lilium-voyager/code/renderergl1/tr_image.c

1680 lines
37 KiB
C
Raw Normal View History

2005-08-26 17:39:27 +00:00
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
2005-08-26 17:39:27 +00:00
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_image.c
#include "tr_local.h"
static byte s_intensitytable[256];
static unsigned char s_gammatable[256];
int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
int gl_filter_max = GL_LINEAR;
#define FILE_HASH_SIZE 1024
static image_t* hashTable[FILE_HASH_SIZE];
/*
** R_GammaCorrect
*/
void R_GammaCorrect( byte *buffer, int bufSize ) {
int i;
for ( i = 0; i < bufSize; i++ ) {
buffer[i] = s_gammatable[buffer[i]];
}
}
typedef struct {
char *name;
int minimize, maximize;
} textureMode_t;
textureMode_t modes[] = {
{"GL_NEAREST", GL_NEAREST, GL_NEAREST},
{"GL_LINEAR", GL_LINEAR, GL_LINEAR},
{"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST},
{"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR},
{"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST},
{"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}
};
/*
================
return a hash value for the filename
================
*/
static long generateHashValue( const char *fname ) {
int i;
long hash;
char letter;
hash = 0;
i = 0;
while (fname[i] != '\0') {
letter = tolower(fname[i]);
if (letter =='.') break; // don't include extension
if (letter =='\\') letter = '/'; // damn path names
hash+=(long)(letter)*(i+119);
i++;
}
hash &= (FILE_HASH_SIZE-1);
return hash;
}
/*
===============
GL_TextureMode
===============
*/
void GL_TextureMode( const char *string ) {
int i;
image_t *glt;
for ( i=0 ; i< 6 ; i++ ) {
if ( !Q_stricmp( modes[i].name, string ) ) {
break;
}
}
// hack to prevent trilinear from being set on voodoo,
// because their driver freaks...
if ( i == 5 && glConfig.hardwareType == GLHW_3DFX_2D3D ) {
ri.Printf( PRINT_ALL, "Refusing to set trilinear on a voodoo.\n" );
i = 3;
}
if ( i == 6 ) {
ri.Printf (PRINT_ALL, "bad filter name\n");
return;
}
gl_filter_min = modes[i].minimize;
gl_filter_max = modes[i].maximize;
// change all the existing mipmap texture objects
for ( i = 0 ; i < tr.numImages ; i++ ) {
glt = tr.images[ i ];
2013-03-12 17:52:02 +00:00
if ( glt->flags & IMGFLAG_MIPMAP ) {
2005-08-26 17:39:27 +00:00
GL_Bind (glt);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
}
}
}
/*
===============
R_SumOfUsedImages
===============
*/
int R_SumOfUsedImages( void ) {
int total;
int i;
total = 0;
for ( i = 0; i < tr.numImages; i++ ) {
if ( tr.images[i]->frameUsed == tr.frameCount ) {
total += tr.images[i]->uploadWidth * tr.images[i]->uploadHeight;
}
}
return total;
}
/*
===============
R_ImageList_f
===============
*/
void R_ImageList_f( void ) {
2013-03-12 17:52:02 +00:00
int i;
int estTotalSize = 0;
2005-08-26 17:39:27 +00:00
2013-03-12 17:52:02 +00:00
ri.Printf(PRINT_ALL, "\n -w-- -h-- type -size- --name-------\n");
2005-08-26 17:39:27 +00:00
2013-03-12 17:52:02 +00:00
for ( i = 0 ; i < tr.numImages ; i++ )
{
image_t *image = tr.images[i];
char *format = "???? ";
char *sizeSuffix;
int estSize;
int displaySize;
estSize = image->uploadHeight * image->uploadWidth;
switch(image->internalFormat)
{
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT:
format = "sDXT1";
// 64 bits per 16 pixels, so 4 bits per pixel
estSize /= 2;
break;
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT:
format = "sDXT5";
// 128 bits per 16 pixels, so 1 byte per pixel
break;
case GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB:
format = "sBPTC";
// 128 bits per 16 pixels, so 1 byte per pixel
break;
case GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT:
format = "LATC ";
// 128 bits per 16 pixels, so 1 byte per pixel
break;
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
format = "DXT1 ";
// 64 bits per 16 pixels, so 4 bits per pixel
estSize /= 2;
break;
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
format = "DXT5 ";
// 128 bits per 16 pixels, so 1 byte per pixel
break;
case GL_COMPRESSED_RGBA_BPTC_UNORM_ARB:
format = "BPTC ";
// 128 bits per 16 pixels, so 1 byte per pixel
break;
case GL_RGB4_S3TC:
format = "S3TC ";
// same as DXT1?
estSize /= 2;
break;
case GL_RGBA4:
case GL_RGBA8:
case GL_RGBA:
format = "RGBA ";
// 4 bytes per pixel
estSize *= 4;
break;
case GL_LUMINANCE8:
case GL_LUMINANCE16:
case GL_LUMINANCE:
format = "L ";
// 1 byte per pixel?
break;
case GL_RGB5:
case GL_RGB8:
case GL_RGB:
format = "RGB ";
// 3 bytes per pixel?
estSize *= 3;
break;
case GL_LUMINANCE8_ALPHA8:
case GL_LUMINANCE16_ALPHA16:
case GL_LUMINANCE_ALPHA:
format = "LA ";
// 2 bytes per pixel?
estSize *= 2;
break;
case GL_SRGB_EXT:
case GL_SRGB8_EXT:
format = "sRGB ";
// 3 bytes per pixel?
estSize *= 3;
break;
case GL_SRGB_ALPHA_EXT:
case GL_SRGB8_ALPHA8_EXT:
format = "sRGBA";
// 4 bytes per pixel?
estSize *= 4;
break;
case GL_SLUMINANCE_EXT:
case GL_SLUMINANCE8_EXT:
format = "sL ";
// 1 byte per pixel?
break;
case GL_SLUMINANCE_ALPHA_EXT:
case GL_SLUMINANCE8_ALPHA8_EXT:
format = "sLA ";
// 2 byte per pixel?
estSize *= 2;
break;
2005-08-26 17:39:27 +00:00
}
2013-03-12 17:52:02 +00:00
// mipmap adds about 50%
if (image->flags & IMGFLAG_MIPMAP)
estSize += estSize / 2;
sizeSuffix = "b ";
displaySize = estSize;
if (displaySize > 1024)
{
displaySize /= 1024;
sizeSuffix = "kb";
2005-08-26 17:39:27 +00:00
}
2013-03-12 17:52:02 +00:00
if (displaySize > 1024)
{
displaySize /= 1024;
sizeSuffix = "Mb";
}
if (displaySize > 1024)
{
displaySize /= 1024;
sizeSuffix = "Gb";
}
ri.Printf(PRINT_ALL, "%4i: %4ix%4i %s %4i%s %s\n", i, image->uploadWidth, image->uploadHeight, format, displaySize, sizeSuffix, image->imgName);
estTotalSize += estSize;
2005-08-26 17:39:27 +00:00
}
2013-03-12 17:52:02 +00:00
2005-08-26 17:39:27 +00:00
ri.Printf (PRINT_ALL, " ---------\n");
2013-03-12 17:52:02 +00:00
ri.Printf (PRINT_ALL, " approx %i bytes\n", estTotalSize);
2005-08-26 17:39:27 +00:00
ri.Printf (PRINT_ALL, " %i total images\n\n", tr.numImages );
}
//=======================================================================
/*
================
ResampleTexture
Used to resample images in a more general than quartering fashion.
This will only be filtered properly if the resampled size
is greater than half the original size.
If a larger shrinking is needed, use the mipmap function
before or after.
================
*/
static void ResampleTexture( unsigned *in, int inwidth, int inheight, unsigned *out,
int outwidth, int outheight ) {
int i, j;
unsigned *inrow, *inrow2;
unsigned frac, fracstep;
unsigned p1[2048], p2[2048];
byte *pix1, *pix2, *pix3, *pix4;
if (outwidth>2048)
ri.Error(ERR_DROP, "ResampleTexture: max width");
fracstep = inwidth*0x10000/outwidth;
frac = fracstep>>2;
for ( i=0 ; i<outwidth ; i++ ) {
p1[i] = 4*(frac>>16);
frac += fracstep;
}
frac = 3*(fracstep>>2);
for ( i=0 ; i<outwidth ; i++ ) {
p2[i] = 4*(frac>>16);
frac += fracstep;
}
for (i=0 ; i<outheight ; i++, out += outwidth) {
inrow = in + inwidth*(int)((i+0.25)*inheight/outheight);
inrow2 = in + inwidth*(int)((i+0.75)*inheight/outheight);
for (j=0 ; j<outwidth ; j++) {
pix1 = (byte *)inrow + p1[j];
pix2 = (byte *)inrow + p2[j];
pix3 = (byte *)inrow2 + p1[j];
pix4 = (byte *)inrow2 + p2[j];
((byte *)(out+j))[0] = (pix1[0] + pix2[0] + pix3[0] + pix4[0])>>2;
((byte *)(out+j))[1] = (pix1[1] + pix2[1] + pix3[1] + pix4[1])>>2;
((byte *)(out+j))[2] = (pix1[2] + pix2[2] + pix3[2] + pix4[2])>>2;
((byte *)(out+j))[3] = (pix1[3] + pix2[3] + pix3[3] + pix4[3])>>2;
}
}
}
/*
================
R_LightScaleTexture
Scale up the pixel values in a texture to increase the
lighting range
================
*/
void R_LightScaleTexture (unsigned *in, int inwidth, int inheight, qboolean only_gamma )
{
if ( only_gamma )
{
if ( !glConfig.deviceSupportsGamma )
{
int i, c;
byte *p;
p = (byte *)in;
c = inwidth*inheight;
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_gammatable[p[0]];
p[1] = s_gammatable[p[1]];
p[2] = s_gammatable[p[2]];
}
}
}
else
{
int i, c;
byte *p;
p = (byte *)in;
c = inwidth*inheight;
if ( glConfig.deviceSupportsGamma )
{
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_intensitytable[p[0]];
p[1] = s_intensitytable[p[1]];
p[2] = s_intensitytable[p[2]];
}
}
else
{
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_gammatable[s_intensitytable[p[0]]];
p[1] = s_gammatable[s_intensitytable[p[1]]];
p[2] = s_gammatable[s_intensitytable[p[2]]];
}
}
}
}
/*
================
R_MipMap2
Operates in place, quartering the size of the texture
Proper linear filter
================
*/
static void R_MipMap2( unsigned *in, int inWidth, int inHeight ) {
int i, j, k;
byte *outpix;
int inWidthMask, inHeightMask;
int total;
int outWidth, outHeight;
unsigned *temp;
outWidth = inWidth >> 1;
outHeight = inHeight >> 1;
temp = ri.Hunk_AllocateTempMemory( outWidth * outHeight * 4 );
inWidthMask = inWidth - 1;
inHeightMask = inHeight - 1;
for ( i = 0 ; i < outHeight ; i++ ) {
for ( j = 0 ; j < outWidth ; j++ ) {
outpix = (byte *) ( temp + i * outWidth + j );
for ( k = 0 ; k < 4 ; k++ ) {
total =
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k];
outpix[k] = total / 36;
}
}
}
Com_Memcpy( in, temp, outWidth * outHeight * 4 );
ri.Hunk_FreeTempMemory( temp );
}
/*
================
R_MipMap
Operates in place, quartering the size of the texture
================
*/
static void R_MipMap (byte *in, int width, int height) {
int i, j;
byte *out;
int row;
if ( !r_simpleMipMaps->integer ) {
R_MipMap2( (unsigned *)in, width, height );
return;
}
if ( width == 1 && height == 1 ) {
return;
}
row = width * 4;
out = in;
width >>= 1;
height >>= 1;
if ( width == 0 || height == 0 ) {
width += height; // get largest
for (i=0 ; i<width ; i++, out+=4, in+=8 ) {
out[0] = ( in[0] + in[4] )>>1;
out[1] = ( in[1] + in[5] )>>1;
out[2] = ( in[2] + in[6] )>>1;
out[3] = ( in[3] + in[7] )>>1;
}
return;
}
for (i=0 ; i<height ; i++, in+=row) {
for (j=0 ; j<width ; j++, out+=4, in+=8) {
out[0] = (in[0] + in[4] + in[row+0] + in[row+4])>>2;
out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2;
out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2;
out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2;
}
}
}
/*
==================
R_BlendOverTexture
Apply a color blend over a set of pixels
==================
*/
static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) {
int i;
int inverseAlpha;
int premult[3];
inverseAlpha = 255 - blend[3];
premult[0] = blend[0] * blend[3];
premult[1] = blend[1] * blend[3];
premult[2] = blend[2] * blend[3];
for ( i = 0 ; i < pixelCount ; i++, data+=4 ) {
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
}
}
byte mipBlendColors[16][4] = {
{0,0,0,0},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
};
/*
===============
Upload32
===============
*/
static void Upload32( unsigned *data,
int width, int height,
qboolean mipmap,
qboolean picmip,
qboolean lightMap,
qboolean allowCompression,
2005-08-26 17:39:27 +00:00
int *format,
int *pUploadWidth, int *pUploadHeight )
{
int samples;
unsigned *scaledBuffer = NULL;
unsigned *resampledBuffer = NULL;
int scaled_width, scaled_height;
int i, c;
byte *scan;
GLenum internalFormat = GL_RGB;
float rMax = 0, gMax = 0, bMax = 0;
//
// convert to exact power of 2 sizes
//
for (scaled_width = 1 ; scaled_width < width ; scaled_width<<=1)
;
for (scaled_height = 1 ; scaled_height < height ; scaled_height<<=1)
;
if ( r_roundImagesDown->integer && scaled_width > width )
scaled_width >>= 1;
if ( r_roundImagesDown->integer && scaled_height > height )
scaled_height >>= 1;
if ( scaled_width != width || scaled_height != height ) {
resampledBuffer = ri.Hunk_AllocateTempMemory( scaled_width * scaled_height * 4 );
ResampleTexture (data, width, height, resampledBuffer, scaled_width, scaled_height);
data = resampledBuffer;
width = scaled_width;
height = scaled_height;
}
//
// perform optional picmip operation
//
if ( picmip ) {
scaled_width >>= r_picmip->integer;
scaled_height >>= r_picmip->integer;
}
//
// clamp to minimum size
//
if (scaled_width < 1) {
scaled_width = 1;
}
if (scaled_height < 1) {
scaled_height = 1;
}
//
// clamp to the current upper OpenGL limit
// scale both axis down equally so we don't have to
// deal with a half mip resampling
//
while ( scaled_width > glConfig.maxTextureSize
|| scaled_height > glConfig.maxTextureSize ) {
scaled_width >>= 1;
scaled_height >>= 1;
}
scaledBuffer = ri.Hunk_AllocateTempMemory( sizeof( unsigned ) * scaled_width * scaled_height );
//
// scan the texture for each channel's max values
// and verify if the alpha channel is being used or not
//
c = width*height;
scan = ((byte *)data);
samples = 3;
if( r_greyscale->integer )
{
for ( i = 0; i < c; i++ )
{
byte luma = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
scan[i*4] = luma;
scan[i*4 + 1] = luma;
scan[i*4 + 2] = luma;
}
}
else if( r_greyscale->value )
{
for ( i = 0; i < c; i++ )
{
float luma = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
scan[i*4] = LERP(scan[i*4], luma, r_greyscale->value);
scan[i*4 + 1] = LERP(scan[i*4 + 1], luma, r_greyscale->value);
scan[i*4 + 2] = LERP(scan[i*4 + 2], luma, r_greyscale->value);
}
}
if(lightMap)
{
if(r_greyscale->integer)
internalFormat = GL_LUMINANCE;
else
internalFormat = GL_RGB;
}
else
{
2005-08-26 17:39:27 +00:00
for ( i = 0; i < c; i++ )
{
if ( scan[i*4+0] > rMax )
{
rMax = scan[i*4+0];
}
if ( scan[i*4+1] > gMax )
{
gMax = scan[i*4+1];
}
if ( scan[i*4+2] > bMax )
{
bMax = scan[i*4+2];
}
if ( scan[i*4 + 3] != 255 )
{
samples = 4;
break;
}
}
// select proper internal format
if ( samples == 3 )
{
if(r_greyscale->integer)
2005-08-26 17:39:27 +00:00
{
if(r_texturebits->integer == 16)
internalFormat = GL_LUMINANCE8;
else if(r_texturebits->integer == 32)
internalFormat = GL_LUMINANCE16;
else
internalFormat = GL_LUMINANCE;
2005-08-26 17:39:27 +00:00
}
else
{
if ( allowCompression && glConfig.textureCompression == TC_S3TC_ARB )
{
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
}
else if ( allowCompression && glConfig.textureCompression == TC_S3TC )
{
internalFormat = GL_RGB4_S3TC;
}
else if ( r_texturebits->integer == 16 )
{
internalFormat = GL_RGB5;
}
else if ( r_texturebits->integer == 32 )
{
internalFormat = GL_RGB8;
}
else
{
internalFormat = GL_RGB;
}
2005-08-26 17:39:27 +00:00
}
}
else if ( samples == 4 )
{
if(r_greyscale->integer)
2005-08-26 17:39:27 +00:00
{
if(r_texturebits->integer == 16)
internalFormat = GL_LUMINANCE8_ALPHA8;
else if(r_texturebits->integer == 32)
internalFormat = GL_LUMINANCE16_ALPHA16;
else
internalFormat = GL_LUMINANCE_ALPHA;
2005-08-26 17:39:27 +00:00
}
else
{
if ( r_texturebits->integer == 16 )
{
internalFormat = GL_RGBA4;
}
else if ( r_texturebits->integer == 32 )
{
internalFormat = GL_RGBA8;
}
else
{
internalFormat = GL_RGBA;
}
2005-08-26 17:39:27 +00:00
}
}
}
2005-08-26 17:39:27 +00:00
// copy or resample data as appropriate for first MIP level
if ( ( scaled_width == width ) &&
( scaled_height == height ) ) {
if (!mipmap)
{
qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
*pUploadWidth = scaled_width;
*pUploadHeight = scaled_height;
*format = internalFormat;
goto done;
}
Com_Memcpy (scaledBuffer, data, width*height*4);
}
else
{
// use the normal mip-mapping function to go down from here
while ( width > scaled_width || height > scaled_height ) {
R_MipMap( (byte *)data, width, height );
width >>= 1;
height >>= 1;
if ( width < 1 ) {
width = 1;
}
if ( height < 1 ) {
height = 1;
}
}
Com_Memcpy( scaledBuffer, data, width * height * 4 );
}
R_LightScaleTexture (scaledBuffer, scaled_width, scaled_height, !mipmap );
*pUploadWidth = scaled_width;
*pUploadHeight = scaled_height;
*format = internalFormat;
qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, scaledBuffer );
if (mipmap)
{
int miplevel;
miplevel = 0;
while (scaled_width > 1 || scaled_height > 1)
{
R_MipMap( (byte *)scaledBuffer, scaled_width, scaled_height );
scaled_width >>= 1;
scaled_height >>= 1;
if (scaled_width < 1)
scaled_width = 1;
if (scaled_height < 1)
scaled_height = 1;
miplevel++;
if ( r_colorMipLevels->integer ) {
R_BlendOverTexture( (byte *)scaledBuffer, scaled_width * scaled_height, mipBlendColors[miplevel] );
}
qglTexImage2D (GL_TEXTURE_2D, miplevel, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, scaledBuffer );
}
}
done:
if (mipmap)
{
if ( textureFilterAnisotropic )
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT,
(GLint)Com_Clamp( 1, maxAnisotropy, r_ext_max_anisotropy->integer ) );
2005-08-26 17:39:27 +00:00
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
}
else
{
if ( textureFilterAnisotropic )
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1 );
2005-08-26 17:39:27 +00:00
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
GL_CheckErrors();
if ( scaledBuffer != 0 )
ri.Hunk_FreeTempMemory( scaledBuffer );
if ( resampledBuffer != 0 )
ri.Hunk_FreeTempMemory( resampledBuffer );
}
/*
================
R_CreateImage
This is the only way any image_t are created
================
*/
2013-03-12 17:52:02 +00:00
image_t *R_CreateImage( const char *name, byte *pic, int width, int height,
imgType_t type, imgFlags_t flags, int internalFormat ) {
2005-08-26 17:39:27 +00:00
image_t *image;
qboolean isLightmap = qfalse;
long hash;
2013-03-12 17:52:02 +00:00
int glWrapClampMode;
2005-08-26 17:39:27 +00:00
if (strlen(name) >= MAX_QPATH ) {
ri.Error (ERR_DROP, "R_CreateImage: \"%s\" is too long", name);
2005-08-26 17:39:27 +00:00
}
if ( !strncmp( name, "*lightmap", 9 ) ) {
isLightmap = qtrue;
}
if ( tr.numImages == MAX_DRAWIMAGES ) {
ri.Error( ERR_DROP, "R_CreateImage: MAX_DRAWIMAGES hit");
2005-08-26 17:39:27 +00:00
}
image = tr.images[tr.numImages] = ri.Hunk_Alloc( sizeof( image_t ), h_low );
qglGenTextures(1, &image->texnum);
2005-08-26 17:39:27 +00:00
tr.numImages++;
2013-03-12 17:52:02 +00:00
image->type = type;
image->flags = flags;
2005-08-26 17:39:27 +00:00
strcpy (image->imgName, name);
image->width = width;
image->height = height;
2013-03-12 17:52:02 +00:00
if (flags & IMGFLAG_CLAMPTOEDGE)
glWrapClampMode = GL_CLAMP_TO_EDGE;
else
glWrapClampMode = GL_REPEAT;
2005-08-26 17:39:27 +00:00
// lightmaps are always allocated on TMU 1
if ( qglActiveTextureARB && isLightmap ) {
2005-08-26 17:39:27 +00:00
image->TMU = 1;
} else {
image->TMU = 0;
}
if ( qglActiveTextureARB ) {
2005-08-26 17:39:27 +00:00
GL_SelectTexture( image->TMU );
}
GL_Bind(image);
Upload32( (unsigned *)pic, image->width, image->height,
2013-03-12 17:52:02 +00:00
image->flags & IMGFLAG_MIPMAP,
image->flags & IMGFLAG_PICMIP,
2005-08-26 17:39:27 +00:00
isLightmap,
!(image->flags & IMGFLAG_NO_COMPRESSION),
2005-08-26 17:39:27 +00:00
&image->internalFormat,
&image->uploadWidth,
&image->uploadHeight );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, glWrapClampMode );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, glWrapClampMode );
glState.currenttextures[glState.currenttmu] = 0;
2005-08-26 17:39:27 +00:00
qglBindTexture( GL_TEXTURE_2D, 0 );
if ( image->TMU == 1 ) {
GL_SelectTexture( 0 );
}
hash = generateHashValue(name);
image->next = hashTable[hash];
hashTable[hash] = image;
return image;
}
//===================================================================
typedef struct
{
char *ext;
void (*ImageLoader)( const char *, unsigned char **, int *, int * );
} imageExtToLoaderMap_t;
// Note that the ordering indicates the order of preference used
// when there are multiple images of different formats available
static imageExtToLoaderMap_t imageLoaders[ ] =
{
{ "tga", R_LoadTGA },
{ "jpg", R_LoadJPG },
{ "jpeg", R_LoadJPG },
{ "png", R_LoadPNG },
{ "pcx", R_LoadPCX },
{ "bmp", R_LoadBMP }
};
static int numImageLoaders = ARRAY_LEN( imageLoaders );
/*
=================
R_LoadImage
2017-11-22 07:40:20 +00:00
Loads any of the supported image types into a canonical
32 bit format.
=================
*/
void R_LoadImage( const char *name, byte **pic, int *width, int *height )
{
qboolean orgNameFailed = qfalse;
int orgLoader = -1;
int i;
char localName[ MAX_QPATH ];
const char *ext;
char *altName;
*pic = NULL;
*width = 0;
*height = 0;
Q_strncpyz( localName, name, MAX_QPATH );
ext = COM_GetExtension( localName );
if( *ext )
{
// Look for the correct loader and use it
for( i = 0; i < numImageLoaders; i++ )
{
if( !Q_stricmp( ext, imageLoaders[ i ].ext ) )
{
// Load
imageLoaders[ i ].ImageLoader( localName, pic, width, height );
break;
}
}
// A loader was found
if( i < numImageLoaders )
{
if( *pic == NULL )
{
// Loader failed, most likely because the file isn't there;
// try again without the extension
orgNameFailed = qtrue;
orgLoader = i;
COM_StripExtension( name, localName, MAX_QPATH );
}
else
{
// Something loaded
return;
}
}
}
// Try and find a suitable match using all
// the image formats supported
for( i = 0; i < numImageLoaders; i++ )
{
if (i == orgLoader)
continue;
altName = va( "%s.%s", localName, imageLoaders[ i ].ext );
// Load
imageLoaders[ i ].ImageLoader( altName, pic, width, height );
if( *pic )
{
if( orgNameFailed )
{
ri.Printf( PRINT_DEVELOPER, "WARNING: %s not present, using %s instead\n",
name, altName );
}
break;
}
2005-08-26 17:39:27 +00:00
}
}
/*
===============
R_FindImageFile
Finds or loads the given image.
Returns NULL if it fails, not a default image.
==============
*/
2013-03-12 17:52:02 +00:00
image_t *R_FindImageFile( const char *name, imgType_t type, imgFlags_t flags )
{
2005-08-26 17:39:27 +00:00
image_t *image;
int width, height;
byte *pic;
long hash;
if (!name) {
return NULL;
}
hash = generateHashValue(name);
//
// see if the image is already loaded
//
for (image=hashTable[hash]; image; image=image->next) {
if ( !strcmp( name, image->imgName ) ) {
// the white image can be used with any set of parms, but other mismatches are errors
if ( strcmp( name, "*white" ) ) {
2013-03-12 17:52:02 +00:00
if ( image->flags != flags ) {
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed flags (%i vs %i)\n", name, image->flags, flags );
2005-08-26 17:39:27 +00:00
}
}
return image;
}
}
//
// load the pic from disk
//
R_LoadImage( name, &pic, &width, &height );
if ( pic == NULL ) {
return NULL;
2005-08-26 17:39:27 +00:00
}
2013-03-12 17:52:02 +00:00
image = R_CreateImage( ( char * ) name, pic, width, height, type, flags, 0 );
2005-08-26 17:39:27 +00:00
ri.Free( pic );
return image;
}
/*
================
R_CreateDlightImage
================
*/
#define DLIGHT_SIZE 16
static void R_CreateDlightImage( void ) {
int x,y;
byte data[DLIGHT_SIZE][DLIGHT_SIZE][4];
int b;
// make a centered inverse-square falloff blob for dynamic lighting
for (x=0 ; x<DLIGHT_SIZE ; x++) {
for (y=0 ; y<DLIGHT_SIZE ; y++) {
float d;
d = ( DLIGHT_SIZE/2 - 0.5f - x ) * ( DLIGHT_SIZE/2 - 0.5f - x ) +
( DLIGHT_SIZE/2 - 0.5f - y ) * ( DLIGHT_SIZE/2 - 0.5f - y );
b = 4000 / d;
if (b > 255) {
b = 255;
} else if ( b < 75 ) {
b = 0;
}
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = b;
data[y][x][3] = 255;
}
}
2013-03-12 17:52:02 +00:00
tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE, 0 );
2005-08-26 17:39:27 +00:00
}
/*
=================
R_InitFogTable
=================
*/
void R_InitFogTable( void ) {
int i;
float d;
float exp;
exp = 0.5;
for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) {
d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp );
tr.fogTable[i] = d;
}
}
/*
================
R_FogFactor
Returns a 0.0 to 1.0 fog density value
This is called for each texel of the fog texture on startup
and for each vertex of transparent shaders in fog dynamically
================
*/
float R_FogFactor( float s, float t ) {
float d;
s -= 1.0/512;
if ( s < 0 ) {
return 0;
}
if ( t < 1.0/32 ) {
return 0;
}
if ( t < 31.0/32 ) {
s *= (t - 1.0f/32.0f) / (30.0f/32.0f);
}
// we need to leave a lot of clamp range
s *= 8;
if ( s > 1.0 ) {
s = 1.0;
}
d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ];
return d;
}
/*
================
R_CreateFogImage
================
*/
#define FOG_S 256
#define FOG_T 32
static void R_CreateFogImage( void ) {
int x,y;
byte *data;
float d;
data = ri.Hunk_AllocateTempMemory( FOG_S * FOG_T * 4 );
// S is distance, T is depth
for (x=0 ; x<FOG_S ; x++) {
for (y=0 ; y<FOG_T ; y++) {
d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
data[(y*FOG_S+x)*4+0] =
data[(y*FOG_S+x)*4+1] =
data[(y*FOG_S+x)*4+2] = 255;
data[(y*FOG_S+x)*4+3] = 255*d;
}
}
2013-03-12 17:52:02 +00:00
tr.fogImage = R_CreateImage("*fog", (byte *)data, FOG_S, FOG_T, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE, 0 );
2005-08-26 17:39:27 +00:00
ri.Hunk_FreeTempMemory( data );
}
/*
==================
R_CreateDefaultImage
==================
*/
#define DEFAULT_SIZE 16
static void R_CreateDefaultImage( void ) {
int x;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
// the default image will be a box, to allow you to see the mapping coordinates
Com_Memset( data, 32, sizeof( data ) );
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
data[0][x][0] =
data[0][x][1] =
data[0][x][2] =
data[0][x][3] = 255;
data[x][0][0] =
data[x][0][1] =
data[x][0][2] =
data[x][0][3] = 255;
data[DEFAULT_SIZE-1][x][0] =
data[DEFAULT_SIZE-1][x][1] =
data[DEFAULT_SIZE-1][x][2] =
data[DEFAULT_SIZE-1][x][3] = 255;
data[x][DEFAULT_SIZE-1][0] =
data[x][DEFAULT_SIZE-1][1] =
data[x][DEFAULT_SIZE-1][2] =
data[x][DEFAULT_SIZE-1][3] = 255;
}
2013-03-12 17:52:02 +00:00
tr.defaultImage = R_CreateImage("*default", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_MIPMAP, 0);
2005-08-26 17:39:27 +00:00
}
/*
==================
R_CreateBuiltinImages
==================
*/
void R_CreateBuiltinImages( void ) {
int x,y;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
R_CreateDefaultImage();
// we use a solid white image instead of disabling texturing
Com_Memset( data, 255, sizeof( data ) );
2013-03-12 17:52:02 +00:00
tr.whiteImage = R_CreateImage("*white", (byte *)data, 8, 8, IMGTYPE_COLORALPHA, IMGFLAG_NONE, 0);
2005-08-26 17:39:27 +00:00
// with overbright bits active, we need an image which is some fraction of full color,
// for default lightmaps, etc
for (x=0 ; x<DEFAULT_SIZE ; x++) {
for (y=0 ; y<DEFAULT_SIZE ; y++) {
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = tr.identityLightByte;
data[y][x][3] = 255;
}
}
2013-03-12 17:52:02 +00:00
tr.identityLightImage = R_CreateImage("*identityLight", (byte *)data, 8, 8, IMGTYPE_COLORALPHA, IMGFLAG_NONE, 0);
2005-08-26 17:39:27 +00:00
for(x=0;x<32;x++) {
// scratchimage is usually used for cinematic drawing
2013-03-12 17:52:02 +00:00
tr.scratchImage[x] = R_CreateImage("*scratch", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_PICMIP | IMGFLAG_CLAMPTOEDGE, 0);
2005-08-26 17:39:27 +00:00
}
R_CreateDlightImage();
R_CreateFogImage();
}
/*
===============
R_SetColorMappings
===============
*/
void R_SetColorMappings( void ) {
int i, j;
float g;
int inf;
int shift;
// setup the overbright lighting
tr.overbrightBits = r_overBrightBits->integer;
if ( !glConfig.deviceSupportsGamma ) {
tr.overbrightBits = 0; // need hardware gamma for overbright
}
// never overbright in windowed mode
if ( !glConfig.isFullscreen )
{
tr.overbrightBits = 0;
}
// allow 2 overbright bits in 24 bit, but only 1 in 16 bit
if ( glConfig.colorBits > 16 ) {
if ( tr.overbrightBits > 2 ) {
tr.overbrightBits = 2;
}
} else {
if ( tr.overbrightBits > 1 ) {
tr.overbrightBits = 1;
}
}
if ( tr.overbrightBits < 0 ) {
tr.overbrightBits = 0;
}
tr.identityLight = 1.0f / ( 1 << tr.overbrightBits );
tr.identityLightByte = 255 * tr.identityLight;
if ( r_intensity->value <= 1 ) {
ri.Cvar_Set( "r_intensity", "1" );
}
if ( r_gamma->value < 0.5f ) {
ri.Cvar_Set( "r_gamma", "0.5" );
} else if ( r_gamma->value > 3.0f ) {
ri.Cvar_Set( "r_gamma", "3.0" );
}
g = r_gamma->value;
shift = tr.overbrightBits;
for ( i = 0; i < 256; i++ ) {
if ( g == 1 ) {
inf = i;
} else {
inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f;
}
inf <<= shift;
if (inf < 0) {
inf = 0;
}
if (inf > 255) {
inf = 255;
}
s_gammatable[i] = inf;
}
for (i=0 ; i<256 ; i++) {
j = i * r_intensity->value;
if (j > 255) {
j = 255;
}
s_intensitytable[i] = j;
}
if ( glConfig.deviceSupportsGamma )
{
GLimp_SetGamma( s_gammatable, s_gammatable, s_gammatable );
}
}
/*
===============
R_InitImages
===============
*/
void R_InitImages( void ) {
Com_Memset(hashTable, 0, sizeof(hashTable));
// build brightness translation tables
R_SetColorMappings();
// create default texture and white texture
R_CreateBuiltinImages();
}
/*
===============
R_DeleteTextures
===============
*/
void R_DeleteTextures( void ) {
int i;
for ( i=0; i<tr.numImages ; i++ ) {
qglDeleteTextures( 1, &tr.images[i]->texnum );
}
Com_Memset( tr.images, 0, sizeof( tr.images ) );
tr.numImages = 0;
Com_Memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
if ( qglActiveTextureARB ) {
GL_SelectTexture( 1 );
qglBindTexture( GL_TEXTURE_2D, 0 );
GL_SelectTexture( 0 );
qglBindTexture( GL_TEXTURE_2D, 0 );
} else {
qglBindTexture( GL_TEXTURE_2D, 0 );
2005-08-26 17:39:27 +00:00
}
}
/*
============================================================================
SKINS
============================================================================
*/
/*
==================
CommaParse
This is unfortunate, but the skin files aren't
2017-11-22 07:40:20 +00:00
compatible with our normal parsing rules.
2005-08-26 17:39:27 +00:00
==================
*/
static char *CommaParse( char **data_p ) {
int c = 0, len;
char *data;
static char com_token[MAX_TOKEN_CHARS];
data = *data_p;
len = 0;
com_token[0] = 0;
// make sure incoming data is valid
if ( !data ) {
*data_p = NULL;
return com_token;
}
while ( 1 ) {
// skip whitespace
while( (c = *data) <= ' ') {
if( !c ) {
break;
}
data++;
}
c = *data;
// skip double slash comments
if ( c == '/' && data[1] == '/' )
{
2014-08-29 01:34:05 +00:00
data += 2;
while (*data && *data != '\n') {
2005-08-26 17:39:27 +00:00
data++;
2014-08-29 01:34:05 +00:00
}
2005-08-26 17:39:27 +00:00
}
// skip /* */ comments
else if ( c=='/' && data[1] == '*' )
{
2014-08-29 01:34:05 +00:00
data += 2;
2005-08-26 17:39:27 +00:00
while ( *data && ( *data != '*' || data[1] != '/' ) )
{
data++;
}
if ( *data )
{
data += 2;
}
}
else
{
break;
}
}
if ( c == 0 ) {
return "";
}
// handle quoted strings
if (c == '\"')
{
data++;
while (1)
{
c = *data++;
if (c=='\"' || !c)
{
com_token[len] = 0;
*data_p = ( char * ) data;
return com_token;
}
2014-08-29 01:34:05 +00:00
if (len < MAX_TOKEN_CHARS - 1)
2005-08-26 17:39:27 +00:00
{
com_token[len] = c;
len++;
}
}
}
// parse a regular word
do
{
2014-08-29 01:34:05 +00:00
if (len < MAX_TOKEN_CHARS - 1)
2005-08-26 17:39:27 +00:00
{
com_token[len] = c;
len++;
}
data++;
c = *data;
} while (c>32 && c != ',' );
com_token[len] = 0;
*data_p = ( char * ) data;
return com_token;
}
/*
===============
RE_RegisterSkin
===============
*/
qhandle_t RE_RegisterSkin( const char *name ) {
skinSurface_t parseSurfaces[MAX_SKIN_SURFACES];
2005-08-26 17:39:27 +00:00
qhandle_t hSkin;
skin_t *skin;
skinSurface_t *surf;
union {
char *c;
void *v;
} text;
char *text_p;
2005-08-26 17:39:27 +00:00
char *token;
char surfName[MAX_QPATH];
int totalSurfaces;
2005-08-26 17:39:27 +00:00
if ( !name || !name[0] ) {
ri.Printf( PRINT_DEVELOPER, "Empty name passed to RE_RegisterSkin\n" );
2005-08-26 17:39:27 +00:00
return 0;
}
if ( strlen( name ) >= MAX_QPATH ) {
ri.Printf( PRINT_DEVELOPER, "Skin name exceeds MAX_QPATH\n" );
2005-08-26 17:39:27 +00:00
return 0;
}
// see if the skin is already loaded
for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) {
skin = tr.skins[hSkin];
if ( !Q_stricmp( skin->name, name ) ) {
if( skin->numSurfaces == 0 ) {
return 0; // default skin
}
return hSkin;
}
}
// allocate a new skin
if ( tr.numSkins == MAX_SKINS ) {
ri.Printf( PRINT_WARNING, "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name );
return 0;
}
tr.numSkins++;
skin = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
tr.skins[hSkin] = skin;
Q_strncpyz( skin->name, name, sizeof( skin->name ) );
skin->numSurfaces = 0;
2013-01-24 22:53:08 +00:00
R_IssuePendingRenderCommands();
2005-08-26 17:39:27 +00:00
// If not a .skin file, load as a single shader
if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) {
skin->numSurfaces = 1;
skin->surfaces = ri.Hunk_Alloc( sizeof( skinSurface_t ), h_low );
skin->surfaces[0].shader = R_FindShader( name, LIGHTMAP_NONE, qtrue );
2005-08-26 17:39:27 +00:00
return hSkin;
}
// load and parse the skin file
ri.FS_ReadFile( name, &text.v );
if ( !text.c ) {
2005-08-26 17:39:27 +00:00
return 0;
}
totalSurfaces = 0;
text_p = text.c;
2005-08-26 17:39:27 +00:00
while ( text_p && *text_p ) {
// get surface name
token = CommaParse( &text_p );
Q_strncpyz( surfName, token, sizeof( surfName ) );
if ( !token[0] ) {
break;
}
// lowercase the surface name so skin compares are faster
Q_strlwr( surfName );
if ( *text_p == ',' ) {
text_p++;
}
if ( strstr( token, "tag_" ) ) {
continue;
}
// parse the shader name
token = CommaParse( &text_p );
if ( skin->numSurfaces < MAX_SKIN_SURFACES ) {
surf = &parseSurfaces[skin->numSurfaces];
Q_strncpyz( surf->name, surfName, sizeof( surf->name ) );
surf->shader = R_FindShader( token, LIGHTMAP_NONE, qtrue );
skin->numSurfaces++;
}
totalSurfaces++;
2005-08-26 17:39:27 +00:00
}
ri.FS_FreeFile( text.v );
2005-08-26 17:39:27 +00:00
if ( totalSurfaces > MAX_SKIN_SURFACES ) {
ri.Printf( PRINT_WARNING, "WARNING: Ignoring excess surfaces (found %d, max is %d) in skin '%s'!\n",
totalSurfaces, MAX_SKIN_SURFACES, name );
}
2005-08-26 17:39:27 +00:00
// never let a skin have 0 shaders
if ( skin->numSurfaces == 0 ) {
return 0; // use default skin
}
// copy surfaces to skin
skin->surfaces = ri.Hunk_Alloc( skin->numSurfaces * sizeof( skinSurface_t ), h_low );
memcpy( skin->surfaces, parseSurfaces, skin->numSurfaces * sizeof( skinSurface_t ) );
2005-08-26 17:39:27 +00:00
return hSkin;
}
/*
===============
R_InitSkins
===============
*/
void R_InitSkins( void ) {
skin_t *skin;
tr.numSkins = 1;
// make the default skin have all default shaders
skin = tr.skins[0] = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
Q_strncpyz( skin->name, "<default skin>", sizeof( skin->name ) );
skin->numSurfaces = 1;
skin->surfaces = ri.Hunk_Alloc( sizeof( skinSurface_t ), h_low );
skin->surfaces[0].shader = tr.defaultShader;
2005-08-26 17:39:27 +00:00
}
/*
===============
R_GetSkinByHandle
===============
*/
skin_t *R_GetSkinByHandle( qhandle_t hSkin ) {
if ( hSkin < 1 || hSkin >= tr.numSkins ) {
return tr.skins[0];
}
return tr.skins[ hSkin ];
}
/*
===============
R_SkinList_f
===============
*/
void R_SkinList_f( void ) {
int i, j;
skin_t *skin;
ri.Printf (PRINT_ALL, "------------------\n");
for ( i = 0 ; i < tr.numSkins ; i++ ) {
skin = tr.skins[i];
ri.Printf( PRINT_ALL, "%3i:%s (%d surfaces)\n", i, skin->name, skin->numSurfaces );
2005-08-26 17:39:27 +00:00
for ( j = 0 ; j < skin->numSurfaces ; j++ ) {
ri.Printf( PRINT_ALL, " %s = %s\n",
skin->surfaces[j].name, skin->surfaces[j].shader->name );
2005-08-26 17:39:27 +00:00
}
}
ri.Printf (PRINT_ALL, "------------------\n");
}