lilium-voyager/code/qcommon/vm_x86_64_assembler.c

1420 lines
29 KiB
C
Raw Normal View History

2007-08-16 11:02:21 +00:00
/*
===========================================================================
vm_x86_64_assembler.c -- assembler for x86-64
Copyright (C) 2007 Ludwig Nussel <ludwig.nussel@suse.de>, Novell inc.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;
typedef unsigned long u64;
static char* out;
static unsigned compiledOfs;
static unsigned assembler_pass;
static const char* cur_line;
static FILE* fout;
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#define crap(fmt, args...) do { \
_crap(__FUNCTION__, fmt, ##args); \
} while(0)
#define CRAP_INVALID_ARGS crap("invalid arguments %s, %s", argtype2str(arg1.type),argtype2str(arg2.type));
#ifdef DEBUG
#define debug(fmt, args...) printf(fmt, ##args)
#else
#define debug(fmt, args...)
#endif
static void _crap(const char* func, const char* fmt, ...)
{
va_list ap;
fprintf(stderr, "%s() - ", func);
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fputc('\n', stderr);
if(cur_line && cur_line[0])
fprintf(stderr, "-> %s\n", cur_line);
exit(1);
}
static void emit1(unsigned char v)
{
if(assembler_pass)
{
out[compiledOfs++] = v;
if(fout) fwrite(&v, 1, 1, fout);
debug("%02hhx ", v);
}
else
{
++compiledOfs;
}
}
static inline void emit2(u16 v)
{
emit1(v&0xFF);
emit1((v>>8)&0xFF);
}
static inline void emit4(u32 v)
{
emit1(v&0xFF);
emit1((v>>8)&0xFF);
emit1((v>>16)&0xFF);
emit1((v>>24)&0xFF);
}
static inline void emit8(u64 v)
{
emit4(v&0xFFFFFFFF);
emit4((v>>32)&0xFFFFFFFF);
}
enum {
REX_W = 0x08,
REX_R = 0x04,
REX_X = 0x02,
REX_B = 0x01,
};
enum {
MODRM_MOD_00 = 0x00,
MODRM_MOD_01 = 0x01 << 6,
MODRM_MOD_10 = 0x02 << 6,
MODRM_MOD_11 = 0x03 << 6,
MODRM_RM_SIB = 0x04,
};
typedef enum
{
T_NONE = 0x00,
T_REGISTER = 0x01,
T_IMMEDIATE = 0x02,
T_MEMORY = 0x04,
T_LABEL = 0x08,
T_ABSOLUTE = 0x80
} argtype_t;
typedef enum {
R_8 = 0x100,
R_16 = 0x200,
R_64 = 0x800,
R_MSZ = 0xF00, // size mask
R_XMM = 0x2000, // xmm register. year, sucks
R_EAX = 0x00,
R_EBX = 0x03,
R_ECX = 0x01,
R_EDX = 0x02,
R_ESI = 0x06,
R_EDI = 0x07,
R_ESP = 0x04,
R_RAX = R_EAX | R_64,
R_RBX = R_EBX | R_64,
R_RCX = R_ECX | R_64,
R_RDX = R_EDX | R_64,
R_RSI = R_ESI | R_64,
R_RDI = R_EDI | R_64,
R_RSP = R_ESP | R_64,
R_R8 = 0x08 | R_64,
R_R9 = 0x09 | R_64,
R_R10 = 0x0A | R_64,
R_R15 = 0x0F | R_64,
R_AL = R_EAX | R_8,
R_AX = R_EAX | R_16,
R_CL = R_ECX | R_8,
R_XMM0 = 0x00 | R_XMM,
R_MGP = 0x0F, // mask for general purpose registers
} reg_t;
typedef enum {
MODRM_SIB = 0,
MODRM_NOSIB = 0x3,
} modrm_sib_t;
typedef struct {
unsigned disp;
argtype_t basetype;
union {
u64 imm;
reg_t reg;
} base;
argtype_t indextype;
union {
u64 imm;
reg_t reg;
} index;
unsigned scale;
} memref_t;
#define LABELLEN 32
typedef struct {
argtype_t type;
union {
u64 imm;
reg_t reg;
memref_t mem;
char label[LABELLEN];
} v;
int absolute:1;
} arg_t;
typedef void (*emitfunc)(const char* op, arg_t arg1, arg_t arg2, void* data);
typedef struct {
char* mnemonic;
emitfunc func;
void* data;
} op_t;
typedef struct {
u8 xmmprefix;
u8 subcode; // in modrm
u8 rmcode; // opcode for reg/mem, reg
u8 mrcode; // opcode for reg, reg/mem
u8 rcode8; // opcode for reg8/mem8
u8 rcode; // opcode for reg/mem
} opparam_t;
/* ************************* */
static unsigned hashkey(const char *string, unsigned len) {
unsigned register hash, i;
hash = 0;
for (i = 0; i < len && string[i] != '\0'; ++i) {
hash += string[i] * (119 + i);
}
hash = (hash ^ (hash >> 10) ^ (hash >> 20));
return hash;
}
struct hashentry {
char* label;
unsigned address;
struct hashentry* next;
};
static struct hashentry* labelhash[1021];
// no dup check!
static void hash_add_label(const char* label, unsigned address)
{
struct hashentry* h;
unsigned i = hashkey(label, -1U);
i %= sizeof(labelhash)/sizeof(labelhash[0]);
h = malloc(sizeof(struct hashentry));
h->label = strdup(label);
h->address = address;
h->next = labelhash[i];
labelhash[i] = h;
}
static unsigned lookup_label(const char* label)
{
struct hashentry* h;
unsigned i = hashkey(label, -1U);
i %= sizeof(labelhash)/sizeof(labelhash[0]);
for(h = labelhash[i]; h; h = h->next )
{
if(!strcmp(h->label, label))
return h->address;
}
if(assembler_pass)
crap("label %s undefined", label);
return 0;
}
static void labelhash_free(void)
{
struct hashentry* h;
unsigned i;
unsigned z = 0, min = -1U, max = 0, t = 0;
for ( i = 0; i < sizeof(labelhash)/sizeof(labelhash[0]); ++i)
{
unsigned n = 0;
h = labelhash[i];
while(h)
{
struct hashentry* next = h->next;
free(h->label);
free(h);
h = next;
++n;
}
t+=n;
if(!n) ++z;
//else printf("%u\n", n);
min = MIN(min, n);
max = MAX(max, n);
}
printf("total %u, hsize %lu, zero %u, min %u, max %u\n", t, sizeof(labelhash)/sizeof(labelhash[0]), z, min, max);
memset(labelhash, 0, sizeof(labelhash));
}
/* ************************* */
static const char* argtype2str(argtype_t t)
{
switch(t)
{
case T_NONE: return "none";
case T_REGISTER: return "register";
case T_IMMEDIATE: return "immediate";
case T_MEMORY: return "memory";
case T_LABEL: return "label";
default: crap("invalid type");
}
/* not reached */
return T_NONE;
}
/* ************************* */
static inline int iss8(u64 v)
{
return (labs(v) <= 0x80);
}
static inline int isu8(u64 v)
{
return (v <= 0xff);
}
static inline int iss16(u64 v)
{
return (labs(v) <= 0x8000);
}
static inline int isu16(u64 v)
{
return (v <= 0xffff);
}
static inline int iss32(u64 v)
{
return (labs(v) <= 0x80000000);
}
static inline int isu32(u64 v)
{
return (v <= 0xffffffff);
}
static void emit_opsingle(const char* mnemonic, arg_t arg1, arg_t arg2, void* data)
{
u8 op = (u8)((unsigned long) data);
if(arg1.type != T_NONE || arg2.type != T_NONE)
CRAP_INVALID_ARGS;
emit1(op);
}
static void emit_opsingle16(const char* mnemonic, arg_t arg1, arg_t arg2, void* data)
{
emit1(0x66);
emit_opsingle(mnemonic, arg1, arg2, data);
}
static void compute_rexmodrmsib(u8* rex_r, u8* modrm_r, u8* sib_r, arg_t* arg1, arg_t* arg2)
{
u8 rex = 0;
u8 modrm = 0;
u8 sib = 0;
if((arg1->type == T_REGISTER && arg2->type == T_REGISTER)
&& ((arg1->v.reg & R_MSZ) != (arg2->v.reg & R_MSZ))
&& !((arg1->v.reg & R_XMM) || (arg2->v.reg & R_XMM)))
crap("both registers must be of same width");
if((arg1->type == T_REGISTER && arg1->v.reg & R_64)
|| (arg2->type == T_REGISTER && arg2->v.reg & R_64))
{
rex |= REX_W;
}
if(arg1->type == T_REGISTER)
{
if((arg1->v.reg & R_MGP) > 0x07)
rex |= REX_R;
modrm |= (arg1->v.reg & 0x07) << 3;
}
if(arg2->type == T_REGISTER)
{
if((arg2->v.reg & R_MGP) > 0x07)
rex |= REX_B;
modrm |= (arg2->v.reg & 0x07);
}
if(arg2->type == T_MEMORY)
{
if((arg2->v.mem.basetype == T_REGISTER && !(arg2->v.mem.base.reg & R_64))
|| (arg2->v.mem.indextype == T_REGISTER && !(arg2->v.mem.index.reg & R_64)))
{
crap("only 64bit base/index registers are %x %x", arg2->v.mem.base.reg, arg2->v.mem.index.reg);
}
if(arg2->v.mem.indextype == T_REGISTER)
{
modrm |= MODRM_RM_SIB;
if(!arg2->v.mem.disp)
{
modrm |= MODRM_MOD_00;
}
else if(iss8(arg2->v.mem.disp))
{
modrm |= MODRM_MOD_01;
}
else if(isu32(arg2->v.mem.disp))
{
modrm |= MODRM_MOD_10;
}
else
{
crap("invalid displacement");
}
if((arg2->v.mem.index.reg & R_MGP) > 0x07)
rex |= REX_X;
if((arg2->v.mem.base.reg & R_MGP) > 0x07)
rex |= REX_B;
if(arg2->v.mem.basetype != T_REGISTER)
crap("base must be register");
switch(arg2->v.mem.scale)
{
case 1: break;
case 2: sib |= 1 << 6; break;
case 4: sib |= 2 << 6; break;
case 8: sib |= 3 << 6; break;
}
sib |= (arg2->v.mem.index.reg & 0x07) << 3;
sib |= (arg2->v.mem.base.reg & 0x07);
}
else if(arg2->v.mem.indextype == T_NONE)
{
if(!arg2->v.mem.disp)
{
modrm |= MODRM_MOD_00;
}
else if(iss8(arg2->v.mem.disp))
{
modrm |= MODRM_MOD_01;
}
else if(isu32(arg2->v.mem.disp))
{
modrm |= MODRM_MOD_10;
}
else
{
crap("invalid displacement");
}
if(arg2->v.mem.basetype != T_REGISTER)
crap("todo: base != register");
if((arg2->v.mem.base.reg & R_MGP) > 0x07)
rex |= REX_B;
modrm |= arg2->v.mem.base.reg & 0x07;
}
else
{
crap("invalid indextype");
}
}
else
{
modrm |= MODRM_MOD_11;
}
if(rex)
rex |= 0x40; // XXX
*rex_r = rex;
*modrm_r = modrm;
*sib_r = sib;
}
static void maybe_emit_displacement(arg_t* arg)
{
if(arg->type != T_MEMORY)
return;
if(arg->v.mem.disp)
{
if(iss8(arg->v.mem.disp))
{
emit1((u8)arg->v.mem.disp);
}
else if(isu32(arg->v.mem.disp))
{
emit4(arg->v.mem.disp);
}
else
{
crap("invalid displacement");
}
}
}
/* one byte operator with register added to operator */
static void emit_opreg(const char* mnemonic, arg_t arg1, arg_t arg2, void* data)
{
u8 op = (u8)((unsigned long) data);
if(arg1.type != T_REGISTER || arg2.type != T_NONE)
CRAP_INVALID_ARGS;
if((arg1.v.reg & R_MGP) > 0x07)
emit1(0x40 | REX_B);
op |= (arg1.v.reg & 0x07);
emit1(op);
}
/* operator which operates on reg/mem */
static void emit_op_rm(const char* mnemonic, arg_t arg1, arg_t arg2, void* data)
{
u8 rex, modrm, sib;
opparam_t* params = data;
if((arg1.type != T_REGISTER && arg1.type != T_MEMORY) || arg2.type != T_NONE)
CRAP_INVALID_ARGS;
compute_rexmodrmsib(&rex, &modrm, &sib, &arg2, &arg1);
modrm |= params->subcode << 3;
if(arg1.v.reg & R_16)
emit1(0x66);
if(rex) emit1(rex);
if(arg1.v.reg & R_8)
emit1(params->rcode8); // op reg8/mem8,
else
emit1(params->rcode); // op reg/mem,
emit1(modrm);
if((modrm & 0x07) == MODRM_RM_SIB)
emit1(sib);
maybe_emit_displacement(&arg1);
}
/* operator which operates on reg/mem with cl */
static void emit_op_rm_cl(const char* mnemonic, arg_t arg1, arg_t arg2, void* data)
{
u8 rex, modrm, sib;
opparam_t* params = data;
if(arg2.type != T_REGISTER || arg1.type != T_REGISTER)
CRAP_INVALID_ARGS;
if((arg1.v.reg & R_MGP) != R_ECX && !(arg1.v.reg & R_8))
crap("only cl register is valid");
arg1.type = T_NONE; // don't complain, we know it's cl anyways
compute_rexmodrmsib(&rex, &modrm, &sib, &arg1, &arg2);
modrm |= params->subcode << 3;
if(arg2.v.reg & R_16)
emit1(0x66);
if(rex) emit1(rex);
if(arg2.v.reg & R_8)
emit1(params->rcode8); // op reg8/mem8,
else
emit1(params->rcode); // op reg/mem,
emit1(modrm);
if((modrm & 0x07) == MODRM_RM_SIB)
emit1(sib);
maybe_emit_displacement(&arg2);
}
static void emit_mov(const char* mnemonic, arg_t arg1, arg_t arg2, void* data)
{
u8 rex = 0;
u8 modrm = 0;
u8 sib = 0;
if(arg1.type == T_IMMEDIATE && arg2.type == T_REGISTER)
{
u8 op = 0xb8;
if(arg2.v.reg & R_8)
{
if(!isu8(arg1.v.imm))
crap("value too large for 8bit register");
op = 0xb0;
}
else if(arg2.v.reg & R_16)
{
if(!isu16(arg1.v.imm))
crap("value too large for 16bit register");
emit1(0x66);
}
else if(!arg2.v.reg & R_64)
{
if(!isu32(arg1.v.imm))
crap("value too large for 32bit register");
}
compute_rexmodrmsib(&rex, &modrm, &sib, &arg1, &arg2);
if(rex) emit1(rex);
op |= (arg2.v.reg & 0x07);
emit1(op);
if(arg2.v.reg & R_8) emit1(arg1.v.imm);
else if(arg2.v.reg & R_16) emit2(arg1.v.imm);
else if(arg2.v.reg & R_64) emit8(arg1.v.imm);
else emit4(arg1.v.imm);
}
else if(arg1.type == T_IMMEDIATE && arg2.type == T_MEMORY)
{
if(!iss32(arg1.v.imm))
{
crap("only 32bit immediates supported");
}
compute_rexmodrmsib(&rex, &modrm, &sib, &arg1, &arg2);
if(rex) emit1(rex);
emit1(0xc7); // mov reg/mem, imm
emit1(modrm);
if((modrm & 0x07) == MODRM_RM_SIB)
emit1(sib);
emit4(arg1.v.imm);
}
else if(arg1.type == T_REGISTER && arg2.type == T_REGISTER) // XXX: same as next
{
if(arg1.type != T_REGISTER || arg2.type != T_REGISTER)
crap("both args must be registers");
if((arg1.v.reg & R_MSZ) != (arg2.v.reg & R_MSZ))
crap("both registers must be same width");
compute_rexmodrmsib(&rex, &modrm, &sib, &arg1, &arg2);
if(rex) emit1(rex);
emit1(0x89); // mov reg reg/mem,
emit1(modrm);
}
else if(arg1.type == T_REGISTER && arg2.type == T_MEMORY)
{
compute_rexmodrmsib(&rex, &modrm, &sib, &arg1, &arg2);
if(arg1.v.reg & R_16)
emit1(0x66);
if(rex) emit1(rex);
if(arg1.v.reg & R_8)
emit1(0x88); // mov reg reg/mem,
else
emit1(0x89); // mov reg reg/mem,
emit1(modrm);
if((modrm & 0x07) == MODRM_RM_SIB)
emit1(sib);
maybe_emit_displacement(&arg2);
}
else if(arg1.type == T_MEMORY && arg2.type == T_REGISTER)
{
compute_rexmodrmsib(&rex, &modrm, &sib, &arg2, &arg1);
if(arg2.v.reg & R_16)
emit1(0x66);
if(rex) emit1(rex);
if(arg2.v.reg & R_8)
emit1(0x8a); // mov reg/mem, reg
else
emit1(0x8b); // mov reg/mem, reg
emit1(modrm);
if((modrm & 0x07) == MODRM_RM_SIB)
emit1(sib);
maybe_emit_displacement(&arg1);
}
else
CRAP_INVALID_ARGS;
}
static void emit_subaddand(const char* mnemonic, arg_t arg1, arg_t arg2, void* data)
{
u8 rex = 0;
u8 modrm = 0;
u8 sib = 0;
opparam_t* params = data;
if(arg1.type == T_IMMEDIATE && arg2.type == T_REGISTER)
{
if(!iss32(arg1.v.imm))
{
crap("only 8 and 32 bit immediates supported");
}
compute_rexmodrmsib(&rex, &modrm, &sib, &arg1, &arg2);
modrm |= params->subcode << 3;
if(rex) emit1(rex);
#if 0
if(isu8(arg1.v.imm))
{
emit1(0x83); // sub reg/mem, imm8
emit1(modrm);
emit1(arg1.v.imm&0xFF);
}
else
#endif
{
emit1(0x81); // sub reg/mem, imm32
emit1(modrm);
emit4(arg1.v.imm);
}
}
else if(arg1.type == T_REGISTER && (arg2.type == T_MEMORY || arg2.type == T_REGISTER))
{
compute_rexmodrmsib(&rex, &modrm, &sib, &arg1, &arg2);
if(rex) emit1(rex);
emit1(params->rmcode); // sub reg/mem, reg
emit1(modrm);
if(arg2.type == T_MEMORY && (modrm & 0x07) == MODRM_RM_SIB)
emit1(sib);
maybe_emit_displacement(&arg2);
}
else if(arg1.type == T_MEMORY && arg2.type == T_REGISTER && params->mrcode)
{
compute_rexmodrmsib(&rex, &modrm, &sib, &arg2, &arg1);
if(rex) emit1(rex);
emit1(params->mrcode); // sub reg, reg/mem
emit1(modrm);
if((modrm & 0x07) == MODRM_RM_SIB)
emit1(sib);
maybe_emit_displacement(&arg1);
}
else
CRAP_INVALID_ARGS;
}
static void emit_condjump(const char* mnemonic, arg_t arg1, arg_t arg2, void* data)
{
unsigned off;
int disp;
unsigned char opcode = (unsigned char)(((unsigned long)data)&0xFF);
if(arg1.type != T_LABEL || arg2.type != T_NONE)
crap("%s: argument must be label", mnemonic);
emit1(opcode);
off = lookup_label(arg1.v.label);
disp = off-(compiledOfs+1);
if(assembler_pass && abs(disp) > 127)
crap("cannot jump that far (%x -> %x = %x)", compiledOfs, off, disp);
emit1(disp);
}
static void emit_jmp(const char* mnemonic, arg_t arg1, arg_t arg2, void* data)
{
if((arg1.type != T_LABEL && arg1.type != T_REGISTER && arg1.type != T_MEMORY) || arg2.type != T_NONE)
CRAP_INVALID_ARGS;
if(arg1.type == T_LABEL)
{
unsigned off;
int disp;
off = lookup_label(arg1.v.label);
disp = off-(compiledOfs+5);
emit1(0xe9);
emit4(disp);
}
else
{
u8 rex, modrm, sib;
if(arg1.type == T_REGISTER)
{
if(!arg1.absolute)
crap("jmp must be absolute");
if((arg1.v.reg & R_64) != R_64)
crap("register must be 64bit");
arg1.v.reg ^= R_64; // no rex required for call
}
compute_rexmodrmsib(&rex, &modrm, &sib, &arg2, &arg1);
modrm |= 0x4 << 3;
if(rex) emit1(rex);
emit1(0xff);
emit1(modrm);
if((modrm & 0x07) == MODRM_RM_SIB)
emit1(sib);
maybe_emit_displacement(&arg1);
}
}
static void emit_call(const char* mnemonic, arg_t arg1, arg_t arg2, void* data)
{
u8 rex, modrm, sib;
if(arg1.type != T_REGISTER || arg2.type != T_NONE)
CRAP_INVALID_ARGS;
if(!arg1.absolute)
crap("call must be absolute");
if((arg1.v.reg & R_64) != R_64)
crap("register must be 64bit");
arg1.v.reg ^= R_64; // no rex required for call
compute_rexmodrmsib(&rex, &modrm, &sib, &arg2, &arg1);
modrm |= 0x2 << 3;
if(rex) emit1(rex);
emit1(0xff);
emit1(modrm);
}
static void emit_twobyte(const char* mnemonic, arg_t arg1, arg_t arg2, void* data)
{
u8 rex, modrm, sib;
opparam_t* params = data;
if(arg1.type == T_REGISTER && (arg2.type == T_MEMORY || arg2.type == T_REGISTER))
{
compute_rexmodrmsib(&rex, &modrm, &sib, &arg1, &arg2);
if(params->xmmprefix) emit1(params->xmmprefix);
if(rex) emit1(rex);
emit1(0x0f);
emit1(params->rmcode); // sub reg/mem, reg
emit1(modrm);
if((modrm & 0x07) == MODRM_RM_SIB)
emit1(sib);
maybe_emit_displacement(&arg2);
}
else if(arg1.type == T_MEMORY && arg2.type == T_REGISTER && params->mrcode)
{
compute_rexmodrmsib(&rex, &modrm, &sib, &arg2, &arg1);
if(params->xmmprefix) emit1(params->xmmprefix);
if(rex) emit1(rex);
emit1(0x0f);
emit1(params->mrcode); // sub reg, reg/mem
emit1(modrm);
if((modrm & 0x07) == MODRM_RM_SIB)
emit1(sib);
maybe_emit_displacement(&arg1);
}
else
CRAP_INVALID_ARGS;
}
static opparam_t params_add = { subcode: 0, rmcode: 0x01, };
static opparam_t params_or = { subcode: 1, rmcode: 0x09, };
static opparam_t params_and = { subcode: 4, rmcode: 0x21, };
static opparam_t params_sub = { subcode: 5, rmcode: 0x29, };
static opparam_t params_xor = { subcode: 6, rmcode: 0x31, };
static opparam_t params_cmp = { subcode: 6, rmcode: 0x39, mrcode: 0x3b, };
static opparam_t params_dec = { subcode: 1, rcode: 0xff, rcode8: 0xfe, };
static opparam_t params_sar = { subcode: 7, rcode: 0xd3, rcode8: 0xd2, };
static opparam_t params_shl = { subcode: 4, rcode: 0xd3, rcode8: 0xd2, };
static opparam_t params_shr = { subcode: 5, rcode: 0xd3, rcode8: 0xd2, };
static opparam_t params_idiv = { subcode: 7, rcode: 0xf7, rcode8: 0xf6, };
static opparam_t params_div = { subcode: 6, rcode: 0xf7, rcode8: 0xf6, };
static opparam_t params_imul = { subcode: 5, rcode: 0xf7, rcode8: 0xf6, };
static opparam_t params_mul = { subcode: 4, rcode: 0xf7, rcode8: 0xf6, };
static opparam_t params_neg = { subcode: 3, rcode: 0xf7, rcode8: 0xf6, };
static opparam_t params_not = { subcode: 2, rcode: 0xf7, rcode8: 0xf6, };
static opparam_t params_cvtsi2ss = { xmmprefix: 0xf3, rmcode: 0x2a };
static opparam_t params_cvttss2si = { xmmprefix: 0xf3, rmcode: 0x2c };
static opparam_t params_addss = { xmmprefix: 0xf3, mrcode: 0x58 };
static opparam_t params_divss = { xmmprefix: 0xf3, mrcode: 0x5e };
static opparam_t params_movss = { xmmprefix: 0xf3, mrcode: 0x10, rmcode: 0x11 };
static opparam_t params_mulss = { xmmprefix: 0xf3, mrcode: 0x59 };
static opparam_t params_subss = { xmmprefix: 0xf3, mrcode: 0x5c };
static opparam_t params_ucomiss = { mrcode: 0x2e };
static int ops_sorted = 0;
static op_t ops[] = {
{ "addl", emit_subaddand, &params_add },
{ "addq", emit_subaddand, &params_add },
{ "addss", emit_twobyte, &params_addss },
{ "andl", emit_subaddand, &params_and },
{ "andq", emit_subaddand, &params_and },
{ "callq", emit_call, NULL },
{ "cbw", emit_opsingle16, (void*)0x98 },
{ "cdq", emit_opsingle, (void*)0x99 },
{ "cmpl", emit_subaddand, &params_cmp },
{ "cmpq", emit_subaddand, &params_cmp },
{ "cvtsi2ss", emit_twobyte, &params_cvtsi2ss },
{ "cvttss2si", emit_twobyte, &params_cvttss2si },
{ "cwde", emit_opsingle, (void*)0x98 },
{ "decl", emit_op_rm, &params_dec },
{ "decq", emit_op_rm, &params_dec },
{ "divl", emit_op_rm, &params_div },
{ "divq", emit_op_rm, &params_div },
{ "divss", emit_twobyte, &params_divss },
{ "idivl", emit_op_rm, &params_idiv },
{ "imull", emit_op_rm, &params_imul },
{ "int3", emit_opsingle, (void*)0xcc },
{ "ja", emit_condjump, (void*)0x77 },
{ "jbe", emit_condjump, (void*)0x76 },
{ "jb", emit_condjump, (void*)0x72 },
{ "je", emit_condjump, (void*)0x74 },
{ "jl", emit_condjump, (void*)0x7c },
{ "jmp", emit_jmp, NULL },
{ "jmpq", emit_jmp, NULL },
{ "jnae", emit_condjump, (void*)0x72 },
{ "jna", emit_condjump, (void*)0x76 },
{ "jnbe", emit_condjump, (void*)0x77 },
{ "jnb", emit_condjump, (void*)0x73 },
{ "jnc", emit_condjump, (void*)0x73 },
{ "jne", emit_condjump, (void*)0x75 },
{ "jnge", emit_condjump, (void*)0x7c },
{ "jng", emit_condjump, (void*)0x7e },
{ "jnle", emit_condjump, (void*)0x7f },
{ "jnl", emit_condjump, (void*)0x7d },
{ "jnz", emit_condjump, (void*)0x75 },
{ "jp", emit_condjump, (void*)0x7a },
{ "jz", emit_condjump, (void*)0x74 },
{ "movb", emit_mov, NULL },
{ "movl", emit_mov, NULL },
{ "movq", emit_mov, NULL },
{ "movss", emit_twobyte, &params_movss },
{ "movw", emit_mov, NULL },
{ "mull", emit_op_rm, &params_mul },
{ "mulss", emit_twobyte, &params_mulss },
{ "negl", emit_op_rm, &params_neg },
{ "negq", emit_op_rm, &params_neg },
{ "nop", emit_opsingle, (void*)0x90 },
{ "notl", emit_op_rm, &params_not },
{ "notq", emit_op_rm, &params_not },
{ "or", emit_subaddand, &params_or },
{ "orl", emit_subaddand, &params_or },
{ "pop", emit_opreg, (void*)0x58 },
{ "push", emit_opreg, (void*)0x50 },
{ "ret", emit_opsingle, (void*)0xc3 },
{ "sarl", emit_op_rm_cl, &params_sar },
{ "shl", emit_op_rm_cl, &params_shl },
{ "shrl", emit_op_rm_cl, &params_shr },
{ "subl", emit_subaddand, &params_sub },
{ "subq", emit_subaddand, &params_sub },
{ "subss", emit_twobyte, &params_subss },
{ "ucomiss", emit_twobyte, &params_ucomiss },
{ "xorl", emit_subaddand, &params_xor },
{ "xorq", emit_subaddand, &params_xor },
{ NULL, NULL, NULL }
};
static int opsort(const void* A, const void* B)
{
const op_t* a = A;
const op_t* b = B;
return strcmp(a->mnemonic, b->mnemonic);
}
static op_t* getop(const char* n)
{
#if 0
op_t* o = ops;
while(o->mnemonic)
{
if(!strcmp(o->mnemonic, n))
return o;
++o;
}
#else
unsigned m, t, b;
int r;
t = sizeof(ops)/sizeof(ops[0])-1;
b = 0;
while(b <= t)
{
m = ((t-b)>>1) + b;
if((r = strcmp(ops[m].mnemonic, n)) == 0)
{
return &ops[m];
}
else if(r < 0)
{
b = m + 1;
}
else
{
t = m - 1;
}
}
#endif
return NULL;
}
static reg_t parsereg(const char* str)
{
const char* s = str;
if(*s == 'a' && s[1] == 'l' && !s[2])
{
return R_AL;
}
else if(*s == 'a' && s[1] == 'x' && !s[2])
{
return R_AX;
}
if(*s == 'c' && s[1] == 'l' && !s[2])
{
return R_CL;
}
if(*s == 'x')
{
if(!strcmp(s, "xmm0"))
return R_XMM0;
}
else if(*s == 'r' && s[1])
{
++s;
if(s[1] == 'x')
{
switch(*s++)
{
case 'a': return R_RAX;
case 'b': return R_RBX;
case 'c': return R_RCX;
case 'd': return R_RDX;
}
}
else if(s[1] == 'i')
{
switch(*s++)
{
case 's': return R_RSI;
case 'd': return R_RDI;
}
}
else if(s[0] == 's' && s[1] == 'p' && !s[2])
{
return R_RSP;
}
else if(*s == '8' && !s[1])
return R_R8;
else if(*s == '9' && !s[1])
return R_R9;
else if(*s == '1' && s[1] == '0')
return R_R10;
else if(*s == '1' && s[1] == '5')
return R_R15;
}
else if(*s == 'e' && s[1])
{
++s;
if(s[1] == 'x')
{
switch(*s++)
{
case 'a': return R_EAX;
case 'b': return R_EBX;
case 'c': return R_ECX;
case 'd': return R_EDX;
}
}
else if(s[1] == 'i')
{
switch(*s++)
{
case 's': return R_ESI;
case 'd': return R_EDI;
}
}
}
crap("invalid register %s", str);
return 0;
}
typedef enum {
TOK_LABEL = 0x80,
TOK_INT = 0x81,
TOK_END = 0x82,
TOK_INVALID = 0x83,
} token_t;
static unsigned char nexttok(const char** str, char* label, u64* val)
{
const char* s = *str;
if(label) *label = 0;
if(val) *val = 0;
while(*s && *s == ' ') ++s;
if(!*s)
{
return TOK_END;
}
else if(*s == '$' || *s == '*' || *s == '%' || *s == '-' || *s == ')' || *s == '(' || *s == ',')
{
*str = s+1;
return *s;
}
else if(*s >= 'a' && *s <= 'z')
{
size_t a = strspn(s+1, "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_");
if(a+1 >= LABELLEN)
crap("label %s too long", s);
if(label)
{
strncpy(label, s, a+1);
label[a+1] = 0;
}
*str = s+a+1;
return TOK_LABEL;
}
else if(*s >= '0' && *s <= '9')
{
char* endptr = NULL;
u64 v = strtol(s, &endptr, 0);
if(endptr && (endptr-s == 0))
crap("invalid integer %s", s);
if(val) *val = v;
*str = endptr;
return TOK_INT;
}
crap("can't parse '%s'", *str);
return TOK_INVALID;
}
static arg_t parsearg(const char** str)
{
arg_t arg;
const char* s = *str;
char label[20];
u64 val;
int negative = 1;
unsigned ttype;
arg.type = T_NONE;
arg.absolute = 0;
while(*s && *s == ' ') ++s;
switch(nexttok(&s, label, &val))
{
case '$' :
ttype = nexttok(&s, NULL, &val);
if(ttype == '-')
{
negative = -1;
ttype = nexttok(&s, NULL, &val);
}
if(ttype != TOK_INT)
crap("expected integer");
arg.type = T_IMMEDIATE;
arg.v.imm = negative * val;
break;
case '*' :
if((ttype = nexttok(&s, NULL, NULL)) != '%')
{
if(ttype == '(')
goto tok_memory;
crap("expected '%%'");
}
arg.absolute = 1;
/* fall through */
case '%' :
if(nexttok(&s, label, &val) != TOK_LABEL)
crap("expected label");
arg.type = T_REGISTER;
arg.v.reg = parsereg(label);
break;
case TOK_LABEL:
arg.type = T_LABEL;
strncpy(arg.v.label, label, LABELLEN);
break;
case '-':
negative = -1;
if(nexttok(&s, NULL, &val) != TOK_INT)
crap("expected integer");
/* fall through */
case TOK_INT:
if(nexttok(&s, label, NULL) != '(')
crap("expected '('"); // mov to/from fixed address not supported
/* fall through */
case '(':
tok_memory:
arg.type = T_MEMORY;
arg.v.mem.indextype = T_NONE;
arg.v.mem.disp = negative * val;
ttype = nexttok(&s, label, &val);
if(ttype == '%' && nexttok(&s, label, &val) != TOK_LABEL)
{
crap("expected register");
}
if (ttype == '%')
{
arg.v.mem.basetype = T_REGISTER;
arg.v.mem.base.reg = parsereg(label);
}
else if (ttype == TOK_INT)
{
arg.v.mem.basetype = T_IMMEDIATE;
arg.v.mem.base.imm = val;
}
if((ttype = nexttok(&s, NULL, NULL)) == ',')
{
ttype = nexttok(&s, label, &val);
if(ttype == '%' && nexttok(&s, label, &val) != TOK_LABEL)
{
crap("expected register");
}
if (ttype == '%')
{
arg.v.mem.indextype = T_REGISTER;
arg.v.mem.index.reg = parsereg(label);
}
else if (ttype == TOK_INT)
{
crap("index must be register");
arg.v.mem.indextype = T_IMMEDIATE;
arg.v.mem.index.imm = val;
}
if(nexttok(&s, NULL, NULL) != ',')
crap("expected ','");
if(nexttok(&s, NULL, &val) != TOK_INT)
crap("expected integer");
if(val != 1 && val != 2 && val != 4 && val != 8)
crap("scale must 1, 2, 4 or 8");
arg.v.mem.scale = val;
ttype = nexttok(&s, NULL, NULL);
}
if(ttype != ')')
{
crap("expected ')' or ','");
}
break;
default:
crap("invalid token %hhu in %s", *(unsigned char*)s, *str);
break;
}
*str = s;
return arg;
}
/* ************************* */
void assembler_init(int pass)
{
compiledOfs = 0;
assembler_pass = pass;
if(!pass)
{
labelhash_free();
cur_line = NULL;
}
if(!ops_sorted)
{
ops_sorted = 1;
qsort(ops, sizeof(ops)/sizeof(ops[0])-1, sizeof(ops[0]), opsort);
}
}
size_t assembler_get_code_size(void)
{
return compiledOfs;
}
void assembler_set_output(char* buf)
{
out = buf;
}
void assemble_line(const char* input, size_t len)
{
char line[4096];
char* s;
op_t* o;
char* opn;
arg_t arg1, arg2;
arg1.type = T_NONE;
arg2.type = T_NONE;
opn = NULL;
o = NULL;
if(len < 1)
return;
if(len >= sizeof(line))
crap("line too long");
memcpy(line, input, sizeof(line));
cur_line = input;
if(line[len-1] == '\n') line[--len] = 0;
if(line[len-1] == ':')
{
line[--len] = 0;
if(assembler_pass)
debug("%s: 0x%x\n", line, compiledOfs);
else
hash_add_label(line, compiledOfs);
}
else
{
opn = line;
s = strchr(line, ' ');
if(s)
{
*s++ = 0;
arg1 = parsearg((const char**)&s);
if(*s)
{
if(*s != ',')
crap("expected ',', got '%c'", *s);
++s;
arg2 = parsearg((const char**)&s);
}
}
if(!opn)
{
crap("no operator in %s", line);
}
o = getop(opn);
if(!o)
{
crap("cannot handle op %s", opn);
}
o->func(opn, arg1, arg2, o->data);
if(assembler_pass)
debug(" - %s%s", cur_line, cur_line[strlen(cur_line)-1]=='\n'?"":"\n");
}
}
#ifdef SA_STANDALONE
int main(int argc, char* argv[])
{
char line[4096];
size_t len;
int pass;
FILE* file = NULL;
if(argc < 2)
{
crap("specify file");
}
file = fopen(argv[1], "r");
if(!file)
{
crap("can't open file");
}
if(argc > 2)
{
fout = fopen(argv[2], "w");
if(!fout)
{
crap("can't open %s for writing", argv[2]);
}
}
for(pass = 0; pass < 2; ++pass)
{
if(fseek(file, 0, SEEK_SET))
crap("can't rewind file");
if(pass)
{
char* b = malloc(assembler_get_code_size());
if(!b)
crap("cannot allocate memory");
assembler_set_output(b);
}
assembler_init(pass);
while(fgets(line, sizeof(line), file))
{
len = strlen(line);
if(!len) continue;
assemble_line(line, len);
}
}
assembler_init(0);
fclose(file);
return 0;
}
#endif