lilium-voyager/code/splines/math_vector.h

575 lines
14 KiB
C
Raw Normal View History

2005-08-26 04:48:05 +00:00
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#ifndef __MATH_VECTOR_H__
#define __MATH_VECTOR_H__
#if defined(_WIN32)
#pragma warning(disable : 4244)
#endif
#include <math.h>
#include <assert.h>
//#define DotProduct(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2])
//#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2])
//#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2])
//#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2])
//#define VectorCopy(a,b) ((b).x=(a).x,(b).y=(a).y,(b).z=(a).z])
//#define VectorScale(v, s, o) ((o)[0]=(v)[0]*(s),(o)[1]=(v)[1]*(s),(o)[2]=(v)[2]*(s))
#define __VectorMA(v, s, b, o) ((o)[0]=(v)[0]+(b)[0]*(s),(o)[1]=(v)[1]+(b)[1]*(s),(o)[2]=(v)[2]+(b)[2]*(s))
//#define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0])
#define DotProduct4(x,y) ((x)[0]*(y)[0]+(x)[1]*(y)[1]+(x)[2]*(y)[2]+(x)[3]*(y)[3])
#define VectorSubtract4(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2],(c)[3]=(a)[3]-(b)[3])
#define VectorAdd4(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2],(c)[3]=(a)[3]+(b)[3])
#define VectorCopy4(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
#define VectorScale4(v, s, o) ((o)[0]=(v)[0]*(s),(o)[1]=(v)[1]*(s),(o)[2]=(v)[2]*(s),(o)[3]=(v)[3]*(s))
#define VectorMA4(v, s, b, o) ((o)[0]=(v)[0]+(b)[0]*(s),(o)[1]=(v)[1]+(b)[1]*(s),(o)[2]=(v)[2]+(b)[2]*(s),(o)[3]=(v)[3]+(b)[3]*(s))
//#define VectorClear(a) ((a)[0]=(a)[1]=(a)[2]=0)
#define VectorNegate(a,b) ((b)[0]=-(a)[0],(b)[1]=-(a)[1],(b)[2]=-(a)[2])
//#define VectorSet(v, x, y, z) ((v)[0]=(x), (v)[1]=(y), (v)[2]=(z))
#define Vector4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
#define SnapVector(v) {v[0]=(int)v[0];v[1]=(int)v[1];v[2]=(int)v[2];}
//#include "util_heap.h"
#ifndef EQUAL_EPSILON
#define EQUAL_EPSILON 0.001
#endif
float Q_fabs( float f );
#ifndef ID_INLINE
#ifdef _WIN32
#define ID_INLINE __inline
#else
#define ID_INLINE inline
#endif
#endif
// if this is defined, vec3 will take four elements, which may allow
// easier SIMD optimizations
//#define FAT_VEC3
//#ifdef __ppc__
//#pragma align(16)
//#endif
class angles_t;
#ifdef __ppc__
// Vanilla PPC code, but since PPC has a reciprocal square root estimate instruction,
// runs *much* faster than calling sqrt(). We'll use two Newton-Raphson
// refinement steps to get bunch more precision in the 1/sqrt() value for very little cost.
// We'll then multiply 1/sqrt times the original value to get the sqrt.
// This is about 12.4 times faster than sqrt() and according to my testing (not exhaustive)
// it returns fairly accurate results (error below 1.0e-5 up to 100000.0 in 0.1 increments).
static inline float idSqrt(float x) {
const float half = 0.5;
const float one = 1.0;
float B, y0, y1;
// This'll NaN if it hits frsqrte. Handle both +0.0 and -0.0
if (fabs(x) == 0.0)
return x;
B = x;
#ifdef __GNUC__
asm("frsqrte %0,%1" : "=f" (y0) : "f" (B));
#else
y0 = __frsqrte(B);
#endif
/* First refinement step */
y1 = y0 + half*y0*(one - B*y0*y0);
/* Second refinement step -- copy the output of the last step to the input of this step */
y0 = y1;
y1 = y0 + half*y0*(one - B*y0*y0);
/* Get sqrt(x) from x * 1/sqrt(x) */
return x * y1;
}
#else
static inline double idSqrt(double x) {
return sqrt(x);
}
#endif
//class idVec3_t : public idHeap<idVec3_t> {
class idVec3_t {
public:
#ifndef FAT_VEC3
float x,y,z;
#else
float x,y,z,dist;
#endif
#ifndef FAT_VEC3
idVec3_t() {};
#else
idVec3_t() {dist = 0.0f;};
#endif
idVec3_t( const float x, const float y, const float z );
operator float *();
float operator[]( const int index ) const;
float &operator[]( const int index );
void set( const float x, const float y, const float z );
idVec3_t operator-() const;
idVec3_t &operator=( const idVec3_t &a );
float operator*( const idVec3_t &a ) const;
idVec3_t operator*( const float a ) const;
friend idVec3_t operator*( float a, idVec3_t b );
idVec3_t operator+( const idVec3_t &a ) const;
idVec3_t operator-( const idVec3_t &a ) const;
idVec3_t &operator+=( const idVec3_t &a );
idVec3_t &operator-=( const idVec3_t &a );
idVec3_t &operator*=( const float a );
int operator==( const idVec3_t &a ) const;
int operator!=( const idVec3_t &a ) const;
idVec3_t Cross( const idVec3_t &a ) const;
idVec3_t &Cross( const idVec3_t &a, const idVec3_t &b );
float Length( void ) const;
float Normalize( void );
void Zero( void );
void Snap( void );
void SnapTowards( const idVec3_t &to );
float toYaw( void );
float toPitch( void );
angles_t toAngles( void );
friend idVec3_t LerpVector( const idVec3_t &w1, const idVec3_t &w2, const float t );
char *string( void );
};
extern idVec3_t vec_zero;
ID_INLINE idVec3_t::idVec3_t( const float x, const float y, const float z ) {
this->x = x;
this->y = y;
this->z = z;
#ifdef FAT_VEC3
this->dist = 0.0f;
#endif
}
ID_INLINE float idVec3_t::operator[]( const int index ) const {
return ( &x )[ index ];
}
ID_INLINE float &idVec3_t::operator[]( const int index ) {
return ( &x )[ index ];
}
ID_INLINE idVec3_t::operator float *( void ) {
return &x;
}
ID_INLINE idVec3_t idVec3_t::operator-() const {
return idVec3_t( -x, -y, -z );
}
ID_INLINE idVec3_t &idVec3_t::operator=( const idVec3_t &a ) {
x = a.x;
y = a.y;
z = a.z;
return *this;
}
ID_INLINE void idVec3_t::set( const float x, const float y, const float z ) {
this->x = x;
this->y = y;
this->z = z;
}
ID_INLINE idVec3_t idVec3_t::operator-( const idVec3_t &a ) const {
return idVec3_t( x - a.x, y - a.y, z - a.z );
}
ID_INLINE float idVec3_t::operator*( const idVec3_t &a ) const {
return x * a.x + y * a.y + z * a.z;
}
ID_INLINE idVec3_t idVec3_t::operator*( const float a ) const {
return idVec3_t( x * a, y * a, z * a );
}
ID_INLINE idVec3_t operator*( const float a, const idVec3_t b ) {
return idVec3_t( b.x * a, b.y * a, b.z * a );
}
ID_INLINE idVec3_t idVec3_t::operator+( const idVec3_t &a ) const {
return idVec3_t( x + a.x, y + a.y, z + a.z );
}
ID_INLINE idVec3_t &idVec3_t::operator+=( const idVec3_t &a ) {
x += a.x;
y += a.y;
z += a.z;
return *this;
}
ID_INLINE idVec3_t &idVec3_t::operator-=( const idVec3_t &a ) {
x -= a.x;
y -= a.y;
z -= a.z;
return *this;
}
ID_INLINE idVec3_t &idVec3_t::operator*=( const float a ) {
x *= a;
y *= a;
z *= a;
return *this;
}
ID_INLINE int idVec3_t::operator==( const idVec3_t &a ) const {
if ( Q_fabs( x - a.x ) > EQUAL_EPSILON ) {
return false;
}
if ( Q_fabs( y - a.y ) > EQUAL_EPSILON ) {
return false;
}
if ( Q_fabs( z - a.z ) > EQUAL_EPSILON ) {
return false;
}
return true;
}
ID_INLINE int idVec3_t::operator!=( const idVec3_t &a ) const {
if ( Q_fabs( x - a.x ) > EQUAL_EPSILON ) {
return true;
}
if ( Q_fabs( y - a.y ) > EQUAL_EPSILON ) {
return true;
}
if ( Q_fabs( z - a.z ) > EQUAL_EPSILON ) {
return true;
}
return false;
}
ID_INLINE idVec3_t idVec3_t::Cross( const idVec3_t &a ) const {
return idVec3_t( y * a.z - z * a.y, z * a.x - x * a.z, x * a.y - y * a.x );
}
ID_INLINE idVec3_t &idVec3_t::Cross( const idVec3_t &a, const idVec3_t &b ) {
x = a.y * b.z - a.z * b.y;
y = a.z * b.x - a.x * b.z;
z = a.x * b.y - a.y * b.x;
return *this;
}
ID_INLINE float idVec3_t::Length( void ) const {
float length;
length = x * x + y * y + z * z;
return ( float )idSqrt( length );
}
ID_INLINE float idVec3_t::Normalize( void ) {
float length;
float ilength;
length = this->Length();
if ( length ) {
ilength = 1.0f / length;
x *= ilength;
y *= ilength;
z *= ilength;
}
return length;
}
ID_INLINE void idVec3_t::Zero( void ) {
x = 0.0f;
y = 0.0f;
z = 0.0f;
}
ID_INLINE void idVec3_t::Snap( void ) {
x = float( int( x ) );
y = float( int( y ) );
z = float( int( z ) );
}
/*
======================
SnapTowards
Round a vector to integers for more efficient network
transmission, but make sure that it rounds towards a given point
rather than blindly truncating. This prevents it from truncating
into a wall.
======================
*/
ID_INLINE void idVec3_t::SnapTowards( const idVec3_t &to ) {
if ( to.x <= x ) {
x = float( int( x ) );
} else {
x = float( int( x ) + 1 );
}
if ( to.y <= y ) {
y = float( int( y ) );
} else {
y = float( int( y ) + 1 );
}
if ( to.z <= z ) {
z = float( int( z ) );
} else {
z = float( int( z ) + 1 );
}
}
//===============================================================
class Bounds {
public:
idVec3_t b[2];
Bounds();
Bounds( const idVec3_t &mins, const idVec3_t &maxs );
void Clear();
void Zero();
float Radius(); // radius from origin, not from center
idVec3_t Center();
void AddPoint( const idVec3_t &v );
void AddBounds( const Bounds &bb );
bool IsCleared();
bool ContainsPoint( const idVec3_t &p );
bool IntersectsBounds( const Bounds &b2 ); // touching is NOT intersecting
};
extern Bounds boundsZero;
ID_INLINE Bounds::Bounds(){
}
ID_INLINE bool Bounds::IsCleared() {
return b[0][0] > b[1][0];
}
ID_INLINE bool Bounds::ContainsPoint( const idVec3_t &p ) {
if ( p[0] < b[0][0] || p[1] < b[0][1] || p[2] < b[0][2]
|| p[0] > b[1][0] || p[1] > b[1][1] || p[2] > b[1][2] ) {
return false;
}
return true;
}
ID_INLINE bool Bounds::IntersectsBounds( const Bounds &b2 ) {
if ( b2.b[1][0] < b[0][0] || b2.b[1][1] < b[0][1] || b2.b[1][2] < b[0][2]
|| b2.b[0][0] > b[1][0] || b2.b[0][1] > b[1][1] || b2.b[0][2] > b[1][2] ) {
return false;
}
return true;
}
ID_INLINE Bounds::Bounds( const idVec3_t &mins, const idVec3_t &maxs ) {
b[0] = mins;
b[1] = maxs;
}
ID_INLINE idVec3_t Bounds::Center() {
return idVec3_t( ( b[1][0] + b[0][0] ) * 0.5f, ( b[1][1] + b[0][1] ) * 0.5f, ( b[1][2] + b[0][2] ) * 0.5f );
}
ID_INLINE void Bounds::Clear() {
b[0][0] = b[0][1] = b[0][2] = 99999;
b[1][0] = b[1][1] = b[1][2] = -99999;
}
ID_INLINE void Bounds::Zero() {
b[0][0] = b[0][1] = b[0][2] =
b[1][0] = b[1][1] = b[1][2] = 0;
}
ID_INLINE void Bounds::AddPoint( const idVec3_t &v ) {
if ( v[0] < b[0][0]) {
b[0][0] = v[0];
}
if ( v[0] > b[1][0]) {
b[1][0] = v[0];
}
if ( v[1] < b[0][1] ) {
b[0][1] = v[1];
}
if ( v[1] > b[1][1]) {
b[1][1] = v[1];
}
if ( v[2] < b[0][2] ) {
b[0][2] = v[2];
}
if ( v[2] > b[1][2]) {
b[1][2] = v[2];
}
}
ID_INLINE void Bounds::AddBounds( const Bounds &bb ) {
if ( bb.b[0][0] < b[0][0]) {
b[0][0] = bb.b[0][0];
}
if ( bb.b[0][1] < b[0][1]) {
b[0][1] = bb.b[0][1];
}
if ( bb.b[0][2] < b[0][2]) {
b[0][2] = bb.b[0][2];
}
if ( bb.b[1][0] > b[1][0]) {
b[1][0] = bb.b[1][0];
}
if ( bb.b[1][1] > b[1][1]) {
b[1][1] = bb.b[1][1];
}
if ( bb.b[1][2] > b[1][2]) {
b[1][2] = bb.b[1][2];
}
}
ID_INLINE float Bounds::Radius( ) {
int i;
float total;
float a, aa;
total = 0;
for (i=0 ; i<3 ; i++) {
a = (float)fabs( b[0][i] );
aa = (float)fabs( b[1][i] );
if ( aa > a ) {
a = aa;
}
total += a * a;
}
return (float)idSqrt( total );
}
//===============================================================
class idVec2_t {
public:
float x;
float y;
operator float *();
float operator[]( int index ) const;
float &operator[]( int index );
};
ID_INLINE float idVec2_t::operator[]( int index ) const {
return ( &x )[ index ];
}
ID_INLINE float& idVec2_t::operator[]( int index ) {
return ( &x )[ index ];
}
ID_INLINE idVec2_t::operator float *( void ) {
return &x;
}
class vec4_t : public idVec3_t {
public:
#ifndef FAT_VEC3
float dist;
#endif
vec4_t();
~vec4_t() {};
vec4_t( float x, float y, float z, float dist );
float operator[]( int index ) const;
float &operator[]( int index );
};
ID_INLINE vec4_t::vec4_t() {}
ID_INLINE vec4_t::vec4_t( float x, float y, float z, float dist ) {
this->x = x;
this->y = y;
this->z = z;
this->dist = dist;
}
ID_INLINE float vec4_t::operator[]( int index ) const {
return ( &x )[ index ];
}
ID_INLINE float& vec4_t::operator[]( int index ) {
return ( &x )[ index ];
}
class idVec5_t : public idVec3_t {
public:
float s;
float t;
float operator[]( int index ) const;
float &operator[]( int index );
};
ID_INLINE float idVec5_t::operator[]( int index ) const {
return ( &x )[ index ];
}
ID_INLINE float& idVec5_t::operator[]( int index ) {
return ( &x )[ index ];
}
#endif /* !__MATH_VECTOR_H__ */