lilium-voyager/q3map/fog.c

555 lines
12 KiB
C
Raw Normal View History

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
2005-08-26 17:39:27 +00:00
#include "qbsp.h"
int c_fogFragment;
int c_fogPatchFragments;
/*
====================
DrawSurfToMesh
====================
*/
mesh_t *DrawSurfToMesh( mapDrawSurface_t *ds ) {
mesh_t *m;
m = malloc( sizeof( *m ) );
m->width = ds->patchWidth;
m->height = ds->patchHeight;
m->verts = malloc( sizeof(m->verts[0]) * m->width * m->height );
memcpy( m->verts, ds->verts, sizeof(m->verts[0]) * m->width * m->height );
return m;
}
/*
====================
SplitMeshByPlane
====================
*/
void SplitMeshByPlane( mesh_t *in, vec3_t normal, float dist, mesh_t **front, mesh_t **back ) {
int w, h, split;
float d[MAX_PATCH_SIZE][MAX_PATCH_SIZE];
drawVert_t *dv, *v1, *v2;
int c_front, c_back, c_on;
mesh_t *f, *b;
int i;
float frac;
int frontAprox, backAprox;
for ( i = 0 ; i < 2 ; i++ ) {
dv = in->verts;
c_front = 0;
c_back = 0;
c_on = 0;
for ( h = 0 ; h < in->height ; h++ ) {
for ( w = 0 ; w < in->width ; w++, dv++ ) {
d[h][w] = DotProduct( dv->xyz, normal ) - dist;
if ( d[h][w] > ON_EPSILON ) {
c_front++;
} else if ( d[h][w] < -ON_EPSILON ) {
c_back++;
} else {
c_on++;
}
}
}
*front = NULL;
*back = NULL;
if ( !c_front ) {
*back = in;
return;
}
if ( !c_back ) {
*front = in;
return;
}
// find a split point
split = -1;
for ( w = 0 ; w < in->width -1 ; w++ ) {
if ( ( d[0][w] < 0 ) != ( d[0][w+1] < 0 ) ) {
if ( split == -1 ) {
split = w;
break;
}
}
}
if ( split == -1 ) {
if ( i == 1 ) {
qprintf( "No crossing points in patch\n");
*front = in;
return;
}
in = TransposeMesh( in );
InvertMesh( in );
continue;
}
// make sure the split point stays the same for all other rows
for ( h = 1 ; h < in->height ; h++ ) {
for ( w = 0 ; w < in->width -1 ; w++ ) {
if ( ( d[h][w] < 0 ) != ( d[h][w+1] < 0 ) ) {
if ( w != split ) {
_printf( "multiple crossing points for patch -- can't clip\n");
*front = in;
return;
}
}
}
if ( ( d[h][split] < 0 ) == ( d[h][split+1] < 0 ) ) {
_printf( "differing crossing points for patch -- can't clip\n");
*front = in;
return;
}
}
break;
}
// create two new meshes
f = malloc( sizeof( *f ) );
f->width = split + 2;
if ( ! (f->width & 1) ) {
f->width++;
frontAprox = 1;
} else {
frontAprox = 0;
}
if ( f->width > MAX_PATCH_SIZE ) {
Error( "MAX_PATCH_SIZE after split");
}
f->height = in->height;
f->verts = malloc( sizeof(f->verts[0]) * f->width * f->height );
b = malloc( sizeof( *b ) );
b->width = in->width - split;
if ( ! (b->width & 1) ) {
b->width++;
backAprox = 1;
} else {
backAprox = 0;
}
if ( b->width > MAX_PATCH_SIZE ) {
Error( "MAX_PATCH_SIZE after split");
}
b->height = in->height;
b->verts = malloc( sizeof(b->verts[0]) * b->width * b->height );
if ( d[0][0] > 0 ) {
*front = f;
*back = b;
} else {
*front = b;
*back = f;
}
// distribute the points
for ( w = 0 ; w < in->width ; w++ ) {
for ( h = 0 ; h < in->height ; h++ ) {
if ( w <= split ) {
f->verts[ h * f->width + w ] = in->verts[ h * in->width + w ];
} else {
b->verts[ h * b->width + w - split + backAprox ] = in->verts[ h * in->width + w ];
}
}
}
// clip the crossing line
for ( h = 0 ; h < in->height ; h++ ) {
dv = &f->verts[ h * f->width + split + 1 ];
v1 = &in->verts[ h * in->width + split ];
v2 = &in->verts[ h * in->width + split + 1 ];
frac = d[h][split] / ( d[h][split] - d[h][split+1] );
for ( i = 0 ; i < 10 ; i++ ) {
dv->xyz[i] = v1->xyz[i] + frac * ( v2->xyz[i] - v1->xyz[i] );
}
dv->xyz[10] = 0;//set all 4 colors to 0
if ( frontAprox ) {
f->verts[ h * f->width + split + 2 ] = *dv;
}
b->verts[ h * b->width ] = *dv;
if ( backAprox ) {
b->verts[ h * b->width + 1 ] = *dv;
}
}
/*
PrintMesh( in );
_printf("\n");
PrintMesh( f );
_printf("\n");
PrintMesh( b );
_printf("\n");
*/
FreeMesh( in );
}
/*
====================
ChopPatchByBrush
====================
*/
qboolean ChopPatchByBrush( mapDrawSurface_t *ds, bspbrush_t *b ) {
int i, j;
side_t *s;
plane_t *plane;
mesh_t *outside[MAX_BRUSH_SIDES];
int numOutside;
mesh_t *m, *front, *back;
mapDrawSurface_t *newds;
m = DrawSurfToMesh( ds );
numOutside = 0;
// only split by the top and bottom planes to avoid
// some messy patch clipping issues
for ( i = 4 ; i <= 5 ; i++ ) {
s = &b->sides[ i ];
plane = &mapplanes[ s->planenum ];
SplitMeshByPlane( m, plane->normal, plane->dist, &front, &back );
if ( !back ) {
// nothing actually contained inside
for ( j = 0 ; j < numOutside ; j++ ) {
FreeMesh( outside[j] );
}
return qfalse;
}
m = back;
if ( front ) {
if ( numOutside == MAX_BRUSH_SIDES ) {
Error( "MAX_BRUSH_SIDES" );
}
outside[ numOutside ] = front;
numOutside++;
}
}
// all of outside fragments become seperate drawsurfs
c_fogPatchFragments += numOutside;
for ( i = 0 ; i < numOutside ; i++ ) {
newds = DrawSurfaceForMesh( outside[ i ] );
newds->shaderInfo = ds->shaderInfo;
FreeMesh( outside[ i ] );
}
// replace ds with m
ds->patchWidth = m->width;
ds->patchHeight = m->height;
ds->numVerts = m->width * m->height;
free( ds->verts );
ds->verts = malloc( ds->numVerts * sizeof( *ds->verts ) );
memcpy( ds->verts, m->verts, ds->numVerts * sizeof( *ds->verts ) );
FreeMesh( m );
return qtrue;
}
//===============================================================================
/*
====================
WindingFromDrawSurf
====================
*/
winding_t *WindingFromDrawSurf( mapDrawSurface_t *ds ) {
winding_t *w;
int i;
w = AllocWinding( ds->numVerts );
w->numpoints = ds->numVerts;
for ( i = 0 ; i < ds->numVerts ; i++ ) {
VectorCopy( ds->verts[i].xyz, w->p[i] );
}
return w;
}
/*
====================
ChopFaceByBrush
There may be a fragment contained in the brush
====================
*/
qboolean ChopFaceByBrush( mapDrawSurface_t *ds, bspbrush_t *b ) {
int i, j;
side_t *s;
plane_t *plane;
winding_t *w;
winding_t *front, *back;
winding_t *outside[MAX_BRUSH_SIDES];
int numOutside;
mapDrawSurface_t *newds;
drawVert_t *dv;
shaderInfo_t *si;
float mins[2];
// brush primitive :
// axis base
vec3_t texX,texY;
vec_t x,y;
w = WindingFromDrawSurf( ds );
numOutside = 0;
for ( i = 0 ; i < b->numsides ; i++ ) {
s = &b->sides[ i ];
if ( s->backSide ) {
continue;
}
plane = &mapplanes[ s->planenum ];
// handle coplanar outfacing (don't fog)
if ( ds->side->planenum == s->planenum ) {
return qfalse;
}
// handle coplanar infacing (keep inside)
if ( ( ds->side->planenum ^ 1 ) == s->planenum ) {
continue;
}
// general case
ClipWindingEpsilon( w, plane->normal, plane->dist, ON_EPSILON,
&front, &back );
FreeWinding( w );
if ( !back ) {
// nothing actually contained inside
for ( j = 0 ; j < numOutside ; j++ ) {
FreeWinding( outside[j] );
}
return qfalse;
}
if ( front ) {
if ( numOutside == MAX_BRUSH_SIDES ) {
Error( "MAX_BRUSH_SIDES" );
}
outside[ numOutside ] = front;
numOutside++;
}
w = back;
}
// all of outside fragments become seperate drawsurfs
// linked to the same side
c_fogFragment += numOutside;
s = ds->side;
for ( i = 0 ; i < numOutside ; i++ ) {
newds = DrawSurfaceForSide( ds->mapBrush, s, outside[i] );
FreeWinding( outside[i] );
}
// replace ds->verts with the verts for w
ds->numVerts = w->numpoints;
free( ds->verts );
ds->verts = malloc( ds->numVerts * sizeof( *ds->verts ) );
memset( ds->verts, 0, ds->numVerts * sizeof( *ds->verts ) );
si = s->shaderInfo;
mins[0] = 9999;
mins[1] = 9999;
// compute s/t coordinates from brush primitive texture matrix
// compute axis base
ComputeAxisBase( mapplanes[s->planenum].normal, texX, texY );
for ( j = 0 ; j < w->numpoints ; j++ ) {
dv = ds->verts + j;
VectorCopy( w->p[j], dv->xyz );
if (g_bBrushPrimit==BPRIMIT_OLDBRUSHES)
{
// calculate texture s/t
dv->st[0] = s->vecs[0][3] + DotProduct( s->vecs[0], dv->xyz );
dv->st[1] = s->vecs[1][3] + DotProduct( s->vecs[1], dv->xyz );
dv->st[0] /= si->width;
dv->st[1] /= si->height;
}
else
{
// calculate texture s/t from brush primitive texture matrix
x = DotProduct( dv->xyz, texX );
y = DotProduct( dv->xyz, texY );
dv->st[0]=s->texMat[0][0]*x+s->texMat[0][1]*y+s->texMat[0][2];
dv->st[1]=s->texMat[1][0]*x+s->texMat[1][1]*y+s->texMat[1][2];
}
if ( dv->st[0] < mins[0] ) {
mins[0] = dv->st[0];
}
if ( dv->st[1] < mins[1] ) {
mins[1] = dv->st[1];
}
// copy normal
VectorCopy ( mapplanes[s->planenum].normal, dv->normal );
}
// adjust the texture coordinates to be as close to 0 as possible
if ( !si->globalTexture ) {
mins[0] = floor( mins[0] );
mins[1] = floor( mins[1] );
for ( i = 0 ; i < w->numpoints ; i++ ) {
dv = ds->verts + i;
dv->st[0] -= mins[0];
dv->st[1] -= mins[1];
}
}
return qtrue;
}
//===============================================================================
/*
=====================
FogDrawSurfs
Call after the surface list has been pruned,
before tjunction fixing
before lightmap allocation
=====================
*/
void FogDrawSurfs( void ) {
int i, j, k;
mapDrawSurface_t *ds;
bspbrush_t *b;
vec3_t mins, maxs;
int c_fogged;
int numBaseDrawSurfs;
dfog_t *fog;
qprintf("----- FogDrawsurfs -----\n");
c_fogged = 0;
c_fogFragment = 0;
// find all fog brushes
for ( b = entities[0].brushes ; b ; b = b->next ) {
if ( !(b->contents & CONTENTS_FOG) ) {
continue;
}
if ( numFogs == MAX_MAP_FOGS ) {
Error( "MAX_MAP_FOGS" );
}
fog = &dfogs[numFogs];
numFogs++;
fog->brushNum = b->outputNumber;
// find a side with a valid shaderInfo
// non-axial fog columns may have bevel planes that need to be skipped
for ( i = 0 ; i < b->numsides ; i++ ) {
if ( b->sides[i].shaderInfo && (b->sides[i].shaderInfo->contents & CONTENTS_FOG) ) {
strcpy( fog->shader, b->sides[i].shaderInfo->shader );
break;
}
}
if ( i == b->numsides ) {
continue; // shouldn't happen
}
fog->visibleSide = -1;
// clip each surface into this, but don't clip any of
// the resulting fragments to the same brush
numBaseDrawSurfs = numMapDrawSurfs;
for ( i = 0 ; i < numBaseDrawSurfs ; i++ ) {
ds = &mapDrawSurfs[i];
// bound the drawsurf
ClearBounds( mins, maxs );
for ( j = 0 ; j < ds->numVerts ; j++ ) {
AddPointToBounds( ds->verts[j].xyz, mins, maxs );
}
// check against the fog brush
for ( k = 0 ; k < 3 ; k++ ) {
if ( mins[k] > b->maxs[k] ) {
break;
}
if ( maxs[k] < b->mins[k] ) {
break;
}
}
if ( k < 3 ) {
continue; // bboxes don't intersect
}
if ( ds->mapBrush == b ) {
int s;
s = ds->side - b->sides;
if ( s <= 6 ) { // not one of the reversed inside faces
// this is a visible fog plane
if ( fog->visibleSide != -1 ) {
_printf( "WARNING: fog brush %i has multiple visible sides\n", b->brushnum );
}
fog->visibleSide = s;
}
}
if ( ds->miscModel ) {
// we could write splitting code for trimodels if we wanted to...
c_fogged++;
ds->fogNum = numFogs - 1;
} else if ( ds->patch ) {
if ( ChopPatchByBrush( ds, b ) ) {
c_fogged++;
ds->fogNum = numFogs - 1;
}
} else {
if ( ChopFaceByBrush( ds, b ) ) {
c_fogged++;
ds->fogNum = numFogs - 1;
}
}
}
}
// split the drawsurfs by the fog brushes
qprintf( "%5i fogs\n", numFogs );
qprintf( "%5i fog polygon fragments\n", c_fogFragment );
qprintf( "%5i fog patch fragments\n", c_fogPatchFragments );
qprintf( "%5i fogged drawsurfs\n", c_fogged );
}