mirror of
https://github.com/UberGames/lilium-voyager.git
synced 2025-01-06 08:50:42 +00:00
291 lines
10 KiB
C
291 lines
10 KiB
C
|
/***********************************************************************
|
||
|
Copyright (c) 2017 Google Inc.
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions
|
||
|
are met:
|
||
|
- Redistributions of source code must retain the above copyright notice,
|
||
|
this list of conditions and the following disclaimer.
|
||
|
- Redistributions in binary form must reproduce the above copyright
|
||
|
notice, this list of conditions and the following disclaimer in the
|
||
|
documentation and/or other materials provided with the distribution.
|
||
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
||
|
names of specific contributors, may be used to endorse or promote
|
||
|
products derived from this software without specific prior written
|
||
|
permission.
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
POSSIBILITY OF SUCH DAMAGE.
|
||
|
***********************************************************************/
|
||
|
|
||
|
#ifdef HAVE_CONFIG_H
|
||
|
#include "config.h"
|
||
|
#endif
|
||
|
|
||
|
#include <arm_neon.h>
|
||
|
#include "pitch.h"
|
||
|
|
||
|
#ifdef FIXED_POINT
|
||
|
|
||
|
opus_val32 celt_inner_prod_neon(const opus_val16 *x, const opus_val16 *y, int N)
|
||
|
{
|
||
|
int i;
|
||
|
opus_val32 xy;
|
||
|
int16x8_t x_s16x8, y_s16x8;
|
||
|
int32x4_t xy_s32x4 = vdupq_n_s32(0);
|
||
|
int64x2_t xy_s64x2;
|
||
|
int64x1_t xy_s64x1;
|
||
|
|
||
|
for (i = 0; i < N - 7; i += 8) {
|
||
|
x_s16x8 = vld1q_s16(&x[i]);
|
||
|
y_s16x8 = vld1q_s16(&y[i]);
|
||
|
xy_s32x4 = vmlal_s16(xy_s32x4, vget_low_s16 (x_s16x8), vget_low_s16 (y_s16x8));
|
||
|
xy_s32x4 = vmlal_s16(xy_s32x4, vget_high_s16(x_s16x8), vget_high_s16(y_s16x8));
|
||
|
}
|
||
|
|
||
|
if (N - i >= 4) {
|
||
|
const int16x4_t x_s16x4 = vld1_s16(&x[i]);
|
||
|
const int16x4_t y_s16x4 = vld1_s16(&y[i]);
|
||
|
xy_s32x4 = vmlal_s16(xy_s32x4, x_s16x4, y_s16x4);
|
||
|
i += 4;
|
||
|
}
|
||
|
|
||
|
xy_s64x2 = vpaddlq_s32(xy_s32x4);
|
||
|
xy_s64x1 = vadd_s64(vget_low_s64(xy_s64x2), vget_high_s64(xy_s64x2));
|
||
|
xy = vget_lane_s32(vreinterpret_s32_s64(xy_s64x1), 0);
|
||
|
|
||
|
for (; i < N; i++) {
|
||
|
xy = MAC16_16(xy, x[i], y[i]);
|
||
|
}
|
||
|
|
||
|
#ifdef OPUS_CHECK_ASM
|
||
|
celt_assert(celt_inner_prod_c(x, y, N) == xy);
|
||
|
#endif
|
||
|
|
||
|
return xy;
|
||
|
}
|
||
|
|
||
|
void dual_inner_prod_neon(const opus_val16 *x, const opus_val16 *y01, const opus_val16 *y02,
|
||
|
int N, opus_val32 *xy1, opus_val32 *xy2)
|
||
|
{
|
||
|
int i;
|
||
|
opus_val32 xy01, xy02;
|
||
|
int16x8_t x_s16x8, y01_s16x8, y02_s16x8;
|
||
|
int32x4_t xy01_s32x4 = vdupq_n_s32(0);
|
||
|
int32x4_t xy02_s32x4 = vdupq_n_s32(0);
|
||
|
int64x2_t xy01_s64x2, xy02_s64x2;
|
||
|
int64x1_t xy01_s64x1, xy02_s64x1;
|
||
|
|
||
|
for (i = 0; i < N - 7; i += 8) {
|
||
|
x_s16x8 = vld1q_s16(&x[i]);
|
||
|
y01_s16x8 = vld1q_s16(&y01[i]);
|
||
|
y02_s16x8 = vld1q_s16(&y02[i]);
|
||
|
xy01_s32x4 = vmlal_s16(xy01_s32x4, vget_low_s16 (x_s16x8), vget_low_s16 (y01_s16x8));
|
||
|
xy02_s32x4 = vmlal_s16(xy02_s32x4, vget_low_s16 (x_s16x8), vget_low_s16 (y02_s16x8));
|
||
|
xy01_s32x4 = vmlal_s16(xy01_s32x4, vget_high_s16(x_s16x8), vget_high_s16(y01_s16x8));
|
||
|
xy02_s32x4 = vmlal_s16(xy02_s32x4, vget_high_s16(x_s16x8), vget_high_s16(y02_s16x8));
|
||
|
}
|
||
|
|
||
|
if (N - i >= 4) {
|
||
|
const int16x4_t x_s16x4 = vld1_s16(&x[i]);
|
||
|
const int16x4_t y01_s16x4 = vld1_s16(&y01[i]);
|
||
|
const int16x4_t y02_s16x4 = vld1_s16(&y02[i]);
|
||
|
xy01_s32x4 = vmlal_s16(xy01_s32x4, x_s16x4, y01_s16x4);
|
||
|
xy02_s32x4 = vmlal_s16(xy02_s32x4, x_s16x4, y02_s16x4);
|
||
|
i += 4;
|
||
|
}
|
||
|
|
||
|
xy01_s64x2 = vpaddlq_s32(xy01_s32x4);
|
||
|
xy02_s64x2 = vpaddlq_s32(xy02_s32x4);
|
||
|
xy01_s64x1 = vadd_s64(vget_low_s64(xy01_s64x2), vget_high_s64(xy01_s64x2));
|
||
|
xy02_s64x1 = vadd_s64(vget_low_s64(xy02_s64x2), vget_high_s64(xy02_s64x2));
|
||
|
xy01 = vget_lane_s32(vreinterpret_s32_s64(xy01_s64x1), 0);
|
||
|
xy02 = vget_lane_s32(vreinterpret_s32_s64(xy02_s64x1), 0);
|
||
|
|
||
|
for (; i < N; i++) {
|
||
|
xy01 = MAC16_16(xy01, x[i], y01[i]);
|
||
|
xy02 = MAC16_16(xy02, x[i], y02[i]);
|
||
|
}
|
||
|
*xy1 = xy01;
|
||
|
*xy2 = xy02;
|
||
|
|
||
|
#ifdef OPUS_CHECK_ASM
|
||
|
{
|
||
|
opus_val32 xy1_c, xy2_c;
|
||
|
dual_inner_prod_c(x, y01, y02, N, &xy1_c, &xy2_c);
|
||
|
celt_assert(xy1_c == *xy1);
|
||
|
celt_assert(xy2_c == *xy2);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#else /* !FIXED_POINT */
|
||
|
|
||
|
/* ========================================================================== */
|
||
|
|
||
|
#ifdef OPUS_CHECK_ASM
|
||
|
|
||
|
/* This part of code simulates floating-point NEON operations. */
|
||
|
|
||
|
/* celt_inner_prod_neon_float_c_simulation() simulates the floating-point */
|
||
|
/* operations of celt_inner_prod_neon(), and both functions should have bit */
|
||
|
/* exact output. */
|
||
|
static opus_val32 celt_inner_prod_neon_float_c_simulation(const opus_val16 *x, const opus_val16 *y, int N)
|
||
|
{
|
||
|
int i;
|
||
|
opus_val32 xy, xy0 = 0, xy1 = 0, xy2 = 0, xy3 = 0;
|
||
|
for (i = 0; i < N - 3; i += 4) {
|
||
|
xy0 = MAC16_16(xy0, x[i + 0], y[i + 0]);
|
||
|
xy1 = MAC16_16(xy1, x[i + 1], y[i + 1]);
|
||
|
xy2 = MAC16_16(xy2, x[i + 2], y[i + 2]);
|
||
|
xy3 = MAC16_16(xy3, x[i + 3], y[i + 3]);
|
||
|
}
|
||
|
xy0 += xy2;
|
||
|
xy1 += xy3;
|
||
|
xy = xy0 + xy1;
|
||
|
for (; i < N; i++) {
|
||
|
xy = MAC16_16(xy, x[i], y[i]);
|
||
|
}
|
||
|
return xy;
|
||
|
}
|
||
|
|
||
|
/* dual_inner_prod_neon_float_c_simulation() simulates the floating-point */
|
||
|
/* operations of dual_inner_prod_neon(), and both functions should have bit */
|
||
|
/* exact output. */
|
||
|
static void dual_inner_prod_neon_float_c_simulation(const opus_val16 *x, const opus_val16 *y01, const opus_val16 *y02,
|
||
|
int N, opus_val32 *xy1, opus_val32 *xy2)
|
||
|
{
|
||
|
int i;
|
||
|
opus_val32 xy01, xy02, xy01_0 = 0, xy01_1 = 0, xy01_2 = 0, xy01_3 = 0, xy02_0 = 0, xy02_1 = 0, xy02_2 = 0, xy02_3 = 0;
|
||
|
for (i = 0; i < N - 3; i += 4) {
|
||
|
xy01_0 = MAC16_16(xy01_0, x[i + 0], y01[i + 0]);
|
||
|
xy01_1 = MAC16_16(xy01_1, x[i + 1], y01[i + 1]);
|
||
|
xy01_2 = MAC16_16(xy01_2, x[i + 2], y01[i + 2]);
|
||
|
xy01_3 = MAC16_16(xy01_3, x[i + 3], y01[i + 3]);
|
||
|
xy02_0 = MAC16_16(xy02_0, x[i + 0], y02[i + 0]);
|
||
|
xy02_1 = MAC16_16(xy02_1, x[i + 1], y02[i + 1]);
|
||
|
xy02_2 = MAC16_16(xy02_2, x[i + 2], y02[i + 2]);
|
||
|
xy02_3 = MAC16_16(xy02_3, x[i + 3], y02[i + 3]);
|
||
|
}
|
||
|
xy01_0 += xy01_2;
|
||
|
xy02_0 += xy02_2;
|
||
|
xy01_1 += xy01_3;
|
||
|
xy02_1 += xy02_3;
|
||
|
xy01 = xy01_0 + xy01_1;
|
||
|
xy02 = xy02_0 + xy02_1;
|
||
|
for (; i < N; i++) {
|
||
|
xy01 = MAC16_16(xy01, x[i], y01[i]);
|
||
|
xy02 = MAC16_16(xy02, x[i], y02[i]);
|
||
|
}
|
||
|
*xy1 = xy01;
|
||
|
*xy2 = xy02;
|
||
|
}
|
||
|
|
||
|
#endif /* OPUS_CHECK_ASM */
|
||
|
|
||
|
/* ========================================================================== */
|
||
|
|
||
|
opus_val32 celt_inner_prod_neon(const opus_val16 *x, const opus_val16 *y, int N)
|
||
|
{
|
||
|
int i;
|
||
|
opus_val32 xy;
|
||
|
float32x4_t xy_f32x4 = vdupq_n_f32(0);
|
||
|
float32x2_t xy_f32x2;
|
||
|
|
||
|
for (i = 0; i < N - 7; i += 8) {
|
||
|
float32x4_t x_f32x4, y_f32x4;
|
||
|
x_f32x4 = vld1q_f32(&x[i]);
|
||
|
y_f32x4 = vld1q_f32(&y[i]);
|
||
|
xy_f32x4 = vmlaq_f32(xy_f32x4, x_f32x4, y_f32x4);
|
||
|
x_f32x4 = vld1q_f32(&x[i + 4]);
|
||
|
y_f32x4 = vld1q_f32(&y[i + 4]);
|
||
|
xy_f32x4 = vmlaq_f32(xy_f32x4, x_f32x4, y_f32x4);
|
||
|
}
|
||
|
|
||
|
if (N - i >= 4) {
|
||
|
const float32x4_t x_f32x4 = vld1q_f32(&x[i]);
|
||
|
const float32x4_t y_f32x4 = vld1q_f32(&y[i]);
|
||
|
xy_f32x4 = vmlaq_f32(xy_f32x4, x_f32x4, y_f32x4);
|
||
|
i += 4;
|
||
|
}
|
||
|
|
||
|
xy_f32x2 = vadd_f32(vget_low_f32(xy_f32x4), vget_high_f32(xy_f32x4));
|
||
|
xy_f32x2 = vpadd_f32(xy_f32x2, xy_f32x2);
|
||
|
xy = vget_lane_f32(xy_f32x2, 0);
|
||
|
|
||
|
for (; i < N; i++) {
|
||
|
xy = MAC16_16(xy, x[i], y[i]);
|
||
|
}
|
||
|
|
||
|
#ifdef OPUS_CHECK_ASM
|
||
|
celt_assert(ABS32(celt_inner_prod_neon_float_c_simulation(x, y, N) - xy) <= VERY_SMALL);
|
||
|
#endif
|
||
|
|
||
|
return xy;
|
||
|
}
|
||
|
|
||
|
void dual_inner_prod_neon(const opus_val16 *x, const opus_val16 *y01, const opus_val16 *y02,
|
||
|
int N, opus_val32 *xy1, opus_val32 *xy2)
|
||
|
{
|
||
|
int i;
|
||
|
opus_val32 xy01, xy02;
|
||
|
float32x4_t xy01_f32x4 = vdupq_n_f32(0);
|
||
|
float32x4_t xy02_f32x4 = vdupq_n_f32(0);
|
||
|
float32x2_t xy01_f32x2, xy02_f32x2;
|
||
|
|
||
|
for (i = 0; i < N - 7; i += 8) {
|
||
|
float32x4_t x_f32x4, y01_f32x4, y02_f32x4;
|
||
|
x_f32x4 = vld1q_f32(&x[i]);
|
||
|
y01_f32x4 = vld1q_f32(&y01[i]);
|
||
|
y02_f32x4 = vld1q_f32(&y02[i]);
|
||
|
xy01_f32x4 = vmlaq_f32(xy01_f32x4, x_f32x4, y01_f32x4);
|
||
|
xy02_f32x4 = vmlaq_f32(xy02_f32x4, x_f32x4, y02_f32x4);
|
||
|
x_f32x4 = vld1q_f32(&x[i + 4]);
|
||
|
y01_f32x4 = vld1q_f32(&y01[i + 4]);
|
||
|
y02_f32x4 = vld1q_f32(&y02[i + 4]);
|
||
|
xy01_f32x4 = vmlaq_f32(xy01_f32x4, x_f32x4, y01_f32x4);
|
||
|
xy02_f32x4 = vmlaq_f32(xy02_f32x4, x_f32x4, y02_f32x4);
|
||
|
}
|
||
|
|
||
|
if (N - i >= 4) {
|
||
|
const float32x4_t x_f32x4 = vld1q_f32(&x[i]);
|
||
|
const float32x4_t y01_f32x4 = vld1q_f32(&y01[i]);
|
||
|
const float32x4_t y02_f32x4 = vld1q_f32(&y02[i]);
|
||
|
xy01_f32x4 = vmlaq_f32(xy01_f32x4, x_f32x4, y01_f32x4);
|
||
|
xy02_f32x4 = vmlaq_f32(xy02_f32x4, x_f32x4, y02_f32x4);
|
||
|
i += 4;
|
||
|
}
|
||
|
|
||
|
xy01_f32x2 = vadd_f32(vget_low_f32(xy01_f32x4), vget_high_f32(xy01_f32x4));
|
||
|
xy02_f32x2 = vadd_f32(vget_low_f32(xy02_f32x4), vget_high_f32(xy02_f32x4));
|
||
|
xy01_f32x2 = vpadd_f32(xy01_f32x2, xy01_f32x2);
|
||
|
xy02_f32x2 = vpadd_f32(xy02_f32x2, xy02_f32x2);
|
||
|
xy01 = vget_lane_f32(xy01_f32x2, 0);
|
||
|
xy02 = vget_lane_f32(xy02_f32x2, 0);
|
||
|
|
||
|
for (; i < N; i++) {
|
||
|
xy01 = MAC16_16(xy01, x[i], y01[i]);
|
||
|
xy02 = MAC16_16(xy02, x[i], y02[i]);
|
||
|
}
|
||
|
*xy1 = xy01;
|
||
|
*xy2 = xy02;
|
||
|
|
||
|
#ifdef OPUS_CHECK_ASM
|
||
|
{
|
||
|
opus_val32 xy1_c, xy2_c;
|
||
|
dual_inner_prod_neon_float_c_simulation(x, y01, y02, N, &xy1_c, &xy2_c);
|
||
|
celt_assert(ABS32(xy1_c - *xy1) <= VERY_SMALL);
|
||
|
celt_assert(ABS32(xy2_c - *xy2) <= VERY_SMALL);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#endif /* FIXED_POINT */
|