lilium-voyager/code/renderergl2/tr_surface.c
Victor Roemer 398dea397c Fix Makefile for OSX
Bump base SDK from 10.5 -> 10.7
Just use the builtin __APPLE__
2016-06-12 17:17:33 -04:00

1691 lines
46 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_surf.c
#include "tr_local.h"
#if idppc_altivec && !defined(__APPLE__)
#include <altivec.h>
#endif
/*
THIS ENTIRE FILE IS BACK END
backEnd.currentEntity will be valid.
Tess_Begin has already been called for the surface's shader.
The modelview matrix will be set.
It is safe to actually issue drawing commands here if you don't want to
use the shader system.
*/
//============================================================================
/*
==============
RB_CheckOverflow
==============
*/
void RB_CheckOverflow( int verts, int indexes ) {
if (tess.numVertexes + verts < SHADER_MAX_VERTEXES
&& tess.numIndexes + indexes < SHADER_MAX_INDEXES) {
return;
}
RB_EndSurface();
if ( verts >= SHADER_MAX_VERTEXES ) {
ri.Error(ERR_DROP, "RB_CheckOverflow: verts > MAX (%d > %d)", verts, SHADER_MAX_VERTEXES );
}
if ( indexes >= SHADER_MAX_INDEXES ) {
ri.Error(ERR_DROP, "RB_CheckOverflow: indices > MAX (%d > %d)", indexes, SHADER_MAX_INDEXES );
}
RB_BeginSurface(tess.shader, tess.fogNum, tess.cubemapIndex );
}
void RB_CheckVao(vao_t *vao)
{
if (vao != glState.currentVao || tess.multiDrawPrimitives >= MAX_MULTIDRAW_PRIMITIVES)
{
RB_EndSurface();
RB_BeginSurface(tess.shader, tess.fogNum, tess.cubemapIndex);
R_BindVao(vao);
}
if (vao != tess.vao)
tess.useInternalVao = qfalse;
}
/*
==============
RB_AddQuadStampExt
==============
*/
void RB_AddQuadStampExt( vec3_t origin, vec3_t left, vec3_t up, float color[4], float s1, float t1, float s2, float t2 ) {
vec3_t normal;
uint32_t pNormal;
int ndx;
RB_CheckVao(tess.vao);
RB_CHECKOVERFLOW( 4, 6 );
ndx = tess.numVertexes;
// triangle indexes for a simple quad
tess.indexes[ tess.numIndexes ] = ndx;
tess.indexes[ tess.numIndexes + 1 ] = ndx + 1;
tess.indexes[ tess.numIndexes + 2 ] = ndx + 3;
tess.indexes[ tess.numIndexes + 3 ] = ndx + 3;
tess.indexes[ tess.numIndexes + 4 ] = ndx + 1;
tess.indexes[ tess.numIndexes + 5 ] = ndx + 2;
tess.xyz[ndx][0] = origin[0] + left[0] + up[0];
tess.xyz[ndx][1] = origin[1] + left[1] + up[1];
tess.xyz[ndx][2] = origin[2] + left[2] + up[2];
tess.xyz[ndx+1][0] = origin[0] - left[0] + up[0];
tess.xyz[ndx+1][1] = origin[1] - left[1] + up[1];
tess.xyz[ndx+1][2] = origin[2] - left[2] + up[2];
tess.xyz[ndx+2][0] = origin[0] - left[0] - up[0];
tess.xyz[ndx+2][1] = origin[1] - left[1] - up[1];
tess.xyz[ndx+2][2] = origin[2] - left[2] - up[2];
tess.xyz[ndx+3][0] = origin[0] + left[0] - up[0];
tess.xyz[ndx+3][1] = origin[1] + left[1] - up[1];
tess.xyz[ndx+3][2] = origin[2] + left[2] - up[2];
// constant normal all the way around
VectorSubtract( vec3_origin, backEnd.viewParms.or.axis[0], normal );
R_VaoPackNormal((byte *)&pNormal, normal);
tess.normal[ndx] =
tess.normal[ndx+1] =
tess.normal[ndx+2] =
tess.normal[ndx+3] = pNormal;
// standard square texture coordinates
VectorSet2(tess.texCoords[ndx ][0], s1, t1);
VectorSet2(tess.texCoords[ndx ][1], s1, t1);
VectorSet2(tess.texCoords[ndx+1][0], s2, t1);
VectorSet2(tess.texCoords[ndx+1][1], s2, t1);
VectorSet2(tess.texCoords[ndx+2][0], s2, t2);
VectorSet2(tess.texCoords[ndx+2][1], s2, t2);
VectorSet2(tess.texCoords[ndx+3][0], s1, t2);
VectorSet2(tess.texCoords[ndx+3][1], s1, t2);
// constant color all the way around
// should this be identity and let the shader specify from entity?
VectorCopy4(color, tess.vertexColors[ndx]);
VectorCopy4(color, tess.vertexColors[ndx+1]);
VectorCopy4(color, tess.vertexColors[ndx+2]);
VectorCopy4(color, tess.vertexColors[ndx+3]);
tess.numVertexes += 4;
tess.numIndexes += 6;
}
/*
==============
RB_AddQuadStamp
==============
*/
void RB_AddQuadStamp( vec3_t origin, vec3_t left, vec3_t up, float color[4] ) {
RB_AddQuadStampExt( origin, left, up, color, 0, 0, 1, 1 );
}
/*
==============
RB_InstantQuad
based on Tess_InstantQuad from xreal
==============
*/
void RB_InstantQuad2(vec4_t quadVerts[4], vec2_t texCoords[4])
{
GLimp_LogComment("--- RB_InstantQuad2 ---\n");
tess.numVertexes = 0;
tess.numIndexes = 0;
tess.firstIndex = 0;
VectorCopy4(quadVerts[0], tess.xyz[tess.numVertexes]);
VectorCopy2(texCoords[0], tess.texCoords[tess.numVertexes][0]);
tess.numVertexes++;
VectorCopy4(quadVerts[1], tess.xyz[tess.numVertexes]);
VectorCopy2(texCoords[1], tess.texCoords[tess.numVertexes][0]);
tess.numVertexes++;
VectorCopy4(quadVerts[2], tess.xyz[tess.numVertexes]);
VectorCopy2(texCoords[2], tess.texCoords[tess.numVertexes][0]);
tess.numVertexes++;
VectorCopy4(quadVerts[3], tess.xyz[tess.numVertexes]);
VectorCopy2(texCoords[3], tess.texCoords[tess.numVertexes][0]);
tess.numVertexes++;
tess.indexes[tess.numIndexes++] = 0;
tess.indexes[tess.numIndexes++] = 1;
tess.indexes[tess.numIndexes++] = 2;
tess.indexes[tess.numIndexes++] = 0;
tess.indexes[tess.numIndexes++] = 2;
tess.indexes[tess.numIndexes++] = 3;
tess.minIndex = 0;
tess.maxIndex = 3;
RB_UpdateTessVao(ATTR_POSITION | ATTR_TEXCOORD);
R_DrawElementsVao(tess.numIndexes, tess.firstIndex, tess.minIndex, tess.maxIndex);
tess.numIndexes = 0;
tess.numVertexes = 0;
tess.firstIndex = 0;
tess.minIndex = 0;
tess.maxIndex = 0;
}
void RB_InstantQuad(vec4_t quadVerts[4])
{
vec2_t texCoords[4];
VectorSet2(texCoords[0], 0.0f, 0.0f);
VectorSet2(texCoords[1], 1.0f, 0.0f);
VectorSet2(texCoords[2], 1.0f, 1.0f);
VectorSet2(texCoords[3], 0.0f, 1.0f);
GLSL_BindProgram(&tr.textureColorShader);
GLSL_SetUniformMat4(&tr.textureColorShader, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection);
GLSL_SetUniformVec4(&tr.textureColorShader, UNIFORM_COLOR, colorWhite);
RB_InstantQuad2(quadVerts, texCoords);
}
/*
==============
RB_SurfaceSprite
==============
*/
static void RB_SurfaceSprite( void ) {
vec3_t left, up;
float radius;
float colors[4];
trRefEntity_t *ent = backEnd.currentEntity;
// calculate the xyz locations for the four corners
radius = ent->e.radius;
if ( ent->e.rotation == 0 ) {
VectorScale( backEnd.viewParms.or.axis[1], radius, left );
VectorScale( backEnd.viewParms.or.axis[2], radius, up );
} else {
float s, c;
float ang;
ang = M_PI * ent->e.rotation / 180;
s = sin( ang );
c = cos( ang );
VectorScale( backEnd.viewParms.or.axis[1], c * radius, left );
VectorMA( left, -s * radius, backEnd.viewParms.or.axis[2], left );
VectorScale( backEnd.viewParms.or.axis[2], c * radius, up );
VectorMA( up, s * radius, backEnd.viewParms.or.axis[1], up );
}
if ( backEnd.viewParms.isMirror ) {
VectorSubtract( vec3_origin, left, left );
}
VectorScale4(ent->e.shaderRGBA, 1.0f / 255.0f, colors);
RB_AddQuadStamp( ent->e.origin, left, up, colors );
}
/*
=============
RB_SurfacePolychain
=============
*/
static void RB_SurfacePolychain( srfPoly_t *p ) {
int i;
int numv;
RB_CheckVao(tess.vao);
RB_CHECKOVERFLOW( p->numVerts, 3*(p->numVerts - 2) );
// fan triangles into the tess array
numv = tess.numVertexes;
for ( i = 0; i < p->numVerts; i++ ) {
VectorCopy( p->verts[i].xyz, tess.xyz[numv] );
tess.texCoords[numv][0][0] = p->verts[i].st[0];
tess.texCoords[numv][0][1] = p->verts[i].st[1];
tess.vertexColors[numv][0] = p->verts[ i ].modulate[0] / 255.0f;
tess.vertexColors[numv][1] = p->verts[ i ].modulate[1] / 255.0f;
tess.vertexColors[numv][2] = p->verts[ i ].modulate[2] / 255.0f;
tess.vertexColors[numv][3] = p->verts[ i ].modulate[3] / 255.0f;
numv++;
}
// generate fan indexes into the tess array
for ( i = 0; i < p->numVerts-2; i++ ) {
tess.indexes[tess.numIndexes + 0] = tess.numVertexes;
tess.indexes[tess.numIndexes + 1] = tess.numVertexes + i + 1;
tess.indexes[tess.numIndexes + 2] = tess.numVertexes + i + 2;
tess.numIndexes += 3;
}
tess.numVertexes = numv;
}
static void RB_SurfaceVertsAndIndexes( int numVerts, srfVert_t *verts, int numIndexes, glIndex_t *indexes, int dlightBits, int pshadowBits)
{
int i;
glIndex_t *inIndex;
srfVert_t *dv;
float *xyz, *texCoords, *lightCoords;
uint32_t *lightdir;
uint32_t *normal;
#ifdef USE_VERT_TANGENT_SPACE
uint32_t *tangent;
#endif
glIndex_t *outIndex;
float *color;
RB_CheckVao(tess.vao);
RB_CHECKOVERFLOW( numVerts, numIndexes );
inIndex = indexes;
outIndex = &tess.indexes[ tess.numIndexes ];
for ( i = 0 ; i < numIndexes ; i++ ) {
*outIndex++ = tess.numVertexes + *inIndex++;
}
tess.numIndexes += numIndexes;
if ( tess.shader->vertexAttribs & ATTR_POSITION )
{
dv = verts;
xyz = tess.xyz[ tess.numVertexes ];
for ( i = 0 ; i < numVerts ; i++, dv++, xyz+=4 )
VectorCopy(dv->xyz, xyz);
}
if ( tess.shader->vertexAttribs & ATTR_NORMAL )
{
dv = verts;
normal = &tess.normal[ tess.numVertexes ];
for ( i = 0 ; i < numVerts ; i++, dv++, normal++ )
R_VaoPackNormal((byte *)normal, dv->normal);
}
#ifdef USE_VERT_TANGENT_SPACE
if ( tess.shader->vertexAttribs & ATTR_TANGENT )
{
dv = verts;
tangent = &tess.tangent[ tess.numVertexes ];
for ( i = 0 ; i < numVerts ; i++, dv++, tangent++ )
R_VaoPackTangent((byte *)tangent, dv->tangent);
}
#endif
if ( tess.shader->vertexAttribs & ATTR_TEXCOORD )
{
dv = verts;
texCoords = tess.texCoords[ tess.numVertexes ][0];
for ( i = 0 ; i < numVerts ; i++, dv++, texCoords+=4 )
VectorCopy2(dv->st, texCoords);
}
if ( tess.shader->vertexAttribs & ATTR_LIGHTCOORD )
{
dv = verts;
lightCoords = tess.texCoords[ tess.numVertexes ][1];
for ( i = 0 ; i < numVerts ; i++, dv++, lightCoords+=4 )
VectorCopy2(dv->lightmap, lightCoords);
}
if ( tess.shader->vertexAttribs & ATTR_COLOR )
{
dv = verts;
color = tess.vertexColors[ tess.numVertexes ];
for ( i = 0 ; i < numVerts ; i++, dv++, color+=4 )
VectorCopy4(dv->vertexColors, color);
}
if ( tess.shader->vertexAttribs & ATTR_LIGHTDIRECTION )
{
dv = verts;
lightdir = &tess.lightdir[ tess.numVertexes ];
for ( i = 0 ; i < numVerts ; i++, dv++, lightdir++ )
R_VaoPackNormal((byte *)lightdir, dv->lightdir);
}
#if 0 // nothing even uses vertex dlightbits
for ( i = 0 ; i < numVerts ; i++ ) {
tess.vertexDlightBits[ tess.numVertexes + i ] = dlightBits;
}
#endif
tess.dlightBits |= dlightBits;
tess.pshadowBits |= pshadowBits;
tess.numVertexes += numVerts;
}
static qboolean RB_SurfaceVao(vao_t *vao, int numVerts, int numIndexes, int firstIndex, int minIndex, int maxIndex, int dlightBits, int pshadowBits, qboolean shaderCheck)
{
int i, mergeForward, mergeBack;
GLvoid *firstIndexOffset, *lastIndexOffset;
if (!vao)
{
return qfalse;
}
if (shaderCheck && !(!ShaderRequiresCPUDeforms(tess.shader) && !tess.shader->isSky && !tess.shader->isPortal))
{
return qfalse;
}
RB_CheckVao(vao);
tess.dlightBits |= dlightBits;
tess.pshadowBits |= pshadowBits;
// merge this into any existing multidraw primitives
mergeForward = -1;
mergeBack = -1;
firstIndexOffset = BUFFER_OFFSET(firstIndex * sizeof(glIndex_t));
lastIndexOffset = BUFFER_OFFSET((firstIndex + numIndexes) * sizeof(glIndex_t));
if (tess.multiDrawPrimitives && r_mergeMultidraws->integer)
{
i = 0;
if (r_mergeMultidraws->integer == 1)
{
// lazy merge, only check the last primitive
i = tess.multiDrawPrimitives - 1;
}
for (; i < tess.multiDrawPrimitives; i++)
{
if (firstIndexOffset == tess.multiDrawFirstIndex[i] + tess.multiDrawNumIndexes[i])
{
mergeBack = i;
if (mergeForward != -1)
break;
}
if (lastIndexOffset == tess.multiDrawFirstIndex[i])
{
mergeForward = i;
if (mergeBack != -1)
break;
}
}
}
if (mergeBack != -1 && mergeForward == -1)
{
tess.multiDrawNumIndexes[mergeBack] += numIndexes;
tess.multiDrawMinIndex[mergeBack] = MIN(tess.multiDrawMinIndex[mergeBack], minIndex);
tess.multiDrawMaxIndex[mergeBack] = MAX(tess.multiDrawMaxIndex[mergeBack], maxIndex);
backEnd.pc.c_multidrawsMerged++;
}
else if (mergeBack == -1 && mergeForward != -1)
{
tess.multiDrawNumIndexes[mergeForward] += numIndexes;
tess.multiDrawFirstIndex[mergeForward] = firstIndexOffset;
tess.multiDrawMinIndex[mergeForward] = MIN(tess.multiDrawMinIndex[mergeForward], minIndex);
tess.multiDrawMaxIndex[mergeForward] = MAX(tess.multiDrawMaxIndex[mergeForward], maxIndex);
backEnd.pc.c_multidrawsMerged++;
}
else if (mergeBack != -1 && mergeForward != -1)
{
tess.multiDrawNumIndexes[mergeBack] += numIndexes + tess.multiDrawNumIndexes[mergeForward];
tess.multiDrawMinIndex[mergeBack] = MIN(tess.multiDrawMinIndex[mergeBack], MIN(tess.multiDrawMinIndex[mergeForward], minIndex));
tess.multiDrawMaxIndex[mergeBack] = MAX(tess.multiDrawMaxIndex[mergeBack], MAX(tess.multiDrawMaxIndex[mergeForward], maxIndex));
tess.multiDrawPrimitives--;
if (mergeForward != tess.multiDrawPrimitives)
{
tess.multiDrawNumIndexes[mergeForward] = tess.multiDrawNumIndexes[tess.multiDrawPrimitives];
tess.multiDrawFirstIndex[mergeForward] = tess.multiDrawFirstIndex[tess.multiDrawPrimitives];
tess.multiDrawMinIndex[mergeForward] = tess.multiDrawMinIndex[tess.multiDrawPrimitives];
tess.multiDrawMaxIndex[mergeForward] = tess.multiDrawMaxIndex[tess.multiDrawPrimitives];
}
backEnd.pc.c_multidrawsMerged += 2;
}
else //if (mergeBack == -1 && mergeForward == -1)
{
tess.multiDrawNumIndexes[tess.multiDrawPrimitives] = numIndexes;
tess.multiDrawFirstIndex[tess.multiDrawPrimitives] = firstIndexOffset;
tess.multiDrawMinIndex[tess.multiDrawPrimitives] = minIndex;
tess.multiDrawMaxIndex[tess.multiDrawPrimitives] = maxIndex;
tess.multiDrawPrimitives++;
}
backEnd.pc.c_multidraws++;
tess.numIndexes += numIndexes;
tess.numVertexes += numVerts;
return qtrue;
}
/*
=============
RB_SurfaceTriangles
=============
*/
static void RB_SurfaceTriangles( srfBspSurface_t *srf ) {
if( RB_SurfaceVao (srf->vao, srf->numVerts, srf->numIndexes,
srf->firstIndex, srf->minIndex, srf->maxIndex, srf->dlightBits, srf->pshadowBits, qtrue ) )
{
return;
}
RB_SurfaceVertsAndIndexes(srf->numVerts, srf->verts, srf->numIndexes,
srf->indexes, srf->dlightBits, srf->pshadowBits);
}
/*
==============
RB_SurfaceBeam
==============
*/
static void RB_SurfaceBeam( void )
{
#define NUM_BEAM_SEGS 6
refEntity_t *e;
shaderProgram_t *sp = &tr.textureColorShader;
int i;
vec3_t perpvec;
vec3_t direction, normalized_direction;
vec3_t start_points[NUM_BEAM_SEGS], end_points[NUM_BEAM_SEGS];
vec3_t oldorigin, origin;
e = &backEnd.currentEntity->e;
oldorigin[0] = e->oldorigin[0];
oldorigin[1] = e->oldorigin[1];
oldorigin[2] = e->oldorigin[2];
origin[0] = e->origin[0];
origin[1] = e->origin[1];
origin[2] = e->origin[2];
normalized_direction[0] = direction[0] = oldorigin[0] - origin[0];
normalized_direction[1] = direction[1] = oldorigin[1] - origin[1];
normalized_direction[2] = direction[2] = oldorigin[2] - origin[2];
if ( VectorNormalize( normalized_direction ) == 0 )
return;
PerpendicularVector( perpvec, normalized_direction );
VectorScale( perpvec, 4, perpvec );
for ( i = 0; i < NUM_BEAM_SEGS ; i++ )
{
RotatePointAroundVector( start_points[i], normalized_direction, perpvec, (360.0/NUM_BEAM_SEGS)*i );
// VectorAdd( start_points[i], origin, start_points[i] );
VectorAdd( start_points[i], direction, end_points[i] );
}
GL_BindToTMU( tr.whiteImage, TB_COLORMAP );
GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );
// FIXME: Quake3 doesn't use this, so I never tested it
tess.numVertexes = 0;
tess.numIndexes = 0;
tess.firstIndex = 0;
tess.minIndex = 0;
tess.maxIndex = 0;
for ( i = 0; i <= NUM_BEAM_SEGS; i++ ) {
VectorCopy(start_points[ i % NUM_BEAM_SEGS ], tess.xyz[tess.numVertexes++]);
VectorCopy(end_points [ i % NUM_BEAM_SEGS ], tess.xyz[tess.numVertexes++]);
}
for ( i = 0; i < NUM_BEAM_SEGS; i++ ) {
tess.indexes[tess.numIndexes++] = i * 2;
tess.indexes[tess.numIndexes++] = (i + 1) * 2;
tess.indexes[tess.numIndexes++] = 1 + i * 2;
tess.indexes[tess.numIndexes++] = 1 + i * 2;
tess.indexes[tess.numIndexes++] = (i + 1) * 2;
tess.indexes[tess.numIndexes++] = 1 + (i + 1) * 2;
}
tess.minIndex = 0;
tess.maxIndex = tess.numVertexes;
// FIXME: A lot of this can probably be removed for speed, and refactored into a more convenient function
RB_UpdateTessVao(ATTR_POSITION);
GLSL_BindProgram(sp);
GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection);
GLSL_SetUniformVec4(sp, UNIFORM_COLOR, colorRed);
R_DrawElementsVao(tess.numIndexes, tess.firstIndex, tess.minIndex, tess.maxIndex);
tess.numIndexes = 0;
tess.numVertexes = 0;
tess.firstIndex = 0;
tess.minIndex = 0;
tess.maxIndex = 0;
}
//================================================================================
static void DoRailCore( const vec3_t start, const vec3_t end, const vec3_t up, float len, float spanWidth )
{
float spanWidth2;
int vbase;
float t = len / 256.0f;
RB_CheckVao(tess.vao);
RB_CHECKOVERFLOW( 4, 6 );
vbase = tess.numVertexes;
spanWidth2 = -spanWidth;
// FIXME: use quad stamp?
VectorMA( start, spanWidth, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = 0;
tess.texCoords[tess.numVertexes][0][1] = 0;
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0] * 0.25 / 255.0f;
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1] * 0.25 / 255.0f;
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2] * 0.25 / 255.0f;
tess.numVertexes++;
VectorMA( start, spanWidth2, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = 0;
tess.texCoords[tess.numVertexes][0][1] = 1;
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0] / 255.0f;
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1] / 255.0f;
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2] / 255.0f;
tess.numVertexes++;
VectorMA( end, spanWidth, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = t;
tess.texCoords[tess.numVertexes][0][1] = 0;
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0] / 255.0f;
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1] / 255.0f;
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2] / 255.0f;
tess.numVertexes++;
VectorMA( end, spanWidth2, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = t;
tess.texCoords[tess.numVertexes][0][1] = 1;
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0] / 255.0f;
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1] / 255.0f;
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2] / 255.0f;
tess.numVertexes++;
tess.indexes[tess.numIndexes++] = vbase;
tess.indexes[tess.numIndexes++] = vbase + 1;
tess.indexes[tess.numIndexes++] = vbase + 2;
tess.indexes[tess.numIndexes++] = vbase + 2;
tess.indexes[tess.numIndexes++] = vbase + 1;
tess.indexes[tess.numIndexes++] = vbase + 3;
}
static void DoRailDiscs( int numSegs, const vec3_t start, const vec3_t dir, const vec3_t right, const vec3_t up )
{
int i;
vec3_t pos[4];
vec3_t v;
int spanWidth = r_railWidth->integer;
float c, s;
float scale;
if ( numSegs > 1 )
numSegs--;
if ( !numSegs )
return;
scale = 0.25;
for ( i = 0; i < 4; i++ )
{
c = cos( DEG2RAD( 45 + i * 90 ) );
s = sin( DEG2RAD( 45 + i * 90 ) );
v[0] = ( right[0] * c + up[0] * s ) * scale * spanWidth;
v[1] = ( right[1] * c + up[1] * s ) * scale * spanWidth;
v[2] = ( right[2] * c + up[2] * s ) * scale * spanWidth;
VectorAdd( start, v, pos[i] );
if ( numSegs > 1 )
{
// offset by 1 segment if we're doing a long distance shot
VectorAdd( pos[i], dir, pos[i] );
}
}
RB_CheckVao(tess.vao);
for ( i = 0; i < numSegs; i++ )
{
int j;
RB_CHECKOVERFLOW( 4, 6 );
for ( j = 0; j < 4; j++ )
{
VectorCopy( pos[j], tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = ( j < 2 );
tess.texCoords[tess.numVertexes][0][1] = ( j && j != 3 );
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0] / 255.0f;
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1] / 255.0f;
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2] / 255.0f;
tess.numVertexes++;
VectorAdd( pos[j], dir, pos[j] );
}
tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 0;
tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 1;
tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 3;
tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 3;
tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 1;
tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 2;
}
}
/*
** RB_SurfaceRailRinges
*/
static void RB_SurfaceRailRings( void ) {
refEntity_t *e;
int numSegs;
int len;
vec3_t vec;
vec3_t right, up;
vec3_t start, end;
e = &backEnd.currentEntity->e;
VectorCopy( e->oldorigin, start );
VectorCopy( e->origin, end );
// compute variables
VectorSubtract( end, start, vec );
len = VectorNormalize( vec );
MakeNormalVectors( vec, right, up );
numSegs = ( len ) / r_railSegmentLength->value;
if ( numSegs <= 0 ) {
numSegs = 1;
}
VectorScale( vec, r_railSegmentLength->value, vec );
DoRailDiscs( numSegs, start, vec, right, up );
}
/*
** RB_SurfaceRailCore
*/
static void RB_SurfaceRailCore( void ) {
refEntity_t *e;
int len;
vec3_t right;
vec3_t vec;
vec3_t start, end;
vec3_t v1, v2;
e = &backEnd.currentEntity->e;
VectorCopy( e->oldorigin, start );
VectorCopy( e->origin, end );
VectorSubtract( end, start, vec );
len = VectorNormalize( vec );
// compute side vector
VectorSubtract( start, backEnd.viewParms.or.origin, v1 );
VectorNormalize( v1 );
VectorSubtract( end, backEnd.viewParms.or.origin, v2 );
VectorNormalize( v2 );
CrossProduct( v1, v2, right );
VectorNormalize( right );
DoRailCore( start, end, right, len, r_railCoreWidth->integer );
}
/*
** RB_SurfaceLightningBolt
*/
static void RB_SurfaceLightningBolt( void ) {
refEntity_t *e;
int len;
vec3_t right;
vec3_t vec;
vec3_t start, end;
vec3_t v1, v2;
int i;
e = &backEnd.currentEntity->e;
VectorCopy( e->oldorigin, end );
VectorCopy( e->origin, start );
// compute variables
VectorSubtract( end, start, vec );
len = VectorNormalize( vec );
// compute side vector
VectorSubtract( start, backEnd.viewParms.or.origin, v1 );
VectorNormalize( v1 );
VectorSubtract( end, backEnd.viewParms.or.origin, v2 );
VectorNormalize( v2 );
CrossProduct( v1, v2, right );
VectorNormalize( right );
for ( i = 0 ; i < 4 ; i++ ) {
vec3_t temp;
DoRailCore( start, end, right, len, 8 );
RotatePointAroundVector( temp, vec, right, 45 );
VectorCopy( temp, right );
}
}
#if 0
/*
** VectorArrayNormalize
*
* The inputs to this routing seem to always be close to length = 1.0 (about 0.6 to 2.0)
* This means that we don't have to worry about zero length or enormously long vectors.
*/
static void VectorArrayNormalize(vec4_t *normals, unsigned int count)
{
// assert(count);
#if idppc
{
register float half = 0.5;
register float one = 1.0;
float *components = (float *)normals;
// Vanilla PPC code, but since PPC has a reciprocal square root estimate instruction,
// runs *much* faster than calling sqrt(). We'll use a single Newton-Raphson
// refinement step to get a little more precision. This seems to yeild results
// that are correct to 3 decimal places and usually correct to at least 4 (sometimes 5).
// (That is, for the given input range of about 0.6 to 2.0).
do {
float x, y, z;
float B, y0, y1;
x = components[0];
y = components[1];
z = components[2];
components += 4;
B = x*x + y*y + z*z;
#ifdef __GNUC__
asm("frsqrte %0,%1" : "=f" (y0) : "f" (B));
#else
y0 = __frsqrte(B);
#endif
y1 = y0 + half*y0*(one - B*y0*y0);
x = x * y1;
y = y * y1;
components[-4] = x;
z = z * y1;
components[-3] = y;
components[-2] = z;
} while(count--);
}
#else // No assembly version for this architecture, or C_ONLY defined
// given the input, it's safe to call VectorNormalizeFast
while (count--) {
VectorNormalizeFast(normals[0]);
normals++;
}
#endif
}
#endif
/*
** LerpMeshVertexes
*/
#if 0
#if idppc_altivec
static void LerpMeshVertexes_altivec(md3Surface_t *surf, float backlerp)
{
short *oldXyz, *newXyz, *oldNormals, *newNormals;
float *outXyz, *outNormal;
float oldXyzScale QALIGN(16);
float newXyzScale QALIGN(16);
float oldNormalScale QALIGN(16);
float newNormalScale QALIGN(16);
int vertNum;
unsigned lat, lng;
int numVerts;
outXyz = tess.xyz[tess.numVertexes];
outNormal = tess.normal[tess.numVertexes];
newXyz = (short *)((byte *)surf + surf->ofsXyzNormals)
+ (backEnd.currentEntity->e.frame * surf->numVerts * 4);
newNormals = newXyz + 3;
newXyzScale = MD3_XYZ_SCALE * (1.0 - backlerp);
newNormalScale = 1.0 - backlerp;
numVerts = surf->numVerts;
if ( backlerp == 0 ) {
vector signed short newNormalsVec0;
vector signed short newNormalsVec1;
vector signed int newNormalsIntVec;
vector float newNormalsFloatVec;
vector float newXyzScaleVec;
vector unsigned char newNormalsLoadPermute;
vector unsigned char newNormalsStorePermute;
vector float zero;
newNormalsStorePermute = vec_lvsl(0,(float *)&newXyzScaleVec);
newXyzScaleVec = *(vector float *)&newXyzScale;
newXyzScaleVec = vec_perm(newXyzScaleVec,newXyzScaleVec,newNormalsStorePermute);
newXyzScaleVec = vec_splat(newXyzScaleVec,0);
newNormalsLoadPermute = vec_lvsl(0,newXyz);
newNormalsStorePermute = vec_lvsr(0,outXyz);
zero = (vector float)vec_splat_s8(0);
//
// just copy the vertexes
//
for (vertNum=0 ; vertNum < numVerts ; vertNum++,
newXyz += 4, newNormals += 4,
outXyz += 4, outNormal += 4)
{
newNormalsLoadPermute = vec_lvsl(0,newXyz);
newNormalsStorePermute = vec_lvsr(0,outXyz);
newNormalsVec0 = vec_ld(0,newXyz);
newNormalsVec1 = vec_ld(16,newXyz);
newNormalsVec0 = vec_perm(newNormalsVec0,newNormalsVec1,newNormalsLoadPermute);
newNormalsIntVec = vec_unpackh(newNormalsVec0);
newNormalsFloatVec = vec_ctf(newNormalsIntVec,0);
newNormalsFloatVec = vec_madd(newNormalsFloatVec,newXyzScaleVec,zero);
newNormalsFloatVec = vec_perm(newNormalsFloatVec,newNormalsFloatVec,newNormalsStorePermute);
//outXyz[0] = newXyz[0] * newXyzScale;
//outXyz[1] = newXyz[1] * newXyzScale;
//outXyz[2] = newXyz[2] * newXyzScale;
lat = ( newNormals[0] >> 8 ) & 0xff;
lng = ( newNormals[0] & 0xff );
lat *= (FUNCTABLE_SIZE/256);
lng *= (FUNCTABLE_SIZE/256);
// decode X as cos( lat ) * sin( long )
// decode Y as sin( lat ) * sin( long )
// decode Z as cos( long )
outNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
outNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
outNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
vec_ste(newNormalsFloatVec,0,outXyz);
vec_ste(newNormalsFloatVec,4,outXyz);
vec_ste(newNormalsFloatVec,8,outXyz);
}
} else {
//
// interpolate and copy the vertex and normal
//
oldXyz = (short *)((byte *)surf + surf->ofsXyzNormals)
+ (backEnd.currentEntity->e.oldframe * surf->numVerts * 4);
oldNormals = oldXyz + 3;
oldXyzScale = MD3_XYZ_SCALE * backlerp;
oldNormalScale = backlerp;
for (vertNum=0 ; vertNum < numVerts ; vertNum++,
oldXyz += 4, newXyz += 4, oldNormals += 4, newNormals += 4,
outXyz += 4, outNormal += 4)
{
vec3_t uncompressedOldNormal, uncompressedNewNormal;
// interpolate the xyz
outXyz[0] = oldXyz[0] * oldXyzScale + newXyz[0] * newXyzScale;
outXyz[1] = oldXyz[1] * oldXyzScale + newXyz[1] * newXyzScale;
outXyz[2] = oldXyz[2] * oldXyzScale + newXyz[2] * newXyzScale;
// FIXME: interpolate lat/long instead?
lat = ( newNormals[0] >> 8 ) & 0xff;
lng = ( newNormals[0] & 0xff );
lat *= 4;
lng *= 4;
uncompressedNewNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
uncompressedNewNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
uncompressedNewNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
lat = ( oldNormals[0] >> 8 ) & 0xff;
lng = ( oldNormals[0] & 0xff );
lat *= 4;
lng *= 4;
uncompressedOldNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
uncompressedOldNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
uncompressedOldNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
outNormal[0] = uncompressedOldNormal[0] * oldNormalScale + uncompressedNewNormal[0] * newNormalScale;
outNormal[1] = uncompressedOldNormal[1] * oldNormalScale + uncompressedNewNormal[1] * newNormalScale;
outNormal[2] = uncompressedOldNormal[2] * oldNormalScale + uncompressedNewNormal[2] * newNormalScale;
// VectorNormalize (outNormal);
}
VectorArrayNormalize((vec4_t *)tess.normal[tess.numVertexes], numVerts);
}
}
#endif
#endif
static void LerpMeshVertexes_scalar(mdvSurface_t *surf, float backlerp)
{
#if 0
short *oldXyz, *newXyz, *oldNormals, *newNormals;
float *outXyz, *outNormal;
float oldXyzScale, newXyzScale;
float oldNormalScale, newNormalScale;
int vertNum;
unsigned lat, lng;
int numVerts;
outXyz = tess.xyz[tess.numVertexes];
outNormal = tess.normal[tess.numVertexes];
newXyz = (short *)((byte *)surf + surf->ofsXyzNormals)
+ (backEnd.currentEntity->e.frame * surf->numVerts * 4);
newNormals = newXyz + 3;
newXyzScale = MD3_XYZ_SCALE * (1.0 - backlerp);
newNormalScale = 1.0 - backlerp;
numVerts = surf->numVerts;
if ( backlerp == 0 ) {
//
// just copy the vertexes
//
for (vertNum=0 ; vertNum < numVerts ; vertNum++,
newXyz += 4, newNormals += 4,
outXyz += 4, outNormal += 4)
{
outXyz[0] = newXyz[0] * newXyzScale;
outXyz[1] = newXyz[1] * newXyzScale;
outXyz[2] = newXyz[2] * newXyzScale;
lat = ( newNormals[0] >> 8 ) & 0xff;
lng = ( newNormals[0] & 0xff );
lat *= (FUNCTABLE_SIZE/256);
lng *= (FUNCTABLE_SIZE/256);
// decode X as cos( lat ) * sin( long )
// decode Y as sin( lat ) * sin( long )
// decode Z as cos( long )
outNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
outNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
outNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
}
} else {
//
// interpolate and copy the vertex and normal
//
oldXyz = (short *)((byte *)surf + surf->ofsXyzNormals)
+ (backEnd.currentEntity->e.oldframe * surf->numVerts * 4);
oldNormals = oldXyz + 3;
oldXyzScale = MD3_XYZ_SCALE * backlerp;
oldNormalScale = backlerp;
for (vertNum=0 ; vertNum < numVerts ; vertNum++,
oldXyz += 4, newXyz += 4, oldNormals += 4, newNormals += 4,
outXyz += 4, outNormal += 4)
{
vec3_t uncompressedOldNormal, uncompressedNewNormal;
// interpolate the xyz
outXyz[0] = oldXyz[0] * oldXyzScale + newXyz[0] * newXyzScale;
outXyz[1] = oldXyz[1] * oldXyzScale + newXyz[1] * newXyzScale;
outXyz[2] = oldXyz[2] * oldXyzScale + newXyz[2] * newXyzScale;
// FIXME: interpolate lat/long instead?
lat = ( newNormals[0] >> 8 ) & 0xff;
lng = ( newNormals[0] & 0xff );
lat *= 4;
lng *= 4;
uncompressedNewNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
uncompressedNewNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
uncompressedNewNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
lat = ( oldNormals[0] >> 8 ) & 0xff;
lng = ( oldNormals[0] & 0xff );
lat *= 4;
lng *= 4;
uncompressedOldNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
uncompressedOldNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
uncompressedOldNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
outNormal[0] = uncompressedOldNormal[0] * oldNormalScale + uncompressedNewNormal[0] * newNormalScale;
outNormal[1] = uncompressedOldNormal[1] * oldNormalScale + uncompressedNewNormal[1] * newNormalScale;
outNormal[2] = uncompressedOldNormal[2] * oldNormalScale + uncompressedNewNormal[2] * newNormalScale;
// VectorNormalize (outNormal);
}
VectorArrayNormalize((vec4_t *)tess.normal[tess.numVertexes], numVerts);
}
#endif
float *outXyz;
uint32_t *outNormal;
mdvVertex_t *newVerts;
int vertNum;
newVerts = surf->verts + backEnd.currentEntity->e.frame * surf->numVerts;
outXyz = tess.xyz[tess.numVertexes];
outNormal = &tess.normal[tess.numVertexes];
if (backlerp == 0)
{
//
// just copy the vertexes
//
for (vertNum=0 ; vertNum < surf->numVerts ; vertNum++)
{
vec3_t normal;
VectorCopy(newVerts->xyz, outXyz);
VectorCopy(newVerts->normal, normal);
R_VaoPackNormal((byte *)outNormal, normal);
newVerts++;
outXyz += 4;
outNormal++;
}
}
else
{
//
// interpolate and copy the vertex and normal
//
mdvVertex_t *oldVerts;
oldVerts = surf->verts + backEnd.currentEntity->e.oldframe * surf->numVerts;
for (vertNum=0 ; vertNum < surf->numVerts ; vertNum++)
{
vec3_t normal;
VectorLerp(newVerts->xyz, oldVerts->xyz, backlerp, outXyz);
VectorLerp(newVerts->normal, oldVerts->normal, backlerp, normal);
VectorNormalize(normal);
R_VaoPackNormal((byte *)outNormal, normal);
newVerts++;
oldVerts++;
outXyz += 4;
outNormal++;
}
}
}
static void LerpMeshVertexes(mdvSurface_t *surf, float backlerp)
{
#if 0
#if idppc_altivec
if (com_altivec->integer) {
// must be in a seperate function or G3 systems will crash.
LerpMeshVertexes_altivec( surf, backlerp );
return;
}
#endif // idppc_altivec
#endif
LerpMeshVertexes_scalar( surf, backlerp );
}
/*
=============
RB_SurfaceMesh
=============
*/
static void RB_SurfaceMesh(mdvSurface_t *surface) {
int j;
float backlerp;
mdvSt_t *texCoords;
int Bob, Doug;
int numVerts;
if ( backEnd.currentEntity->e.oldframe == backEnd.currentEntity->e.frame ) {
backlerp = 0;
} else {
backlerp = backEnd.currentEntity->e.backlerp;
}
RB_CheckVao(tess.vao);
RB_CHECKOVERFLOW( surface->numVerts, surface->numIndexes );
LerpMeshVertexes (surface, backlerp);
Bob = tess.numIndexes;
Doug = tess.numVertexes;
for (j = 0 ; j < surface->numIndexes ; j++) {
tess.indexes[Bob + j] = Doug + surface->indexes[j];
}
tess.numIndexes += surface->numIndexes;
texCoords = surface->st;
numVerts = surface->numVerts;
for ( j = 0; j < numVerts; j++ ) {
tess.texCoords[Doug + j][0][0] = texCoords[j].st[0];
tess.texCoords[Doug + j][0][1] = texCoords[j].st[1];
// FIXME: fill in lightmapST for completeness?
}
tess.numVertexes += surface->numVerts;
}
/*
==============
RB_SurfaceFace
==============
*/
static void RB_SurfaceFace( srfBspSurface_t *srf ) {
if( RB_SurfaceVao (srf->vao, srf->numVerts, srf->numIndexes,
srf->firstIndex, srf->minIndex, srf->maxIndex, srf->dlightBits, srf->pshadowBits, qtrue ) )
{
return;
}
RB_SurfaceVertsAndIndexes(srf->numVerts, srf->verts, srf->numIndexes,
srf->indexes, srf->dlightBits, srf->pshadowBits);
}
static float LodErrorForVolume( vec3_t local, float radius ) {
vec3_t world;
float d;
// never let it go negative
if ( r_lodCurveError->value < 0 ) {
return 0;
}
world[0] = local[0] * backEnd.or.axis[0][0] + local[1] * backEnd.or.axis[1][0] +
local[2] * backEnd.or.axis[2][0] + backEnd.or.origin[0];
world[1] = local[0] * backEnd.or.axis[0][1] + local[1] * backEnd.or.axis[1][1] +
local[2] * backEnd.or.axis[2][1] + backEnd.or.origin[1];
world[2] = local[0] * backEnd.or.axis[0][2] + local[1] * backEnd.or.axis[1][2] +
local[2] * backEnd.or.axis[2][2] + backEnd.or.origin[2];
VectorSubtract( world, backEnd.viewParms.or.origin, world );
d = DotProduct( world, backEnd.viewParms.or.axis[0] );
if ( d < 0 ) {
d = -d;
}
d -= radius;
if ( d < 1 ) {
d = 1;
}
return r_lodCurveError->value / d;
}
/*
=============
RB_SurfaceGrid
Just copy the grid of points and triangulate
=============
*/
static void RB_SurfaceGrid( srfBspSurface_t *srf ) {
int i, j;
float *xyz;
float *texCoords, *lightCoords;
uint32_t *normal;
#ifdef USE_VERT_TANGENT_SPACE
uint32_t *tangent;
#endif
float *color;
uint32_t *lightdir;
srfVert_t *dv;
int rows, irows, vrows;
int used;
int widthTable[MAX_GRID_SIZE];
int heightTable[MAX_GRID_SIZE];
float lodError;
int lodWidth, lodHeight;
int numVertexes;
int dlightBits;
int pshadowBits;
//int *vDlightBits;
if( RB_SurfaceVao (srf->vao, srf->numVerts, srf->numIndexes,
srf->firstIndex, srf->minIndex, srf->maxIndex, srf->dlightBits, srf->pshadowBits, qtrue ) )
{
return;
}
RB_CheckVao(tess.vao);
dlightBits = srf->dlightBits;
tess.dlightBits |= dlightBits;
pshadowBits = srf->pshadowBits;
tess.pshadowBits |= pshadowBits;
// determine the allowable discrepance
lodError = LodErrorForVolume( srf->lodOrigin, srf->lodRadius );
// determine which rows and columns of the subdivision
// we are actually going to use
widthTable[0] = 0;
lodWidth = 1;
for ( i = 1 ; i < srf->width-1 ; i++ ) {
if ( srf->widthLodError[i] <= lodError ) {
widthTable[lodWidth] = i;
lodWidth++;
}
}
widthTable[lodWidth] = srf->width-1;
lodWidth++;
heightTable[0] = 0;
lodHeight = 1;
for ( i = 1 ; i < srf->height-1 ; i++ ) {
if ( srf->heightLodError[i] <= lodError ) {
heightTable[lodHeight] = i;
lodHeight++;
}
}
heightTable[lodHeight] = srf->height-1;
lodHeight++;
// very large grids may have more points or indexes than can be fit
// in the tess structure, so we may have to issue it in multiple passes
used = 0;
while ( used < lodHeight - 1 ) {
// see how many rows of both verts and indexes we can add without overflowing
do {
vrows = ( SHADER_MAX_VERTEXES - tess.numVertexes ) / lodWidth;
irows = ( SHADER_MAX_INDEXES - tess.numIndexes ) / ( lodWidth * 6 );
// if we don't have enough space for at least one strip, flush the buffer
if ( vrows < 2 || irows < 1 ) {
RB_EndSurface();
RB_BeginSurface(tess.shader, tess.fogNum, tess.cubemapIndex );
} else {
break;
}
} while ( 1 );
rows = irows;
if ( vrows < irows + 1 ) {
rows = vrows - 1;
}
if ( used + rows > lodHeight ) {
rows = lodHeight - used;
}
numVertexes = tess.numVertexes;
xyz = tess.xyz[numVertexes];
normal = &tess.normal[numVertexes];
#ifdef USE_VERT_TANGENT_SPACE
tangent = &tess.tangent[numVertexes];
#endif
texCoords = tess.texCoords[numVertexes][0];
lightCoords = tess.texCoords[numVertexes][1];
color = tess.vertexColors[numVertexes];
lightdir = &tess.lightdir[numVertexes];
//vDlightBits = &tess.vertexDlightBits[numVertexes];
for ( i = 0 ; i < rows ; i++ ) {
for ( j = 0 ; j < lodWidth ; j++ ) {
dv = srf->verts + heightTable[ used + i ] * srf->width
+ widthTable[ j ];
if ( tess.shader->vertexAttribs & ATTR_POSITION )
{
VectorCopy(dv->xyz, xyz);
xyz += 4;
}
if ( tess.shader->vertexAttribs & ATTR_NORMAL )
{
R_VaoPackNormal((byte *)normal++, dv->normal);
}
#ifdef USE_VERT_TANGENT_SPACE
if ( tess.shader->vertexAttribs & ATTR_TANGENT )
{
R_VaoPackTangent((byte *)tangent++, dv->tangent);
}
#endif
if ( tess.shader->vertexAttribs & ATTR_TEXCOORD )
{
VectorCopy2(dv->st, texCoords);
texCoords += 4;
}
if ( tess.shader->vertexAttribs & ATTR_LIGHTCOORD )
{
VectorCopy2(dv->lightmap, lightCoords);
lightCoords += 4;
}
if ( tess.shader->vertexAttribs & ATTR_COLOR )
{
VectorCopy4(dv->vertexColors, color);
color += 4;
}
if ( tess.shader->vertexAttribs & ATTR_LIGHTDIRECTION )
{
R_VaoPackNormal((byte *)lightdir++, dv->lightdir);
}
//*vDlightBits++ = dlightBits;
}
}
// add the indexes
{
int numIndexes;
int w, h;
h = rows - 1;
w = lodWidth - 1;
numIndexes = tess.numIndexes;
for (i = 0 ; i < h ; i++) {
for (j = 0 ; j < w ; j++) {
int v1, v2, v3, v4;
// vertex order to be reckognized as tristrips
v1 = numVertexes + i*lodWidth + j + 1;
v2 = v1 - 1;
v3 = v2 + lodWidth;
v4 = v3 + 1;
tess.indexes[numIndexes] = v2;
tess.indexes[numIndexes+1] = v3;
tess.indexes[numIndexes+2] = v1;
tess.indexes[numIndexes+3] = v1;
tess.indexes[numIndexes+4] = v3;
tess.indexes[numIndexes+5] = v4;
numIndexes += 6;
}
}
tess.numIndexes = numIndexes;
}
tess.numVertexes += rows * lodWidth;
used += rows - 1;
}
}
/*
===========================================================================
NULL MODEL
===========================================================================
*/
/*
===================
RB_SurfaceAxis
Draws x/y/z lines from the origin for orientation debugging
===================
*/
static void RB_SurfaceAxis( void ) {
// FIXME: implement this
#if 0
GL_BindToTMU( tr.whiteImage, TB_COLORMAP );
GL_State( GLS_DEFAULT );
qglLineWidth( 3 );
qglBegin( GL_LINES );
qglColor3f( 1,0,0 );
qglVertex3f( 0,0,0 );
qglVertex3f( 16,0,0 );
qglColor3f( 0,1,0 );
qglVertex3f( 0,0,0 );
qglVertex3f( 0,16,0 );
qglColor3f( 0,0,1 );
qglVertex3f( 0,0,0 );
qglVertex3f( 0,0,16 );
qglEnd();
qglLineWidth( 1 );
#endif
}
//===========================================================================
/*
====================
RB_SurfaceEntity
Entities that have a single procedurally generated surface
====================
*/
static void RB_SurfaceEntity( surfaceType_t *surfType ) {
switch( backEnd.currentEntity->e.reType ) {
case RT_SPRITE:
RB_SurfaceSprite();
break;
case RT_BEAM:
RB_SurfaceBeam();
break;
case RT_RAIL_CORE:
RB_SurfaceRailCore();
break;
case RT_RAIL_RINGS:
RB_SurfaceRailRings();
break;
case RT_LIGHTNING:
RB_SurfaceLightningBolt();
break;
default:
RB_SurfaceAxis();
break;
}
}
static void RB_SurfaceBad( surfaceType_t *surfType ) {
ri.Printf( PRINT_ALL, "Bad surface tesselated.\n" );
}
static void RB_SurfaceFlare(srfFlare_t *surf)
{
if (r_flares->integer)
RB_AddFlare(surf, tess.fogNum, surf->origin, surf->color, surf->normal);
}
static void RB_SurfaceVaoMesh(srfBspSurface_t * srf)
{
RB_SurfaceVao (srf->vao, srf->numVerts, srf->numIndexes, srf->firstIndex,
srf->minIndex, srf->maxIndex, srf->dlightBits, srf->pshadowBits, qfalse );
}
void RB_SurfaceVaoMdvMesh(srfVaoMdvMesh_t * surface)
{
//mdvModel_t *mdvModel;
//mdvSurface_t *mdvSurface;
refEntity_t *refEnt;
GLimp_LogComment("--- RB_SurfaceVaoMdvMesh ---\n");
if(!surface->vao)
return;
//RB_CheckVao(surface->vao);
RB_EndSurface();
RB_BeginSurface(tess.shader, tess.fogNum, tess.cubemapIndex);
R_BindVao(surface->vao);
tess.useInternalVao = qfalse;
tess.numIndexes = surface->numIndexes;
tess.numVertexes = surface->numVerts;
tess.minIndex = surface->minIndex;
tess.maxIndex = surface->maxIndex;
//mdvModel = surface->mdvModel;
//mdvSurface = surface->mdvSurface;
refEnt = &backEnd.currentEntity->e;
glState.vertexAttribsInterpolation = (refEnt->oldframe == refEnt->frame) ? 0.0f : refEnt->backlerp;
if (surface->mdvModel->numFrames > 1)
{
int frameOffset, attribIndex;
vaoAttrib_t *vAtb;
glState.vertexAnimation = qtrue;
if (glRefConfig.vertexArrayObject)
{
qglBindBufferARB(GL_ARRAY_BUFFER_ARB, surface->vao->vertexesVBO);
}
frameOffset = refEnt->frame * surface->vao->frameSize;
attribIndex = ATTR_INDEX_POSITION;
vAtb = &surface->vao->attribs[attribIndex];
qglVertexAttribPointerARB(attribIndex, vAtb->count, vAtb->type, vAtb->normalized, vAtb->stride, BUFFER_OFFSET(vAtb->offset + frameOffset));
attribIndex = ATTR_INDEX_NORMAL;
vAtb = &surface->vao->attribs[attribIndex];
qglVertexAttribPointerARB(attribIndex, vAtb->count, vAtb->type, vAtb->normalized, vAtb->stride, BUFFER_OFFSET(vAtb->offset + frameOffset));
attribIndex = ATTR_INDEX_TANGENT;
vAtb = &surface->vao->attribs[attribIndex];
qglVertexAttribPointerARB(attribIndex, vAtb->count, vAtb->type, vAtb->normalized, vAtb->stride, BUFFER_OFFSET(vAtb->offset + frameOffset));
frameOffset = refEnt->oldframe * surface->vao->frameSize;
attribIndex = ATTR_INDEX_POSITION2;
vAtb = &surface->vao->attribs[attribIndex];
qglVertexAttribPointerARB(attribIndex, vAtb->count, vAtb->type, vAtb->normalized, vAtb->stride, BUFFER_OFFSET(vAtb->offset + frameOffset));
attribIndex = ATTR_INDEX_NORMAL2;
vAtb = &surface->vao->attribs[attribIndex];
qglVertexAttribPointerARB(attribIndex, vAtb->count, vAtb->type, vAtb->normalized, vAtb->stride, BUFFER_OFFSET(vAtb->offset + frameOffset));
attribIndex = ATTR_INDEX_TANGENT2;
vAtb = &surface->vao->attribs[attribIndex];
qglVertexAttribPointerARB(attribIndex, vAtb->count, vAtb->type, vAtb->normalized, vAtb->stride, BUFFER_OFFSET(vAtb->offset + frameOffset));
if (!glRefConfig.vertexArrayObject)
{
attribIndex = ATTR_INDEX_TEXCOORD;
vAtb = &surface->vao->attribs[attribIndex];
qglVertexAttribPointerARB(attribIndex, vAtb->count, vAtb->type, vAtb->normalized, vAtb->stride, BUFFER_OFFSET(vAtb->offset));
}
}
RB_EndSurface();
// So we don't lerp surfaces that shouldn't be lerped
glState.vertexAnimation = qfalse;
}
static void RB_SurfaceSkip( void *surf ) {
}
void (*rb_surfaceTable[SF_NUM_SURFACE_TYPES])( void *) = {
(void(*)(void*))RB_SurfaceBad, // SF_BAD,
(void(*)(void*))RB_SurfaceSkip, // SF_SKIP,
(void(*)(void*))RB_SurfaceFace, // SF_FACE,
(void(*)(void*))RB_SurfaceGrid, // SF_GRID,
(void(*)(void*))RB_SurfaceTriangles, // SF_TRIANGLES,
(void(*)(void*))RB_SurfacePolychain, // SF_POLY,
(void(*)(void*))RB_SurfaceMesh, // SF_MDV,
(void(*)(void*))RB_MDRSurfaceAnim, // SF_MDR,
(void(*)(void*))RB_IQMSurfaceAnim, // SF_IQM,
(void(*)(void*))RB_SurfaceFlare, // SF_FLARE,
(void(*)(void*))RB_SurfaceEntity, // SF_ENTITY
(void(*)(void*))RB_SurfaceVaoMesh, // SF_VAO_MESH,
(void(*)(void*))RB_SurfaceVaoMdvMesh, // SF_VAO_MDVMESH
};