lilium-voyager/code/renderergl2/tr_model_iqm.c

1757 lines
55 KiB
C

/*
===========================================================================
Copyright (C) 2011 Thilo Schulz <thilo@tjps.eu>
Copyright (C) 2011 Matthias Bentrup <matthias.bentrup@googlemail.com>
Copyright (C) 2011-2019 Zack Middleton <zturtleman@gmail.com>
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include "tr_local.h"
#define LL(x) x=LittleLong(x)
// 3x4 identity matrix
static float identityMatrix[12] = {
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0
};
static qboolean IQM_CheckRange( iqmHeader_t *header, int offset,
int count, int size ) {
// return true if the range specified by offset, count and size
// doesn't fit into the file
return ( count <= 0 ||
offset <= 0 ||
offset > header->filesize ||
offset + count * size < 0 ||
offset + count * size > header->filesize );
}
// "multiply" 3x4 matrices, these are assumed to be the top 3 rows
// of a 4x4 matrix with the last row = (0 0 0 1)
static void Matrix34Multiply( const float *a, const float *b, float *out ) {
out[ 0] = a[0] * b[0] + a[1] * b[4] + a[ 2] * b[ 8];
out[ 1] = a[0] * b[1] + a[1] * b[5] + a[ 2] * b[ 9];
out[ 2] = a[0] * b[2] + a[1] * b[6] + a[ 2] * b[10];
out[ 3] = a[0] * b[3] + a[1] * b[7] + a[ 2] * b[11] + a[ 3];
out[ 4] = a[4] * b[0] + a[5] * b[4] + a[ 6] * b[ 8];
out[ 5] = a[4] * b[1] + a[5] * b[5] + a[ 6] * b[ 9];
out[ 6] = a[4] * b[2] + a[5] * b[6] + a[ 6] * b[10];
out[ 7] = a[4] * b[3] + a[5] * b[7] + a[ 6] * b[11] + a[ 7];
out[ 8] = a[8] * b[0] + a[9] * b[4] + a[10] * b[ 8];
out[ 9] = a[8] * b[1] + a[9] * b[5] + a[10] * b[ 9];
out[10] = a[8] * b[2] + a[9] * b[6] + a[10] * b[10];
out[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11];
}
static void JointToMatrix( const quat_t rot, const vec3_t scale, const vec3_t trans,
float *mat ) {
float xx = 2.0f * rot[0] * rot[0];
float yy = 2.0f * rot[1] * rot[1];
float zz = 2.0f * rot[2] * rot[2];
float xy = 2.0f * rot[0] * rot[1];
float xz = 2.0f * rot[0] * rot[2];
float yz = 2.0f * rot[1] * rot[2];
float wx = 2.0f * rot[3] * rot[0];
float wy = 2.0f * rot[3] * rot[1];
float wz = 2.0f * rot[3] * rot[2];
mat[ 0] = scale[0] * (1.0f - (yy + zz));
mat[ 1] = scale[0] * (xy - wz);
mat[ 2] = scale[0] * (xz + wy);
mat[ 3] = trans[0];
mat[ 4] = scale[1] * (xy + wz);
mat[ 5] = scale[1] * (1.0f - (xx + zz));
mat[ 6] = scale[1] * (yz - wx);
mat[ 7] = trans[1];
mat[ 8] = scale[2] * (xz - wy);
mat[ 9] = scale[2] * (yz + wx);
mat[10] = scale[2] * (1.0f - (xx + yy));
mat[11] = trans[2];
}
static void Matrix34Invert( const float *inMat, float *outMat ) {
vec3_t trans;
float invSqrLen, *v;
outMat[ 0] = inMat[ 0]; outMat[ 1] = inMat[ 4]; outMat[ 2] = inMat[ 8];
outMat[ 4] = inMat[ 1]; outMat[ 5] = inMat[ 5]; outMat[ 6] = inMat[ 9];
outMat[ 8] = inMat[ 2]; outMat[ 9] = inMat[ 6]; outMat[10] = inMat[10];
v = outMat + 0; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);
v = outMat + 4; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);
v = outMat + 8; invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);
trans[0] = inMat[ 3];
trans[1] = inMat[ 7];
trans[2] = inMat[11];
outMat[ 3] = -DotProduct(outMat + 0, trans);
outMat[ 7] = -DotProduct(outMat + 4, trans);
outMat[11] = -DotProduct(outMat + 8, trans);
}
static void QuatSlerp(const quat_t from, const quat_t _to, float fraction, quat_t out) {
float angle, cosAngle, sinAngle, backlerp, lerp;
quat_t to;
// cos() of angle
cosAngle = from[0] * _to[0] + from[1] * _to[1] + from[2] * _to[2] + from[3] * _to[3];
// negative handling is needed for taking shortest path (required for model joints)
if ( cosAngle < 0.0f ) {
cosAngle = -cosAngle;
to[0] = - _to[0];
to[1] = - _to[1];
to[2] = - _to[2];
to[3] = - _to[3];
} else {
QuatCopy( _to, to );
}
if ( cosAngle < 0.999999f ) {
// spherical lerp (slerp)
angle = acosf( cosAngle );
sinAngle = sinf( angle );
backlerp = sinf( ( 1.0f - fraction ) * angle ) / sinAngle;
lerp = sinf( fraction * angle ) / sinAngle;
} else {
// linear lerp
backlerp = 1.0f - fraction;
lerp = fraction;
}
out[0] = from[0] * backlerp + to[0] * lerp;
out[1] = from[1] * backlerp + to[1] * lerp;
out[2] = from[2] * backlerp + to[2] * lerp;
out[3] = from[3] * backlerp + to[3] * lerp;
}
static vec_t QuatNormalize2( const quat_t v, quat_t out) {
float length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2] + v[3]*v[3];
if (length) {
/* writing it this way allows gcc to recognize that rsqrt can be used */
ilength = 1/(float)sqrt (length);
/* sqrt(length) = length * (1 / sqrt(length)) */
length *= ilength;
out[0] = v[0]*ilength;
out[1] = v[1]*ilength;
out[2] = v[2]*ilength;
out[3] = v[3]*ilength;
} else {
out[0] = out[1] = out[2] = out[3] = 0;
}
return length;
}
/*
=================
R_LoadIQM
Load an IQM model and compute the joint matrices for every frame.
=================
*/
qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_name ) {
iqmHeader_t *header;
iqmVertexArray_t *vertexarray;
iqmTriangle_t *triangle;
iqmMesh_t *mesh;
iqmJoint_t *joint;
iqmPose_t *pose;
iqmBounds_t *bounds;
unsigned short *framedata;
char *str;
int i, j, k;
iqmTransform_t *transform;
float *mat, *matInv;
size_t size, joint_names;
byte *dataPtr;
iqmData_t *iqmData;
srfIQModel_t *surface;
char meshName[MAX_QPATH];
int vertexArrayFormat[IQM_COLOR+1];
int allocateInfluences;
byte *blendIndexes;
union {
byte *b;
float *f;
} blendWeights;
if( filesize < sizeof(iqmHeader_t) ) {
return qfalse;
}
header = (iqmHeader_t *)buffer;
if( Q_strncmp( header->magic, IQM_MAGIC, sizeof(header->magic) ) ) {
return qfalse;
}
LL( header->version );
if( header->version != IQM_VERSION ) {
ri.Printf(PRINT_WARNING, "R_LoadIQM: %s is a unsupported IQM version (%d), only version %d is supported.\n",
mod_name, header->version, IQM_VERSION);
return qfalse;
}
LL( header->filesize );
if( header->filesize > filesize || header->filesize > 16<<20 ) {
return qfalse;
}
LL( header->flags );
LL( header->num_text );
LL( header->ofs_text );
LL( header->num_meshes );
LL( header->ofs_meshes );
LL( header->num_vertexarrays );
LL( header->num_vertexes );
LL( header->ofs_vertexarrays );
LL( header->num_triangles );
LL( header->ofs_triangles );
LL( header->ofs_adjacency );
LL( header->num_joints );
LL( header->ofs_joints );
LL( header->num_poses );
LL( header->ofs_poses );
LL( header->num_anims );
LL( header->ofs_anims );
LL( header->num_frames );
LL( header->num_framechannels );
LL( header->ofs_frames );
LL( header->ofs_bounds );
LL( header->num_comment );
LL( header->ofs_comment );
LL( header->num_extensions );
LL( header->ofs_extensions );
// check ioq3 joint limit
if ( header->num_joints > IQM_MAX_JOINTS ) {
ri.Printf(PRINT_WARNING, "R_LoadIQM: %s has more than %d joints (%d).\n",
mod_name, IQM_MAX_JOINTS, header->num_joints);
return qfalse;
}
for ( i = 0; i < ARRAY_LEN( vertexArrayFormat ); i++ ) {
vertexArrayFormat[i] = -1;
}
blendIndexes = NULL;
blendWeights.b = NULL;
allocateInfluences = 0;
if ( header->num_meshes )
{
// check and swap vertex arrays
if( IQM_CheckRange( header, header->ofs_vertexarrays,
header->num_vertexarrays,
sizeof(iqmVertexArray_t) ) ) {
return qfalse;
}
vertexarray = (iqmVertexArray_t *)((byte *)header + header->ofs_vertexarrays);
for( i = 0; i < header->num_vertexarrays; i++, vertexarray++ ) {
int n, *intPtr;
if( vertexarray->size <= 0 || vertexarray->size > 4 ) {
return qfalse;
}
// total number of values
n = header->num_vertexes * vertexarray->size;
switch( vertexarray->format ) {
case IQM_BYTE:
case IQM_UBYTE:
// 1 byte, no swapping necessary
if( IQM_CheckRange( header, vertexarray->offset,
n, sizeof(byte) ) ) {
return qfalse;
}
break;
case IQM_INT:
case IQM_UINT:
case IQM_FLOAT:
// 4-byte swap
if( IQM_CheckRange( header, vertexarray->offset,
n, sizeof(float) ) ) {
return qfalse;
}
intPtr = (int *)((byte *)header + vertexarray->offset);
for( j = 0; j < n; j++, intPtr++ ) {
LL( *intPtr );
}
break;
default:
// not supported
return qfalse;
break;
}
if( vertexarray->type < ARRAY_LEN( vertexArrayFormat ) ) {
vertexArrayFormat[vertexarray->type] = vertexarray->format;
}
switch( vertexarray->type ) {
case IQM_POSITION:
case IQM_NORMAL:
if( vertexarray->format != IQM_FLOAT ||
vertexarray->size != 3 ) {
return qfalse;
}
break;
case IQM_TANGENT:
if( vertexarray->format != IQM_FLOAT ||
vertexarray->size != 4 ) {
return qfalse;
}
break;
case IQM_TEXCOORD:
if( vertexarray->format != IQM_FLOAT ||
vertexarray->size != 2 ) {
return qfalse;
}
break;
case IQM_BLENDINDEXES:
if( (vertexarray->format != IQM_INT &&
vertexarray->format != IQM_UBYTE) ||
vertexarray->size != 4 ) {
return qfalse;
}
blendIndexes = (byte*)header + vertexarray->offset;
break;
case IQM_BLENDWEIGHTS:
if( (vertexarray->format != IQM_FLOAT &&
vertexarray->format != IQM_UBYTE) ||
vertexarray->size != 4 ) {
return qfalse;
}
if( vertexarray->format == IQM_FLOAT ) {
blendWeights.f = (float*)( (byte*)header + vertexarray->offset );
} else {
blendWeights.b = (byte*)header + vertexarray->offset;
}
break;
case IQM_COLOR:
if( vertexarray->format != IQM_UBYTE ||
vertexarray->size != 4 ) {
return qfalse;
}
break;
}
}
// check for required vertex arrays
if( vertexArrayFormat[IQM_POSITION] == -1 || vertexArrayFormat[IQM_NORMAL] == -1 || vertexArrayFormat[IQM_TEXCOORD] == -1 ) {
ri.Printf( PRINT_WARNING, "R_LoadIQM: %s is missing IQM_POSITION, IQM_NORMAL, and/or IQM_TEXCOORD array.\n", mod_name );
return qfalse;
}
if( header->num_joints ) {
if( vertexArrayFormat[IQM_BLENDINDEXES] == -1 || vertexArrayFormat[IQM_BLENDWEIGHTS] == -1 ) {
ri.Printf( PRINT_WARNING, "R_LoadIQM: %s is missing IQM_BLENDINDEXES and/or IQM_BLENDWEIGHTS array.\n", mod_name );
return qfalse;
}
} else {
// ignore blend arrays if present
vertexArrayFormat[IQM_BLENDINDEXES] = -1;
vertexArrayFormat[IQM_BLENDWEIGHTS] = -1;
}
// opengl2 renderer requires tangents
if( vertexArrayFormat[IQM_TANGENT] == -1 ) {
ri.Printf( PRINT_WARNING, "R_LoadIQM: %s is missing IQM_TANGENT array.\n", mod_name );
return qfalse;
}
// check and swap triangles
if( IQM_CheckRange( header, header->ofs_triangles,
header->num_triangles, sizeof(iqmTriangle_t) ) ) {
return qfalse;
}
triangle = (iqmTriangle_t *)((byte *)header + header->ofs_triangles);
for( i = 0; i < header->num_triangles; i++, triangle++ ) {
LL( triangle->vertex[0] );
LL( triangle->vertex[1] );
LL( triangle->vertex[2] );
if( triangle->vertex[0] > header->num_vertexes ||
triangle->vertex[1] > header->num_vertexes ||
triangle->vertex[2] > header->num_vertexes ) {
return qfalse;
}
}
// check and swap meshes
if( IQM_CheckRange( header, header->ofs_meshes,
header->num_meshes, sizeof(iqmMesh_t) ) ) {
return qfalse;
}
mesh = (iqmMesh_t *)((byte *)header + header->ofs_meshes);
for( i = 0; i < header->num_meshes; i++, mesh++) {
LL( mesh->name );
LL( mesh->material );
LL( mesh->first_vertex );
LL( mesh->num_vertexes );
LL( mesh->first_triangle );
LL( mesh->num_triangles );
if ( mesh->name < header->num_text ) {
Q_strncpyz( meshName, (char*)header + header->ofs_text + mesh->name, sizeof (meshName) );
} else {
meshName[0] = '\0';
}
// check ioq3 limits
if ( mesh->num_vertexes >= SHADER_MAX_VERTEXES ) {
ri.Printf( PRINT_WARNING, "R_LoadIQM: %s has more than %i verts on %s (%i).\n",
mod_name, SHADER_MAX_VERTEXES - 1, meshName[0] ? meshName : "a surface",
mesh->num_vertexes );
return qfalse;
}
if ( mesh->num_triangles*3 >= SHADER_MAX_INDEXES ) {
ri.Printf( PRINT_WARNING, "R_LoadIQM: %s has more than %i triangles on %s (%i).\n",
mod_name, ( SHADER_MAX_INDEXES / 3 ) - 1, meshName[0] ? meshName : "a surface",
mesh->num_triangles );
return qfalse;
}
if( mesh->first_vertex >= header->num_vertexes ||
mesh->first_vertex + mesh->num_vertexes > header->num_vertexes ||
mesh->first_triangle >= header->num_triangles ||
mesh->first_triangle + mesh->num_triangles > header->num_triangles ||
mesh->name >= header->num_text ||
mesh->material >= header->num_text ) {
return qfalse;
}
// find number of unique blend influences per mesh
if( header->num_joints ) {
for( j = 0; j < mesh->num_vertexes; j++ ) {
int vtx = mesh->first_vertex + j;
for( k = 0; k < j; k++ ) {
int influence = mesh->first_vertex + k;
if( *(int*)&blendIndexes[4*influence] != *(int*)&blendIndexes[4*vtx] ) {
continue;
}
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
if ( blendWeights.f[4*influence+0] == blendWeights.f[4*vtx+0] &&
blendWeights.f[4*influence+1] == blendWeights.f[4*vtx+1] &&
blendWeights.f[4*influence+2] == blendWeights.f[4*vtx+2] &&
blendWeights.f[4*influence+3] == blendWeights.f[4*vtx+3] ) {
break;
}
} else {
if ( *(int*)&blendWeights.b[4*influence] == *(int*)&blendWeights.b[4*vtx] ) {
break;
}
}
}
if ( k == j ) {
allocateInfluences++;
}
}
}
}
}
if( header->num_poses != header->num_joints && header->num_poses != 0 ) {
ri.Printf( PRINT_WARNING, "R_LoadIQM: %s has %d poses and %d joints, must have the same number or 0 poses\n",
mod_name, header->num_poses, header->num_joints );
return qfalse;
}
joint_names = 0;
if ( header->num_joints )
{
// check and swap joints
if( IQM_CheckRange( header, header->ofs_joints,
header->num_joints, sizeof(iqmJoint_t) ) ) {
return qfalse;
}
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
for( i = 0; i < header->num_joints; i++, joint++ ) {
LL( joint->name );
LL( joint->parent );
LL( joint->translate[0] );
LL( joint->translate[1] );
LL( joint->translate[2] );
LL( joint->rotate[0] );
LL( joint->rotate[1] );
LL( joint->rotate[2] );
LL( joint->rotate[3] );
LL( joint->scale[0] );
LL( joint->scale[1] );
LL( joint->scale[2] );
if( joint->parent < -1 ||
joint->parent >= (int)header->num_joints ||
joint->name >= (int)header->num_text ) {
return qfalse;
}
joint_names += strlen( (char *)header + header->ofs_text +
joint->name ) + 1;
}
}
if ( header->num_poses )
{
// check and swap poses
if( IQM_CheckRange( header, header->ofs_poses,
header->num_poses, sizeof(iqmPose_t) ) ) {
return qfalse;
}
pose = (iqmPose_t *)((byte *)header + header->ofs_poses);
for( i = 0; i < header->num_poses; i++, pose++ ) {
LL( pose->parent );
LL( pose->mask );
LL( pose->channeloffset[0] );
LL( pose->channeloffset[1] );
LL( pose->channeloffset[2] );
LL( pose->channeloffset[3] );
LL( pose->channeloffset[4] );
LL( pose->channeloffset[5] );
LL( pose->channeloffset[6] );
LL( pose->channeloffset[7] );
LL( pose->channeloffset[8] );
LL( pose->channeloffset[9] );
LL( pose->channelscale[0] );
LL( pose->channelscale[1] );
LL( pose->channelscale[2] );
LL( pose->channelscale[3] );
LL( pose->channelscale[4] );
LL( pose->channelscale[5] );
LL( pose->channelscale[6] );
LL( pose->channelscale[7] );
LL( pose->channelscale[8] );
LL( pose->channelscale[9] );
}
}
if (header->ofs_bounds)
{
// check and swap model bounds
if(IQM_CheckRange(header, header->ofs_bounds,
header->num_frames, sizeof(*bounds)))
{
return qfalse;
}
bounds = (iqmBounds_t *) ((byte *) header + header->ofs_bounds);
for(i = 0; i < header->num_frames; i++)
{
LL(bounds->bbmin[0]);
LL(bounds->bbmin[1]);
LL(bounds->bbmin[2]);
LL(bounds->bbmax[0]);
LL(bounds->bbmax[1]);
LL(bounds->bbmax[2]);
bounds++;
}
}
// allocate the model and copy the data
size = sizeof(iqmData_t);
if( header->num_meshes ) {
size += header->num_meshes * sizeof( srfIQModel_t ); // surfaces
size += header->num_triangles * 3 * sizeof(int); // triangles
size += header->num_vertexes * 3 * sizeof(float); // positions
size += header->num_vertexes * 2 * sizeof(float); // texcoords
size += header->num_vertexes * 3 * sizeof(float); // normals
if ( vertexArrayFormat[IQM_TANGENT] != -1 ) {
size += header->num_vertexes * 4 * sizeof(float); // tangents
}
if ( vertexArrayFormat[IQM_COLOR] != -1 ) {
size += header->num_vertexes * 4 * sizeof(byte); // colors
}
if ( allocateInfluences ) {
size += header->num_vertexes * sizeof(int); // influences
size += allocateInfluences * 4 * sizeof(byte); // influenceBlendIndexes
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_UBYTE ) {
size += allocateInfluences * 4 * sizeof(byte); // influenceBlendWeights
} else if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
size += allocateInfluences * 4 * sizeof(float); // influenceBlendWeights
}
}
}
if( header->num_joints ) {
size += joint_names; // joint names
size += header->num_joints * sizeof(int); // joint parents
size += header->num_joints * 12 * sizeof(float); // bind joint matricies
size += header->num_joints * 12 * sizeof(float); // inverse bind joint matricies
}
if( header->num_poses ) {
size += header->num_poses * header->num_frames * sizeof(iqmTransform_t); // pose transforms
}
if( header->ofs_bounds ) {
size += header->num_frames * 6 * sizeof(float); // model bounds
} else if( header->num_meshes && header->num_frames == 0 ) {
size += 6 * sizeof(float); // model bounds
}
mod->type = MOD_IQM;
iqmData = (iqmData_t *)ri.Hunk_Alloc( size, h_low );
mod->modelData = iqmData;
// fill header
iqmData->num_vertexes = ( header->num_meshes > 0 ) ? header->num_vertexes : 0;
iqmData->num_triangles = ( header->num_meshes > 0 ) ? header->num_triangles : 0;
iqmData->num_frames = header->num_frames;
iqmData->num_surfaces = header->num_meshes;
iqmData->num_joints = header->num_joints;
iqmData->num_poses = header->num_poses;
iqmData->blendWeightsType = vertexArrayFormat[IQM_BLENDWEIGHTS];
dataPtr = (byte*)iqmData + sizeof(iqmData_t);
if( header->num_meshes ) {
iqmData->surfaces = (struct srfIQModel_s*)dataPtr;
dataPtr += header->num_meshes * sizeof( srfIQModel_t );
iqmData->triangles = (int*)dataPtr;
dataPtr += header->num_triangles * 3 * sizeof(int); // triangles
iqmData->positions = (float*)dataPtr;
dataPtr += header->num_vertexes * 3 * sizeof(float); // positions
iqmData->texcoords = (float*)dataPtr;
dataPtr += header->num_vertexes * 2 * sizeof(float); // texcoords
iqmData->normals = (float*)dataPtr;
dataPtr += header->num_vertexes * 3 * sizeof(float); // normals
if ( vertexArrayFormat[IQM_TANGENT] != -1 ) {
iqmData->tangents = (float*)dataPtr;
dataPtr += header->num_vertexes * 4 * sizeof(float); // tangents
}
if ( vertexArrayFormat[IQM_COLOR] != -1 ) {
iqmData->colors = (byte*)dataPtr;
dataPtr += header->num_vertexes * 4 * sizeof(byte); // colors
}
if ( allocateInfluences ) {
iqmData->influences = (int*)dataPtr;
dataPtr += header->num_vertexes * sizeof(int); // influences
iqmData->influenceBlendIndexes = (byte*)dataPtr;
dataPtr += allocateInfluences * 4 * sizeof(byte); // influenceBlendIndexes
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_UBYTE ) {
iqmData->influenceBlendWeights.b = (byte*)dataPtr;
dataPtr += allocateInfluences * 4 * sizeof(byte); // influenceBlendWeights
} else if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
iqmData->influenceBlendWeights.f = (float*)dataPtr;
dataPtr += allocateInfluences * 4 * sizeof(float); // influenceBlendWeights
}
}
}
if( header->num_joints ) {
iqmData->jointNames = (char*)dataPtr;
dataPtr += joint_names; // joint names
iqmData->jointParents = (int*)dataPtr;
dataPtr += header->num_joints * sizeof(int); // joint parents
iqmData->bindJoints = (float*)dataPtr;
dataPtr += header->num_joints * 12 * sizeof(float); // bind joint matricies
iqmData->invBindJoints = (float*)dataPtr;
dataPtr += header->num_joints * 12 * sizeof(float); // inverse bind joint matricies
}
if( header->num_poses ) {
iqmData->poses = (iqmTransform_t*)dataPtr;
dataPtr += header->num_poses * header->num_frames * sizeof(iqmTransform_t); // pose transforms
}
if( header->ofs_bounds ) {
iqmData->bounds = (float*)dataPtr;
dataPtr += header->num_frames * 6 * sizeof(float); // model bounds
} else if( header->num_meshes && header->num_frames == 0 ) {
iqmData->bounds = (float*)dataPtr;
dataPtr += 6 * sizeof(float); // model bounds
}
if( header->num_meshes )
{
// register shaders
// overwrite the material offset with the shader index
mesh = (iqmMesh_t *)((byte *)header + header->ofs_meshes);
surface = iqmData->surfaces;
str = (char *)header + header->ofs_text;
for( i = 0; i < header->num_meshes; i++, mesh++, surface++ ) {
surface->surfaceType = SF_IQM;
Q_strncpyz(surface->name, str + mesh->name, sizeof (surface->name));
Q_strlwr(surface->name); // lowercase the surface name so skin compares are faster
surface->shader = R_FindShader( str + mesh->material, LIGHTMAP_NONE, qtrue );
if( surface->shader->defaultShader )
surface->shader = tr.defaultShader;
surface->data = iqmData;
surface->first_vertex = mesh->first_vertex;
surface->num_vertexes = mesh->num_vertexes;
surface->first_triangle = mesh->first_triangle;
surface->num_triangles = mesh->num_triangles;
}
// copy triangles
triangle = (iqmTriangle_t *)((byte *)header + header->ofs_triangles);
for( i = 0; i < header->num_triangles; i++, triangle++ ) {
iqmData->triangles[3*i+0] = triangle->vertex[0];
iqmData->triangles[3*i+1] = triangle->vertex[1];
iqmData->triangles[3*i+2] = triangle->vertex[2];
}
// copy vertexarrays and indexes
vertexarray = (iqmVertexArray_t *)((byte *)header + header->ofs_vertexarrays);
for( i = 0; i < header->num_vertexarrays; i++, vertexarray++ ) {
int n;
// skip disabled arrays
if( vertexarray->type < ARRAY_LEN( vertexArrayFormat )
&& vertexArrayFormat[vertexarray->type] == -1 )
continue;
// total number of values
n = header->num_vertexes * vertexarray->size;
switch( vertexarray->type ) {
case IQM_POSITION:
Com_Memcpy( iqmData->positions,
(byte *)header + vertexarray->offset,
n * sizeof(float) );
break;
case IQM_NORMAL:
Com_Memcpy( iqmData->normals,
(byte *)header + vertexarray->offset,
n * sizeof(float) );
break;
case IQM_TANGENT:
Com_Memcpy( iqmData->tangents,
(byte *)header + vertexarray->offset,
n * sizeof(float) );
break;
case IQM_TEXCOORD:
Com_Memcpy( iqmData->texcoords,
(byte *)header + vertexarray->offset,
n * sizeof(float) );
break;
case IQM_BLENDINDEXES:
case IQM_BLENDWEIGHTS:
break;
case IQM_COLOR:
Com_Memcpy( iqmData->colors,
(byte *)header + vertexarray->offset,
n * sizeof(byte) );
break;
}
}
// find unique blend influences per mesh
if( allocateInfluences ) {
int vtx, influence, totalInfluences = 0;
surface = iqmData->surfaces;
for( i = 0; i < header->num_meshes; i++, surface++ ) {
surface->first_influence = totalInfluences;
surface->num_influences = 0;
for( j = 0; j < surface->num_vertexes; j++ ) {
vtx = surface->first_vertex + j;
for( k = 0; k < surface->num_influences; k++ ) {
influence = surface->first_influence + k;
if( *(int*)&iqmData->influenceBlendIndexes[4*influence] != *(int*)&blendIndexes[4*vtx] ) {
continue;
}
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
if ( iqmData->influenceBlendWeights.f[4*influence+0] == blendWeights.f[4*vtx+0] &&
iqmData->influenceBlendWeights.f[4*influence+1] == blendWeights.f[4*vtx+1] &&
iqmData->influenceBlendWeights.f[4*influence+2] == blendWeights.f[4*vtx+2] &&
iqmData->influenceBlendWeights.f[4*influence+3] == blendWeights.f[4*vtx+3] ) {
break;
}
} else {
if ( *(int*)&iqmData->influenceBlendWeights.b[4*influence] == *(int*)&blendWeights.b[4*vtx] ) {
break;
}
}
}
iqmData->influences[vtx] = surface->first_influence + k;
if( k == surface->num_influences ) {
influence = surface->first_influence + k;
iqmData->influenceBlendIndexes[4*influence+0] = blendIndexes[4*vtx+0];
iqmData->influenceBlendIndexes[4*influence+1] = blendIndexes[4*vtx+1];
iqmData->influenceBlendIndexes[4*influence+2] = blendIndexes[4*vtx+2];
iqmData->influenceBlendIndexes[4*influence+3] = blendIndexes[4*vtx+3];
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
iqmData->influenceBlendWeights.f[4*influence+0] = blendWeights.f[4*vtx+0];
iqmData->influenceBlendWeights.f[4*influence+1] = blendWeights.f[4*vtx+1];
iqmData->influenceBlendWeights.f[4*influence+2] = blendWeights.f[4*vtx+2];
iqmData->influenceBlendWeights.f[4*influence+3] = blendWeights.f[4*vtx+3];
} else {
iqmData->influenceBlendWeights.b[4*influence+0] = blendWeights.b[4*vtx+0];
iqmData->influenceBlendWeights.b[4*influence+1] = blendWeights.b[4*vtx+1];
iqmData->influenceBlendWeights.b[4*influence+2] = blendWeights.b[4*vtx+2];
iqmData->influenceBlendWeights.b[4*influence+3] = blendWeights.b[4*vtx+3];
}
totalInfluences++;
surface->num_influences++;
}
}
}
}
}
if( header->num_joints )
{
// copy joint names
str = iqmData->jointNames;
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
for( i = 0; i < header->num_joints; i++, joint++ ) {
char *name = (char *)header + header->ofs_text +
joint->name;
int len = strlen( name ) + 1;
Com_Memcpy( str, name, len );
str += len;
}
// copy joint parents
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
for( i = 0; i < header->num_joints; i++, joint++ ) {
iqmData->jointParents[i] = joint->parent;
}
// calculate bind joint matrices and their inverses
mat = iqmData->bindJoints;
matInv = iqmData->invBindJoints;
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
for( i = 0; i < header->num_joints; i++, joint++ ) {
float baseFrame[12], invBaseFrame[12];
QuatNormalize2( joint->rotate, joint->rotate );
JointToMatrix( joint->rotate, joint->scale, joint->translate, baseFrame );
Matrix34Invert( baseFrame, invBaseFrame );
if ( joint->parent >= 0 )
{
Matrix34Multiply( iqmData->bindJoints + 12 * joint->parent, baseFrame, mat );
mat += 12;
Matrix34Multiply( invBaseFrame, iqmData->invBindJoints + 12 * joint->parent, matInv );
matInv += 12;
}
else
{
Com_Memcpy( mat, baseFrame, sizeof(baseFrame) );
mat += 12;
Com_Memcpy( matInv, invBaseFrame, sizeof(invBaseFrame) );
matInv += 12;
}
}
}
if( header->num_poses )
{
// calculate pose transforms
transform = iqmData->poses;
framedata = (unsigned short *)((byte *)header + header->ofs_frames);
for( i = 0; i < header->num_frames; i++ ) {
pose = (iqmPose_t *)((byte *)header + header->ofs_poses);
for( j = 0; j < header->num_poses; j++, pose++, transform++ ) {
vec3_t translate;
quat_t rotate;
vec3_t scale;
translate[0] = pose->channeloffset[0];
if( pose->mask & 0x001)
translate[0] += *framedata++ * pose->channelscale[0];
translate[1] = pose->channeloffset[1];
if( pose->mask & 0x002)
translate[1] += *framedata++ * pose->channelscale[1];
translate[2] = pose->channeloffset[2];
if( pose->mask & 0x004)
translate[2] += *framedata++ * pose->channelscale[2];
rotate[0] = pose->channeloffset[3];
if( pose->mask & 0x008)
rotate[0] += *framedata++ * pose->channelscale[3];
rotate[1] = pose->channeloffset[4];
if( pose->mask & 0x010)
rotate[1] += *framedata++ * pose->channelscale[4];
rotate[2] = pose->channeloffset[5];
if( pose->mask & 0x020)
rotate[2] += *framedata++ * pose->channelscale[5];
rotate[3] = pose->channeloffset[6];
if( pose->mask & 0x040)
rotate[3] += *framedata++ * pose->channelscale[6];
scale[0] = pose->channeloffset[7];
if( pose->mask & 0x080)
scale[0] += *framedata++ * pose->channelscale[7];
scale[1] = pose->channeloffset[8];
if( pose->mask & 0x100)
scale[1] += *framedata++ * pose->channelscale[8];
scale[2] = pose->channeloffset[9];
if( pose->mask & 0x200)
scale[2] += *framedata++ * pose->channelscale[9];
VectorCopy( translate, transform->translate );
QuatNormalize2( rotate, transform->rotate );
VectorCopy( scale, transform->scale );
}
}
}
// copy model bounds
if(header->ofs_bounds)
{
mat = iqmData->bounds;
bounds = (iqmBounds_t *) ((byte *) header + header->ofs_bounds);
for(i = 0; i < header->num_frames; i++)
{
mat[0] = bounds->bbmin[0];
mat[1] = bounds->bbmin[1];
mat[2] = bounds->bbmin[2];
mat[3] = bounds->bbmax[0];
mat[4] = bounds->bbmax[1];
mat[5] = bounds->bbmax[2];
mat += 6;
bounds++;
}
}
else if( header->num_meshes && header->num_frames == 0 )
{
mat = iqmData->bounds;
ClearBounds( &iqmData->bounds[0], &iqmData->bounds[3] );
for ( i = 0 ; i < header->num_vertexes ; i++ ) {
AddPointToBounds( &iqmData->positions[i*3], &iqmData->bounds[0], &iqmData->bounds[3] );
}
}
// Create VAO surfaces
if ( iqmData->num_surfaces && iqmData->num_joints <= glRefConfig.glslMaxAnimatedBones )
{
srfVaoIQModel_t *vaoSurf;
srfIQModel_t *surf;
iqmData->numVaoSurfaces = iqmData->num_surfaces;
iqmData->vaoSurfaces = ri.Hunk_Alloc(sizeof(*iqmData->vaoSurfaces) * iqmData->numVaoSurfaces, h_low);
vaoSurf = iqmData->vaoSurfaces;
surf = iqmData->surfaces;
for (i = 0; i < iqmData->num_surfaces; i++, vaoSurf++, surf++)
{
uint32_t offset_xyz, offset_st, offset_normal, offset_tangent;
uint32_t offset_blendindexes, offset_blendweights, stride;
uint32_t dataSize, dataOfs;
uint8_t *data;
glIndex_t indexes[SHADER_MAX_INDEXES];
glIndex_t *ptr;
int *tri;
offset_xyz = 0;
offset_st = offset_xyz + sizeof(float) * 3;
offset_normal = offset_st + sizeof(float) * 2;
offset_tangent = offset_normal + sizeof(int16_t) * 4;
if ( iqmData->num_joints )
{
offset_blendindexes = offset_tangent + sizeof(int16_t) * 4;
offset_blendweights = offset_blendindexes + sizeof(byte) * 4;
if ( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
stride = offset_blendweights + sizeof(float) * 4;
} else {
stride = offset_blendweights + sizeof(byte) * 4;
}
}
else
{
stride = offset_tangent + sizeof(int16_t) * 4;
}
dataSize = surf->num_vertexes * stride;
data = ri.Malloc(dataSize);
dataOfs = 0;
for ( j = 0; j < surf->num_vertexes; j++ )
{
int vtx = surf->first_vertex + j;
// xyz
memcpy(data + dataOfs, &iqmData->positions[vtx*3], sizeof(float) * 3);
dataOfs += sizeof(float) * 3;
// st
memcpy(data + dataOfs, &iqmData->texcoords[vtx*2], sizeof(float) * 2);
dataOfs += sizeof(float) * 2;
// normal
R_VaoPackNormal((int16_t*)(data + dataOfs), &iqmData->normals[vtx*3]);
dataOfs += sizeof(int16_t) * 4;
// tangent
R_VaoPackTangent((int16_t*)(data + dataOfs), &iqmData->tangents[vtx*4]);
dataOfs += sizeof(int16_t) * 4;
if ( iqmData->num_joints )
{
// blendindexes
memcpy(data + dataOfs, &blendIndexes[vtx*4], sizeof(byte) * 4);
dataOfs += sizeof(byte) * 4;
// blendweights
if ( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
memcpy(data + dataOfs, &blendWeights.f[vtx*4], sizeof(float) * 4);
dataOfs += sizeof(float) * 4;
} else {
memcpy(data + dataOfs, &blendWeights.b[vtx*4], sizeof(byte) * 4);
dataOfs += sizeof(byte) * 4;
}
}
}
tri = iqmData->triangles + 3 * surf->first_triangle;
ptr = indexes;
for( j = 0; j < surf->num_triangles; j++ ) {
*ptr++ = (*tri++ - surf->first_vertex);
*ptr++ = (*tri++ - surf->first_vertex);
*ptr++ = (*tri++ - surf->first_vertex);
}
vaoSurf->surfaceType = SF_VAO_IQM;
vaoSurf->iqmData = iqmData;
vaoSurf->iqmSurface = surf;
vaoSurf->numIndexes = surf->num_triangles * 3;
vaoSurf->numVerts = surf->num_vertexes;
vaoSurf->vao = R_CreateVao(va("staticIQMMesh_VAO '%s'", surf->name), data, dataSize, (byte *)indexes, surf->num_triangles * 3 * sizeof(indexes[0]), VAO_USAGE_STATIC);
vaoSurf->vao->attribs[ATTR_INDEX_POSITION].enabled = 1;
vaoSurf->vao->attribs[ATTR_INDEX_POSITION].enabled = 1;
vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].enabled = 1;
vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].enabled = 1;
vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].enabled = 1;
vaoSurf->vao->attribs[ATTR_INDEX_POSITION].count = 3;
vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].count = 2;
vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].count = 4;
vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].count = 4;
vaoSurf->vao->attribs[ATTR_INDEX_POSITION].type = GL_FLOAT;
vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].type = GL_FLOAT;
vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].type = GL_SHORT;
vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].type = GL_SHORT;
vaoSurf->vao->attribs[ATTR_INDEX_POSITION].normalized = GL_FALSE;
vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].normalized = GL_FALSE;
vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].normalized = GL_TRUE;
vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].normalized = GL_TRUE;
vaoSurf->vao->attribs[ATTR_INDEX_POSITION].offset = offset_xyz;
vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].offset = offset_st;
vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].offset = offset_normal;
vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].offset = offset_tangent;
vaoSurf->vao->attribs[ATTR_INDEX_POSITION].stride = stride;
vaoSurf->vao->attribs[ATTR_INDEX_TEXCOORD].stride = stride;
vaoSurf->vao->attribs[ATTR_INDEX_NORMAL ].stride = stride;
vaoSurf->vao->attribs[ATTR_INDEX_TANGENT ].stride = stride;
if ( iqmData->num_joints )
{
vaoSurf->vao->attribs[ATTR_INDEX_BONE_INDEXES].enabled = 1;
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].enabled = 1;
vaoSurf->vao->attribs[ATTR_INDEX_BONE_INDEXES].count = 4;
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].count = 4;
vaoSurf->vao->attribs[ATTR_INDEX_BONE_INDEXES].type = GL_UNSIGNED_BYTE;
vaoSurf->vao->attribs[ATTR_INDEX_BONE_INDEXES].normalized = GL_FALSE;
if ( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].type = GL_FLOAT;
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].normalized = GL_FALSE;
} else {
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].type = GL_UNSIGNED_BYTE;
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].normalized = GL_TRUE;
}
vaoSurf->vao->attribs[ATTR_INDEX_BONE_INDEXES].offset = offset_blendindexes;
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].offset = offset_blendweights;
vaoSurf->vao->attribs[ATTR_INDEX_BONE_INDEXES].stride = stride;
vaoSurf->vao->attribs[ATTR_INDEX_BONE_WEIGHTS].stride = stride;
}
Vao_SetVertexPointers(vaoSurf->vao);
ri.Free(data);
}
}
return qtrue;
}
/*
=============
R_CullIQM
=============
*/
static int R_CullIQM( iqmData_t *data, trRefEntity_t *ent ) {
vec3_t bounds[2];
vec_t *oldBounds, *newBounds;
int i;
if (!data->bounds) {
tr.pc.c_box_cull_md3_clip++;
return CULL_CLIP;
}
// compute bounds pointers
oldBounds = data->bounds + 6*ent->e.oldframe;
newBounds = data->bounds + 6*ent->e.frame;
// calculate a bounding box in the current coordinate system
for (i = 0 ; i < 3 ; i++) {
bounds[0][i] = oldBounds[i] < newBounds[i] ? oldBounds[i] : newBounds[i];
bounds[1][i] = oldBounds[i+3] > newBounds[i+3] ? oldBounds[i+3] : newBounds[i+3];
}
switch ( R_CullLocalBox( bounds ) )
{
case CULL_IN:
tr.pc.c_box_cull_md3_in++;
return CULL_IN;
case CULL_CLIP:
tr.pc.c_box_cull_md3_clip++;
return CULL_CLIP;
case CULL_OUT:
default:
tr.pc.c_box_cull_md3_out++;
return CULL_OUT;
}
}
/*
=================
R_ComputeIQMFogNum
=================
*/
int R_ComputeIQMFogNum( iqmData_t *data, trRefEntity_t *ent ) {
int i, j;
fog_t *fog;
const vec_t *bounds;
const vec_t defaultBounds[6] = { -8, -8, -8, 8, 8, 8 };
vec3_t diag, center;
vec3_t localOrigin;
vec_t radius;
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
return 0;
}
// FIXME: non-normalized axis issues
if (data->bounds) {
bounds = data->bounds + 6*ent->e.frame;
} else {
bounds = defaultBounds;
}
VectorSubtract( bounds+3, bounds, diag );
VectorMA( bounds, 0.5f, diag, center );
VectorAdd( ent->e.origin, center, localOrigin );
radius = 0.5f * VectorLength( diag );
for ( i = 1 ; i < tr.world->numfogs ; i++ ) {
fog = &tr.world->fogs[i];
for ( j = 0 ; j < 3 ; j++ ) {
if ( localOrigin[j] - radius >= fog->bounds[1][j] ) {
break;
}
if ( localOrigin[j] + radius <= fog->bounds[0][j] ) {
break;
}
}
if ( j == 3 ) {
return i;
}
}
return 0;
}
/*
=================
R_AddIQMSurfaces
Add all surfaces of this model
=================
*/
void R_AddIQMSurfaces( trRefEntity_t *ent ) {
iqmData_t *data;
srfIQModel_t *surface;
void *drawSurf;
int i, j;
qboolean personalModel;
int cull;
int fogNum;
int cubemapIndex;
shader_t *shader;
skin_t *skin;
data = tr.currentModel->modelData;
surface = data->surfaces;
// don't add third_person objects if not in a portal
personalModel = (ent->e.renderfx & RF_THIRD_PERSON) && !(tr.viewParms.isPortal
|| (tr.viewParms.flags & (VPF_SHADOWMAP | VPF_DEPTHSHADOW)));
if ( ent->e.renderfx & RF_WRAP_FRAMES ) {
ent->e.frame %= data->num_frames;
ent->e.oldframe %= data->num_frames;
}
//
// Validate the frames so there is no chance of a crash.
// This will write directly into the entity structure, so
// when the surfaces are rendered, they don't need to be
// range checked again.
//
if ( (ent->e.frame >= data->num_frames)
|| (ent->e.frame < 0)
|| (ent->e.oldframe >= data->num_frames)
|| (ent->e.oldframe < 0) ) {
ri.Printf( PRINT_DEVELOPER, "R_AddIQMSurfaces: no such frame %d to %d for '%s'\n",
ent->e.oldframe, ent->e.frame,
tr.currentModel->name );
ent->e.frame = 0;
ent->e.oldframe = 0;
}
//
// cull the entire model if merged bounding box of both frames
// is outside the view frustum.
//
cull = R_CullIQM ( data, ent );
if ( cull == CULL_OUT ) {
return;
}
//
// set up lighting now that we know we aren't culled
//
if ( !personalModel || r_shadows->integer > 1 ) {
R_SetupEntityLighting( &tr.refdef, ent );
}
//
// see if we are in a fog volume
//
fogNum = R_ComputeIQMFogNum( data, ent );
cubemapIndex = R_CubemapForPoint(ent->e.origin);
for ( i = 0 ; i < data->num_surfaces ; i++ ) {
if(ent->e.customShader)
shader = R_GetShaderByHandle( ent->e.customShader );
else if(ent->e.customSkin > 0 && ent->e.customSkin < tr.numSkins)
{
skin = R_GetSkinByHandle(ent->e.customSkin);
shader = tr.defaultShader;
for(j = 0; j < skin->numSurfaces; j++)
{
if (!strcmp(skin->surfaces[j].name, surface->name))
{
shader = skin->surfaces[j].shader;
break;
}
}
} else {
shader = surface->shader;
}
if ( data->numVaoSurfaces ) {
drawSurf = &data->vaoSurfaces[i];
} else {
drawSurf = surface;
}
// we will add shadows even if the main object isn't visible in the view
// stencil shadows can't do personal models unless I polyhedron clip
if ( !personalModel
&& r_shadows->integer == 2
&& fogNum == 0
&& !(ent->e.renderfx & ( RF_NOSHADOW | RF_DEPTHHACK ) )
&& shader->sort == SS_OPAQUE ) {
R_AddDrawSurf( drawSurf, tr.shadowShader, 0, 0, 0, 0 );
}
// projection shadows work fine with personal models
if ( r_shadows->integer == 3
&& fogNum == 0
&& (ent->e.renderfx & RF_SHADOW_PLANE )
&& shader->sort == SS_OPAQUE ) {
R_AddDrawSurf( drawSurf, tr.projectionShadowShader, 0, 0, 0, 0 );
}
if( !personalModel ) {
R_AddDrawSurf( drawSurf, shader, fogNum, 0, 0, cubemapIndex );
}
surface++;
}
}
static void ComputePoseMats( iqmData_t *data, int frame, int oldframe,
float backlerp, float *poseMats ) {
iqmTransform_t relativeJoints[IQM_MAX_JOINTS];
iqmTransform_t *relativeJoint;
const iqmTransform_t *pose;
const iqmTransform_t *oldpose;
const int *jointParent;
const float *invBindMat;
float *poseMat, lerp;
int i;
relativeJoint = relativeJoints;
// copy or lerp animation frame pose
if ( oldframe == frame ) {
pose = &data->poses[frame * data->num_poses];
for ( i = 0; i < data->num_poses; i++, pose++, relativeJoint++ ) {
VectorCopy( pose->translate, relativeJoint->translate );
QuatCopy( pose->rotate, relativeJoint->rotate );
VectorCopy( pose->scale, relativeJoint->scale );
}
} else {
lerp = 1.0f - backlerp;
pose = &data->poses[frame * data->num_poses];
oldpose = &data->poses[oldframe * data->num_poses];
for ( i = 0; i < data->num_poses; i++, oldpose++, pose++, relativeJoint++ ) {
relativeJoint->translate[0] = oldpose->translate[0] * backlerp + pose->translate[0] * lerp;
relativeJoint->translate[1] = oldpose->translate[1] * backlerp + pose->translate[1] * lerp;
relativeJoint->translate[2] = oldpose->translate[2] * backlerp + pose->translate[2] * lerp;
relativeJoint->scale[0] = oldpose->scale[0] * backlerp + pose->scale[0] * lerp;
relativeJoint->scale[1] = oldpose->scale[1] * backlerp + pose->scale[1] * lerp;
relativeJoint->scale[2] = oldpose->scale[2] * backlerp + pose->scale[2] * lerp;
QuatSlerp( oldpose->rotate, pose->rotate, lerp, relativeJoint->rotate );
}
}
// multiply by inverse of bind pose and parent 'pose mat' (bind pose transform matrix)
relativeJoint = relativeJoints;
jointParent = data->jointParents;
invBindMat = data->invBindJoints;
poseMat = poseMats;
for ( i = 0; i < data->num_poses; i++, relativeJoint++, jointParent++, invBindMat += 12, poseMat += 12 ) {
float mat1[12], mat2[12];
JointToMatrix( relativeJoint->rotate, relativeJoint->scale, relativeJoint->translate, mat1 );
if ( *jointParent >= 0 ) {
Matrix34Multiply( &data->bindJoints[(*jointParent)*12], mat1, mat2 );
Matrix34Multiply( mat2, invBindMat, mat1 );
Matrix34Multiply( &poseMats[(*jointParent)*12], mat1, poseMat );
} else {
Matrix34Multiply( mat1, invBindMat, poseMat );
}
}
}
static void ComputeJointMats( iqmData_t *data, int frame, int oldframe,
float backlerp, float *mat ) {
float *mat1;
int i;
if ( data->num_poses == 0 ) {
Com_Memcpy( mat, data->bindJoints, data->num_joints * 12 * sizeof(float) );
return;
}
ComputePoseMats( data, frame, oldframe, backlerp, mat );
for( i = 0; i < data->num_joints; i++ ) {
float outmat[12];
mat1 = mat + 12 * i;
Com_Memcpy(outmat, mat1, sizeof(outmat));
Matrix34Multiply( outmat, data->bindJoints + 12*i, mat1 );
}
}
/*
=================
RB_AddIQMSurfaces
Compute vertices for this model surface
=================
*/
void RB_IQMSurfaceAnim( surfaceType_t *surface ) {
srfIQModel_t *surf = (srfIQModel_t *)surface;
iqmData_t *data = surf->data;
float poseMats[IQM_MAX_JOINTS * 12];
float influenceVtxMat[SHADER_MAX_VERTEXES * 12];
float influenceNrmMat[SHADER_MAX_VERTEXES * 9];
int i;
float *xyz;
float *normal;
float *tangent;
float *texCoords;
byte *color;
vec4_t *outXYZ;
int16_t *outNormal;
int16_t *outTangent;
vec2_t *outTexCoord;
uint16_t *outColor;
int frame = data->num_frames ? backEnd.currentEntity->e.frame % data->num_frames : 0;
int oldframe = data->num_frames ? backEnd.currentEntity->e.oldframe % data->num_frames : 0;
float backlerp = backEnd.currentEntity->e.backlerp;
int *tri;
glIndex_t *ptr;
glIndex_t base;
RB_CHECKOVERFLOW( surf->num_vertexes, surf->num_triangles * 3 );
xyz = &data->positions[surf->first_vertex * 3];
normal = &data->normals[surf->first_vertex * 3];
tangent = &data->tangents[surf->first_vertex * 4];
texCoords = &data->texcoords[surf->first_vertex * 2];
if ( data->colors ) {
color = &data->colors[surf->first_vertex * 4];
} else {
color = NULL;
}
outXYZ = &tess.xyz[tess.numVertexes];
outNormal = tess.normal[tess.numVertexes];
outTangent = tess.tangent[tess.numVertexes];
outTexCoord = &tess.texCoords[tess.numVertexes];
outColor = tess.color[tess.numVertexes];
if ( data->num_poses > 0 ) {
// compute interpolated joint matrices
ComputePoseMats( data, frame, oldframe, backlerp, poseMats );
// compute vertex blend influence matricies
for( i = 0; i < surf->num_influences; i++ ) {
int influence = surf->first_influence + i;
float *vtxMat = &influenceVtxMat[12*i];
float *nrmMat = &influenceNrmMat[9*i];
int j;
float blendWeights[4];
if ( data->blendWeightsType == IQM_FLOAT ) {
blendWeights[0] = data->influenceBlendWeights.f[4*influence + 0];
blendWeights[1] = data->influenceBlendWeights.f[4*influence + 1];
blendWeights[2] = data->influenceBlendWeights.f[4*influence + 2];
blendWeights[3] = data->influenceBlendWeights.f[4*influence + 3];
} else {
blendWeights[0] = (float)data->influenceBlendWeights.b[4*influence + 0] / 255.0f;
blendWeights[1] = (float)data->influenceBlendWeights.b[4*influence + 1] / 255.0f;
blendWeights[2] = (float)data->influenceBlendWeights.b[4*influence + 2] / 255.0f;
blendWeights[3] = (float)data->influenceBlendWeights.b[4*influence + 3] / 255.0f;
}
if ( blendWeights[0] <= 0.0f ) {
// no blend joint, use identity matrix.
vtxMat[0] = identityMatrix[0];
vtxMat[1] = identityMatrix[1];
vtxMat[2] = identityMatrix[2];
vtxMat[3] = identityMatrix[3];
vtxMat[4] = identityMatrix[4];
vtxMat[5] = identityMatrix[5];
vtxMat[6] = identityMatrix[6];
vtxMat[7] = identityMatrix[7];
vtxMat[8] = identityMatrix[8];
vtxMat[9] = identityMatrix[9];
vtxMat[10] = identityMatrix[10];
vtxMat[11] = identityMatrix[11];
} else {
// compute the vertex matrix by blending the up to
// four blend weights
vtxMat[0] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 0];
vtxMat[1] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 1];
vtxMat[2] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 2];
vtxMat[3] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 3];
vtxMat[4] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 4];
vtxMat[5] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 5];
vtxMat[6] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 6];
vtxMat[7] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 7];
vtxMat[8] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 8];
vtxMat[9] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 9];
vtxMat[10] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 10];
vtxMat[11] = blendWeights[0] * poseMats[12 * data->influenceBlendIndexes[4*influence + 0] + 11];
for( j = 1; j < 3; j++ ) {
if ( blendWeights[j] <= 0.0f ) {
break;
}
vtxMat[0] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 0];
vtxMat[1] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 1];
vtxMat[2] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 2];
vtxMat[3] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 3];
vtxMat[4] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 4];
vtxMat[5] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 5];
vtxMat[6] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 6];
vtxMat[7] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 7];
vtxMat[8] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 8];
vtxMat[9] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 9];
vtxMat[10] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 10];
vtxMat[11] += blendWeights[j] * poseMats[12 * data->influenceBlendIndexes[4*influence + j] + 11];
}
}
// compute the normal matrix as transpose of the adjoint
// of the vertex matrix
nrmMat[ 0] = vtxMat[ 5]*vtxMat[10] - vtxMat[ 6]*vtxMat[ 9];
nrmMat[ 1] = vtxMat[ 6]*vtxMat[ 8] - vtxMat[ 4]*vtxMat[10];
nrmMat[ 2] = vtxMat[ 4]*vtxMat[ 9] - vtxMat[ 5]*vtxMat[ 8];
nrmMat[ 3] = vtxMat[ 2]*vtxMat[ 9] - vtxMat[ 1]*vtxMat[10];
nrmMat[ 4] = vtxMat[ 0]*vtxMat[10] - vtxMat[ 2]*vtxMat[ 8];
nrmMat[ 5] = vtxMat[ 1]*vtxMat[ 8] - vtxMat[ 0]*vtxMat[ 9];
nrmMat[ 6] = vtxMat[ 1]*vtxMat[ 6] - vtxMat[ 2]*vtxMat[ 5];
nrmMat[ 7] = vtxMat[ 2]*vtxMat[ 4] - vtxMat[ 0]*vtxMat[ 6];
nrmMat[ 8] = vtxMat[ 0]*vtxMat[ 5] - vtxMat[ 1]*vtxMat[ 4];
}
// transform vertexes and fill other data
for( i = 0; i < surf->num_vertexes;
i++, xyz+=3, normal+=3, tangent+=4, texCoords+=2,
outXYZ++, outNormal+=4, outTangent+=4, outTexCoord++ ) {
int influence = data->influences[surf->first_vertex + i] - surf->first_influence;
float *vtxMat = &influenceVtxMat[12*influence];
float *nrmMat = &influenceNrmMat[9*influence];
(*outTexCoord)[0] = texCoords[0];
(*outTexCoord)[1] = texCoords[1];
(*outXYZ)[0] =
vtxMat[ 0] * xyz[0] +
vtxMat[ 1] * xyz[1] +
vtxMat[ 2] * xyz[2] +
vtxMat[ 3];
(*outXYZ)[1] =
vtxMat[ 4] * xyz[0] +
vtxMat[ 5] * xyz[1] +
vtxMat[ 6] * xyz[2] +
vtxMat[ 7];
(*outXYZ)[2] =
vtxMat[ 8] * xyz[0] +
vtxMat[ 9] * xyz[1] +
vtxMat[10] * xyz[2] +
vtxMat[11];
{
vec3_t unpackedNormal;
vec4_t unpackedTangent;
unpackedNormal[0] = DotProduct(&nrmMat[0], normal);
unpackedNormal[1] = DotProduct(&nrmMat[3], normal);
unpackedNormal[2] = DotProduct(&nrmMat[6], normal);
R_VaoPackNormal(outNormal, unpackedNormal);
unpackedTangent[0] = DotProduct(&nrmMat[0], tangent);
unpackedTangent[1] = DotProduct(&nrmMat[3], tangent);
unpackedTangent[2] = DotProduct(&nrmMat[6], tangent);
unpackedTangent[3] = tangent[3];
R_VaoPackTangent(outTangent, unpackedTangent);
}
}
} else {
// copy vertexes and fill other data
for( i = 0; i < surf->num_vertexes;
i++, xyz+=3, normal+=3, tangent+=4, texCoords+=2,
outXYZ++, outNormal+=4, outTangent+=4, outTexCoord++ ) {
(*outTexCoord)[0] = texCoords[0];
(*outTexCoord)[1] = texCoords[1];
(*outXYZ)[0] = xyz[0];
(*outXYZ)[1] = xyz[1];
(*outXYZ)[2] = xyz[2];
R_VaoPackNormal(outNormal, normal);
R_VaoPackTangent(outTangent, tangent);
}
}
if ( color ) {
for( i = 0; i < surf->num_vertexes; i++, color+=4, outColor+=4 ) {
outColor[0] = color[0] * 257;
outColor[1] = color[1] * 257;
outColor[2] = color[2] * 257;
outColor[3] = color[3] * 257;
}
} else {
for( i = 0; i < surf->num_vertexes; i++, outColor+=4 ) {
outColor[0] = 0;
outColor[1] = 0;
outColor[2] = 0;
outColor[3] = 0;
}
}
tri = data->triangles + 3 * surf->first_triangle;
ptr = &tess.indexes[tess.numIndexes];
base = tess.numVertexes;
for( i = 0; i < surf->num_triangles; i++ ) {
*ptr++ = base + (*tri++ - surf->first_vertex);
*ptr++ = base + (*tri++ - surf->first_vertex);
*ptr++ = base + (*tri++ - surf->first_vertex);
}
tess.numIndexes += 3 * surf->num_triangles;
tess.numVertexes += surf->num_vertexes;
}
/*
=================
RB_IQMSurfaceAnimVao
=================
*/
void RB_IQMSurfaceAnimVao(srfVaoIQModel_t * surface)
{
iqmData_t *data = surface->iqmData;
if (ShaderRequiresCPUDeforms(tess.shader))
{
RB_IQMSurfaceAnim((surfaceType_t*)surface->iqmSurface);
return;
}
if(!surface->vao)
return;
//RB_CheckVao(surface->vao);
RB_EndSurface();
RB_BeginSurface(tess.shader, tess.fogNum, tess.cubemapIndex);
R_BindVao(surface->vao);
tess.useInternalVao = qfalse;
tess.numIndexes = surface->numIndexes;
tess.numVertexes = surface->numVerts;
glState.boneAnimation = data->num_poses;
if ( glState.boneAnimation ) {
float jointMats[IQM_MAX_JOINTS * 12];
int frame = data->num_frames ? backEnd.currentEntity->e.frame % data->num_frames : 0;
int oldframe = data->num_frames ? backEnd.currentEntity->e.oldframe % data->num_frames : 0;
float backlerp = backEnd.currentEntity->e.backlerp;
int i;
// compute interpolated joint matrices
ComputePoseMats( surface->iqmData, frame, oldframe, backlerp, jointMats );
// convert row-major order 3x4 matrix to column-major order 4x4 matrix
for ( i = 0; i < data->num_poses; i++ ) {
glState.boneMatrix[i][0] = jointMats[i*12+0];
glState.boneMatrix[i][1] = jointMats[i*12+4];
glState.boneMatrix[i][2] = jointMats[i*12+8];
glState.boneMatrix[i][3] = 0.0f;
glState.boneMatrix[i][4] = jointMats[i*12+1];
glState.boneMatrix[i][5] = jointMats[i*12+5];
glState.boneMatrix[i][6] = jointMats[i*12+9];
glState.boneMatrix[i][7] = 0.0f;
glState.boneMatrix[i][8] = jointMats[i*12+2];
glState.boneMatrix[i][9] = jointMats[i*12+6];
glState.boneMatrix[i][10] = jointMats[i*12+10];
glState.boneMatrix[i][11] = 0.0f;
glState.boneMatrix[i][12] = jointMats[i*12+3];
glState.boneMatrix[i][13] = jointMats[i*12+7];
glState.boneMatrix[i][14] = jointMats[i*12+11];
glState.boneMatrix[i][15] = 1.0f;
}
}
RB_EndSurface();
glState.boneAnimation = 0;
}
int R_IQMLerpTag( orientation_t *tag, iqmData_t *data,
int startFrame, int endFrame,
float frac, const char *tagName ) {
float jointMats[IQM_MAX_JOINTS * 12];
int joint;
char *names = data->jointNames;
// get joint number by reading the joint names
for( joint = 0; joint < data->num_joints; joint++ ) {
if( !strcmp( tagName, names ) )
break;
names += strlen( names ) + 1;
}
if( joint >= data->num_joints ) {
AxisClear( tag->axis );
VectorClear( tag->origin );
return qfalse;
}
ComputeJointMats( data, startFrame, endFrame, frac, jointMats );
tag->axis[0][0] = jointMats[12 * joint + 0];
tag->axis[1][0] = jointMats[12 * joint + 1];
tag->axis[2][0] = jointMats[12 * joint + 2];
tag->origin[0] = jointMats[12 * joint + 3];
tag->axis[0][1] = jointMats[12 * joint + 4];
tag->axis[1][1] = jointMats[12 * joint + 5];
tag->axis[2][1] = jointMats[12 * joint + 6];
tag->origin[1] = jointMats[12 * joint + 7];
tag->axis[0][2] = jointMats[12 * joint + 8];
tag->axis[1][2] = jointMats[12 * joint + 9];
tag->axis[2][2] = jointMats[12 * joint + 10];
tag->origin[2] = jointMats[12 * joint + 11];
return qtrue;
}