();
|
|
|
|
// create default texture and white texture
|
|
R_CreateBuiltinImages();
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_DeleteTextures
|
|
===============
|
|
*/
|
|
void R_DeleteTextures( void ) {
|
|
int i;
|
|
|
|
for ( i=0; i<tr.numImages ; i++ ) {
|
|
qglDeleteTextures( 1, &tr.images[i]->texnum );
|
|
}
|
|
Com_Memset( tr.images, 0, sizeof( tr.images ) );
|
|
|
|
tr.numImages = 0;
|
|
|
|
GL_BindNullTextures();
|
|
}
|
|
|
|
/*
|
|
============================================================================
|
|
|
|
SKINS
|
|
|
|
============================================================================
|
|
*/
|
|
|
|
/*
|
|
==================
|
|
CommaParse
|
|
|
|
This is unfortunate, but the skin files aren't
|
|
compatable with our normal parsing rules.
|
|
==================
|
|
*/
|
|
static char *CommaParse( char **data_p ) {
|
|
int c = 0, len;
|
|
char *data;
|
|
static char com_token[MAX_TOKEN_CHARS];
|
|
|
|
data = *data_p;
|
|
len = 0;
|
|
com_token[0] = 0;
|
|
|
|
// make sure incoming data is valid
|
|
if ( !data ) {
|
|
*data_p = NULL;
|
|
return com_token;
|
|
}
|
|
|
|
while ( 1 ) {
|
|
// skip whitespace
|
|
while( (c = *data) <= ' ') {
|
|
if( !c ) {
|
|
break;
|
|
}
|
|
data++;
|
|
}
|
|
|
|
|
|
c = *data;
|
|
|
|
// skip double slash comments
|
|
if ( c == '/' && data[1] == '/' )
|
|
{
|
|
data += 2;
|
|
while (*data && *data != '\n') {
|
|
data++;
|
|
}
|
|
}
|
|
// skip /* */ comments
|
|
else if ( c=='/' && data[1] == '*' )
|
|
{
|
|
data += 2;
|
|
while ( *data && ( *data != '*' || data[1] != '/' ) )
|
|
{
|
|
data++;
|
|
}
|
|
if ( *data )
|
|
{
|
|
data += 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( c == 0 ) {
|
|
return "";
|
|
}
|
|
|
|
// handle quoted strings
|
|
if (c == '\"')
|
|
{
|
|
data++;
|
|
while (1)
|
|
{
|
|
c = *data++;
|
|
if (c=='\"' || !c)
|
|
{
|
|
com_token[len] = 0;
|
|
*data_p = ( char * ) data;
|
|
return com_token;
|
|
}
|
|
if (len < MAX_TOKEN_CHARS - 1)
|
|
{
|
|
com_token[len] = c;
|
|
len++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// parse a regular word
|
|
do
|
|
{
|
|
if (len < MAX_TOKEN_CHARS - 1)
|
|
{
|
|
com_token[len] = c;
|
|
len++;
|
|
}
|
|
data++;
|
|
c = *data;
|
|
} while (c>32 && c != ',' );
|
|
|
|
com_token[len] = 0;
|
|
|
|
*data_p = ( char * ) data;
|
|
return com_token;
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
RE_RegisterSkin
|
|
|
|
===============
|
|
*/
|
|
qhandle_t RE_RegisterSkin( const char *name ) {
|
|
qhandle_t hSkin;
|
|
skin_t *skin;
|
|
skinSurface_t *surf;
|
|
union {
|
|
char *c;
|
|
void *v;
|
|
} text;
|
|
char *text_p;
|
|
char *token;
|
|
char surfName[MAX_QPATH];
|
|
|
|
if ( !name || !name[0] ) {
|
|
ri.Printf( PRINT_DEVELOPER, "Empty name passed to RE_RegisterSkin\n" );
|
|
return 0;
|
|
}
|
|
|
|
if ( strlen( name ) >= MAX_QPATH ) {
|
|
ri.Printf( PRINT_DEVELOPER, "Skin name exceeds MAX_QPATH\n" );
|
|
return 0;
|
|
}
|
|
|
|
|
|
// see if the skin is already loaded
|
|
for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) {
|
|
skin = tr.skins[hSkin];
|
|
if ( !Q_stricmp( skin->name, name ) ) {
|
|
if( skin->numSurfaces == 0 ) {
|
|
return 0; // default skin
|
|
}
|
|
return hSkin;
|
|
}
|
|
}
|
|
|
|
// allocate a new skin
|
|
if ( tr.numSkins == MAX_SKINS ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name );
|
|
return 0;
|
|
}
|
|
tr.numSkins++;
|
|
skin = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
|
|
tr.skins[hSkin] = skin;
|
|
Q_strncpyz( skin->name, name, sizeof( skin->name ) );
|
|
skin->numSurfaces = 0;
|
|
|
|
R_IssuePendingRenderCommands();
|
|
|
|
// If not a .skin file, load as a single shader
|
|
if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) {
|
|
skin->numSurfaces = 1;
|
|
skin->surfaces[0] = ri.Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low );
|
|
skin->surfaces[0]->shader = R_FindShader( name, LIGHTMAP_NONE, qtrue );
|
|
return hSkin;
|
|
}
|
|
|
|
// load and parse the skin file
|
|
ri.FS_ReadFile( name, &text.v );
|
|
if ( !text.c ) {
|
|
return 0;
|
|
}
|
|
|
|
text_p = text.c;
|
|
while ( text_p && *text_p ) {
|
|
// get surface name
|
|
token = CommaParse( &text_p );
|
|
Q_strncpyz( surfName, token, sizeof( surfName ) );
|
|
|
|
if ( !token[0] ) {
|
|
break;
|
|
}
|
|
// lowercase the surface name so skin compares are faster
|
|
Q_strlwr( surfName );
|
|
|
|
if ( *text_p == ',' ) {
|
|
text_p++;
|
|
}
|
|
|
|
if ( strstr( token, "tag_" ) ) {
|
|
continue;
|
|
}
|
|
|
|
// parse the shader name
|
|
token = CommaParse( &text_p );
|
|
|
|
if ( skin->numSurfaces >= MD3_MAX_SURFACES ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: Ignoring surfaces in '%s', the max is %d surfaces!\n", name, MD3_MAX_SURFACES );
|
|
break;
|
|
}
|
|
|
|
surf = skin->surfaces[ skin->numSurfaces ] = ri.Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low );
|
|
Q_strncpyz( surf->name, surfName, sizeof( surf->name ) );
|
|
surf->shader = R_FindShader( token, LIGHTMAP_NONE, qtrue );
|
|
skin->numSurfaces++;
|
|
}
|
|
|
|
ri.FS_FreeFile( text.v );
|
|
|
|
|
|
// never let a skin have 0 shaders
|
|
if ( skin->numSurfaces == 0 ) {
|
|
return 0; // use default skin
|
|
}
|
|
|
|
return hSkin;
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_InitSkins
|
|
===============
|
|
*/
|
|
void R_InitSkins( void ) {
|
|
skin_t *skin;
|
|
|
|
tr.numSkins = 1;
|
|
|
|
// make the default skin have all default shaders
|
|
skin = tr.skins[0] = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
|
|
Q_strncpyz( skin->name, "<default skin>", sizeof( skin->name ) );
|
|
skin->numSurfaces = 1;
|
|
skin->surfaces[0] = ri.Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low );
|
|
skin->surfaces[0]->shader = tr.defaultShader;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_GetSkinByHandle
|
|
===============
|
|
*/
|
|
skin_t *R_GetSkinByHandle( qhandle_t hSkin ) {
|
|
if ( hSkin < 1 || hSkin >= tr.numSkins ) {
|
|
return tr.skins[0];
|
|
}
|
|
return tr.skins[ hSkin ];
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_SkinList_f
|
|
===============
|
|
*/
|
|
void R_SkinList_f( void ) {
|
|
int i, j;
|
|
skin_t *skin;
|
|
|
|
ri.Printf (PRINT_ALL, "------------------\n");
|
|
|
|
for ( i = 0 ; i < tr.numSkins ; i++ ) {
|
|
skin = tr.skins[i];
|
|
|
|
ri.Printf( PRINT_ALL, "%3i:%s\n", i, skin->name );
|
|
for ( j = 0 ; j < skin->numSurfaces ; j++ ) {
|
|
ri.Printf( PRINT_ALL, " %s = %s\n",
|
|
skin->surfaces[j]->name, skin->surfaces[j]->shader->name );
|
|
}
|
|
}
|
|
ri.Printf (PRINT_ALL, "------------------\n");
|
|
}
|
|
|
|
|