ioef/code/bspc/brushbsp.c
2005-08-28 17:54:51 +00:00

1871 lines
45 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include "qbsp.h"
#include "l_mem.h"
#include "../botlib/aasfile.h"
#include "aas_store.h"
#include "aas_cfg.h"
#include <assert.h>
/*
each side has a count of the other sides it splits
the best split will be the one that minimizes the total split counts
of all remaining sides
precalc side on plane table
evaluate split side
{
cost = 0
for all sides
for all sides
get
if side splits side and splitside is on same child
cost++;
}
*/
int c_nodes;
int c_nonvis;
int c_active_brushes;
int c_solidleafnodes;
int c_totalsides;
int c_brushmemory;
int c_peak_brushmemory;
int c_nodememory;
int c_peak_totalbspmemory;
// if a brush just barely pokes onto the other side,
// let it slide by without chopping
#define PLANESIDE_EPSILON 0.001
//0.1
//#ifdef DEBUG
typedef struct cname_s
{
int value;
char *name;
} cname_t;
cname_t contentnames[] =
{
{CONTENTS_SOLID,"CONTENTS_SOLID"},
{CONTENTS_WINDOW,"CONTENTS_WINDOW"},
{CONTENTS_AUX,"CONTENTS_AUX"},
{CONTENTS_LAVA,"CONTENTS_LAVA"},
{CONTENTS_SLIME,"CONTENTS_SLIME"},
{CONTENTS_WATER,"CONTENTS_WATER"},
{CONTENTS_MIST,"CONTENTS_MIST"},
{LAST_VISIBLE_CONTENTS,"LAST_VISIBLE_CONTENTS"},
{CONTENTS_AREAPORTAL,"CONTENTS_AREAPORTAL"},
{CONTENTS_PLAYERCLIP,"CONTENTS_PLAYERCLIP"},
{CONTENTS_MONSTERCLIP,"CONTENTS_MONSTERCLIP"},
{CONTENTS_CURRENT_0,"CONTENTS_CURRENT_0"},
{CONTENTS_CURRENT_90,"CONTENTS_CURRENT_90"},
{CONTENTS_CURRENT_180,"CONTENTS_CURRENT_180"},
{CONTENTS_CURRENT_270,"CONTENTS_CURRENT_270"},
{CONTENTS_CURRENT_UP,"CONTENTS_CURRENT_UP"},
{CONTENTS_CURRENT_DOWN,"CONTENTS_CURRENT_DOWN"},
{CONTENTS_ORIGIN,"CONTENTS_ORIGIN"},
{CONTENTS_MONSTER,"CONTENTS_MONSTER"},
{CONTENTS_DEADMONSTER,"CONTENTS_DEADMONSTER"},
{CONTENTS_DETAIL,"CONTENTS_DETAIL"},
{CONTENTS_Q2TRANSLUCENT,"CONTENTS_TRANSLUCENT"},
{CONTENTS_LADDER,"CONTENTS_LADDER"},
{0, 0}
};
void PrintContents(int contents)
{
int i;
for (i = 0; contentnames[i].value; i++)
{
if (contents & contentnames[i].value)
{
Log_Write("%s,", contentnames[i].name);
} //end if
} //end for
} //end of the function PrintContents
//#endif DEBUG
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void ResetBrushBSP(void)
{
c_nodes = 0;
c_nonvis = 0;
c_active_brushes = 0;
c_solidleafnodes = 0;
c_totalsides = 0;
c_brushmemory = 0;
c_peak_brushmemory = 0;
c_nodememory = 0;
c_peak_totalbspmemory = 0;
} //end of the function ResetBrushBSP
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void FindBrushInTree (node_t *node, int brushnum)
{
bspbrush_t *b;
if (node->planenum == PLANENUM_LEAF)
{
for (b=node->brushlist ; b ; b=b->next)
if (b->original->brushnum == brushnum)
Log_Print ("here\n");
return;
}
FindBrushInTree(node->children[0], brushnum);
FindBrushInTree(node->children[1], brushnum);
} //end of the function FindBrushInTree
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void DrawBrushList (bspbrush_t *brush, node_t *node)
{
int i;
side_t *s;
GLS_BeginScene ();
for ( ; brush ; brush=brush->next)
{
for (i=0 ; i<brush->numsides ; i++)
{
s = &brush->sides[i];
if (!s->winding)
continue;
if (s->texinfo == TEXINFO_NODE)
GLS_Winding (s->winding, 1);
else if (!(s->flags & SFL_VISIBLE))
GLS_Winding (s->winding, 2);
else
GLS_Winding (s->winding, 0);
}
}
GLS_EndScene ();
} //end of the function DrawBrushList
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void WriteBrushList (char *name, bspbrush_t *brush, qboolean onlyvis)
{
int i;
side_t *s;
FILE *f;
qprintf ("writing %s\n", name);
f = SafeOpenWrite (name);
for ( ; brush ; brush=brush->next)
{
for (i=0 ; i<brush->numsides ; i++)
{
s = &brush->sides[i];
if (!s->winding)
continue;
if (onlyvis && !(s->flags & SFL_VISIBLE))
continue;
OutputWinding (brush->sides[i].winding, f);
}
}
fclose (f);
} //end of the function WriteBrushList
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void PrintBrush (bspbrush_t *brush)
{
int i;
printf ("brush: %p\n", brush);
for (i=0;i<brush->numsides ; i++)
{
pw(brush->sides[i].winding);
printf ("\n");
} //end for
} //end of the function PrintBrush
//===========================================================================
// Sets the mins/maxs based on the windings
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void BoundBrush (bspbrush_t *brush)
{
int i, j;
winding_t *w;
ClearBounds (brush->mins, brush->maxs);
for (i=0 ; i<brush->numsides ; i++)
{
w = brush->sides[i].winding;
if (!w)
continue;
for (j=0 ; j<w->numpoints ; j++)
AddPointToBounds (w->p[j], brush->mins, brush->maxs);
}
} //end of the function BoundBrush
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void CreateBrushWindings (bspbrush_t *brush)
{
int i, j;
winding_t *w;
side_t *side;
plane_t *plane;
for (i=0 ; i<brush->numsides ; i++)
{
side = &brush->sides[i];
plane = &mapplanes[side->planenum];
w = BaseWindingForPlane (plane->normal, plane->dist);
for (j=0 ; j<brush->numsides && w; j++)
{
if (i == j)
continue;
if (brush->sides[j].flags & SFL_BEVEL)
continue;
plane = &mapplanes[brush->sides[j].planenum^1];
ChopWindingInPlace (&w, plane->normal, plane->dist, 0); //CLIP_EPSILON);
}
side->winding = w;
}
BoundBrush (brush);
} //end of the function CreateBrushWindings
//===========================================================================
// Creates a new axial brush
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
bspbrush_t *BrushFromBounds (vec3_t mins, vec3_t maxs)
{
bspbrush_t *b;
int i;
vec3_t normal;
vec_t dist;
b = AllocBrush (6);
b->numsides = 6;
for (i=0 ; i<3 ; i++)
{
VectorClear (normal);
normal[i] = 1;
dist = maxs[i];
b->sides[i].planenum = FindFloatPlane (normal, dist);
normal[i] = -1;
dist = -mins[i];
b->sides[3+i].planenum = FindFloatPlane (normal, dist);
}
CreateBrushWindings (b);
return b;
} //end of the function BrushFromBounds
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
int BrushOutOfBounds(bspbrush_t *brush, vec3_t mins, vec3_t maxs, float epsilon)
{
int i, j, n;
winding_t *w;
side_t *side;
for (i = 0; i < brush->numsides; i++)
{
side = &brush->sides[i];
w = side->winding;
for (j = 0; j < w->numpoints; j++)
{
for (n = 0; n < 3; n++)
{
if (w->p[j][n] < (mins[n] + epsilon) || w->p[j][n] > (maxs[n] - epsilon)) return true;
} //end for
} //end for
} //end for
return false;
} //end of the function BrushOutOfBounds
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
vec_t BrushVolume (bspbrush_t *brush)
{
int i;
winding_t *w;
vec3_t corner;
vec_t d, area, volume;
plane_t *plane;
if (!brush) return 0;
// grab the first valid point as the corner
w = NULL;
for (i = 0; i < brush->numsides; i++)
{
w = brush->sides[i].winding;
if (w) break;
} //end for
if (!w) return 0;
VectorCopy (w->p[0], corner);
// make tetrahedrons to all other faces
volume = 0;
for ( ; i < brush->numsides; i++)
{
w = brush->sides[i].winding;
if (!w) continue;
plane = &mapplanes[brush->sides[i].planenum];
d = -(DotProduct (corner, plane->normal) - plane->dist);
area = WindingArea(w);
volume += d * area;
} //end for
volume /= 3;
return volume;
} //end of the function BrushVolume
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
int CountBrushList (bspbrush_t *brushes)
{
int c;
c = 0;
for ( ; brushes; brushes = brushes->next) c++;
return c;
} //end of the function CountBrushList
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
node_t *AllocNode (void)
{
node_t *node;
node = GetMemory(sizeof(*node));
memset (node, 0, sizeof(*node));
if (numthreads == 1)
{
c_nodememory += MemorySize(node);
} //end if
return node;
} //end of the function AllocNode
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
bspbrush_t *AllocBrush (int numsides)
{
bspbrush_t *bb;
int c;
c = (int)&(((bspbrush_t *)0)->sides[numsides]);
bb = GetMemory(c);
memset (bb, 0, c);
if (numthreads == 1)
{
c_active_brushes++;
c_brushmemory += MemorySize(bb);
if (c_brushmemory > c_peak_brushmemory)
c_peak_brushmemory = c_brushmemory;
} //end if
return bb;
} //end of the function AllocBrush
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void FreeBrush (bspbrush_t *brushes)
{
int i;
for (i=0 ; i<brushes->numsides ; i++)
if (brushes->sides[i].winding)
FreeWinding(brushes->sides[i].winding);
if (numthreads == 1)
{
c_active_brushes--;
c_brushmemory -= MemorySize(brushes);
if (c_brushmemory < 0) c_brushmemory = 0;
} //end if
FreeMemory(brushes);
} //end of the function FreeBrush
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void FreeBrushList (bspbrush_t *brushes)
{
bspbrush_t *next;
for ( ; brushes; brushes = next)
{
next = brushes->next;
FreeBrush(brushes);
} //end for
} //end of the function FreeBrushList
//===========================================================================
// Duplicates the brush, the sides, and the windings
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
bspbrush_t *CopyBrush (bspbrush_t *brush)
{
bspbrush_t *newbrush;
int size;
int i;
size = (int)&(((bspbrush_t *)0)->sides[brush->numsides]);
newbrush = AllocBrush (brush->numsides);
memcpy (newbrush, brush, size);
for (i=0 ; i<brush->numsides ; i++)
{
if (brush->sides[i].winding)
newbrush->sides[i].winding = CopyWinding (brush->sides[i].winding);
}
return newbrush;
} //end of the function CopyBrush
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
node_t *PointInLeaf (node_t *node, vec3_t point)
{
vec_t d;
plane_t *plane;
while (node->planenum != PLANENUM_LEAF)
{
plane = &mapplanes[node->planenum];
d = DotProduct (point, plane->normal) - plane->dist;
if (d > 0)
node = node->children[0];
else
node = node->children[1];
}
return node;
} //end of the function PointInLeaf
//===========================================================================
// Returns PSIDE_FRONT, PSIDE_BACK, or PSIDE_BOTH
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
#if 0
int BoxOnPlaneSide (vec3_t mins, vec3_t maxs, plane_t *plane)
{
int side;
int i;
vec3_t corners[2];
vec_t dist1, dist2;
// axial planes are easy
if (plane->type < 3)
{
side = 0;
if (maxs[plane->type] > plane->dist+PLANESIDE_EPSILON)
side |= PSIDE_FRONT;
if (mins[plane->type] < plane->dist-PLANESIDE_EPSILON)
side |= PSIDE_BACK;
return side;
}
// create the proper leading and trailing verts for the box
for (i=0 ; i<3 ; i++)
{
if (plane->normal[i] < 0)
{
corners[0][i] = mins[i];
corners[1][i] = maxs[i];
}
else
{
corners[1][i] = mins[i];
corners[0][i] = maxs[i];
}
}
dist1 = DotProduct (plane->normal, corners[0]) - plane->dist;
dist2 = DotProduct (plane->normal, corners[1]) - plane->dist;
side = 0;
if (dist1 >= PLANESIDE_EPSILON)
side = PSIDE_FRONT;
if (dist2 < PLANESIDE_EPSILON)
side |= PSIDE_BACK;
return side;
}
#else
int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, plane_t *p)
{
float dist1, dist2;
int sides;
// axial planes are easy
if (p->type < 3)
{
sides = 0;
if (emaxs[p->type] > p->dist+PLANESIDE_EPSILON) sides |= PSIDE_FRONT;
if (emins[p->type] < p->dist-PLANESIDE_EPSILON) sides |= PSIDE_BACK;
return sides;
} //end if
// general case
switch (p->signbits)
{
case 0:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 1:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 2:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 3:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 4:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 5:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 6:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
case 7:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
default:
dist1 = dist2 = 0; // shut up compiler
// assert( 0 );
break;
}
sides = 0;
if (dist1 - p->dist >= PLANESIDE_EPSILON) sides = PSIDE_FRONT;
if (dist2 - p->dist < PLANESIDE_EPSILON) sides |= PSIDE_BACK;
// assert(sides != 0);
return sides;
}
#endif
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
int QuickTestBrushToPlanenum (bspbrush_t *brush, int planenum, int *numsplits)
{
int i, num;
plane_t *plane;
int s;
*numsplits = 0;
plane = &mapplanes[planenum];
#ifdef ME
//fast axial cases
if (plane->type < 3)
{
if (plane->dist + PLANESIDE_EPSILON < brush->mins[plane->type])
return PSIDE_FRONT;
if (plane->dist - PLANESIDE_EPSILON > brush->maxs[plane->type])
return PSIDE_BACK;
} //end if
#endif //ME*/
// if the brush actually uses the planenum,
// we can tell the side for sure
for (i = 0; i < brush->numsides; i++)
{
num = brush->sides[i].planenum;
if (num >= MAX_MAPFILE_PLANES)
Error ("bad planenum");
if (num == planenum)
return PSIDE_BACK|PSIDE_FACING;
if (num == (planenum ^ 1) )
return PSIDE_FRONT|PSIDE_FACING;
}
// box on plane side
s = BoxOnPlaneSide (brush->mins, brush->maxs, plane);
// if both sides, count the visible faces split
if (s == PSIDE_BOTH)
{
*numsplits += 3;
}
return s;
} //end of the function QuickTestBrushToPlanenum
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
int TestBrushToPlanenum (bspbrush_t *brush, int planenum,
int *numsplits, qboolean *hintsplit, int *epsilonbrush)
{
int i, j, num;
plane_t *plane;
int s = 0;
winding_t *w;
vec_t d, d_front, d_back;
int front, back;
int type;
float dist;
*numsplits = 0;
*hintsplit = false;
plane = &mapplanes[planenum];
#ifdef ME
//fast axial cases
type = plane->type;
if (type < 3)
{
dist = plane->dist;
if (dist + PLANESIDE_EPSILON < brush->mins[type]) return PSIDE_FRONT;
if (dist - PLANESIDE_EPSILON > brush->maxs[type]) return PSIDE_BACK;
if (brush->mins[type] < dist - PLANESIDE_EPSILON &&
brush->maxs[type] > dist + PLANESIDE_EPSILON) s = PSIDE_BOTH;
} //end if
if (s != PSIDE_BOTH)
#endif //ME
{
// if the brush actually uses the planenum,
// we can tell the side for sure
for (i = 0; i < brush->numsides; i++)
{
num = brush->sides[i].planenum;
if (num >= MAX_MAPFILE_PLANES) Error ("bad planenum");
if (num == planenum)
{
//we don't need to test this side plane again
brush->sides[i].flags |= SFL_TESTED;
return PSIDE_BACK|PSIDE_FACING;
} //end if
if (num == (planenum ^ 1) )
{
//we don't need to test this side plane again
brush->sides[i].flags |= SFL_TESTED;
return PSIDE_FRONT|PSIDE_FACING;
} //end if
} //end for
// box on plane side
s = BoxOnPlaneSide (brush->mins, brush->maxs, plane);
if (s != PSIDE_BOTH) return s;
} //end if
// if both sides, count the visible faces split
d_front = d_back = 0;
for (i = 0; i < brush->numsides; i++)
{
if (brush->sides[i].texinfo == TEXINFO_NODE)
continue; // on node, don't worry about splits
if (!(brush->sides[i].flags & SFL_VISIBLE))
continue; // we don't care about non-visible
w = brush->sides[i].winding;
if (!w) continue;
front = back = 0;
for (j = 0; j < w->numpoints; j++)
{
d = DotProduct(w->p[j], plane->normal) - plane->dist;
if (d > d_front) d_front = d;
if (d < d_back) d_back = d;
if (d > 0.1) // PLANESIDE_EPSILON)
front = 1;
if (d < -0.1) // PLANESIDE_EPSILON)
back = 1;
} //end for
if (front && back)
{
if ( !(brush->sides[i].surf & SURF_SKIP) )
{
(*numsplits)++;
if (brush->sides[i].surf & SURF_HINT)
{
*hintsplit = true;
} //end if
} //end if
} //end if
} //end for
if ( (d_front > 0.0 && d_front < 1.0)
|| (d_back < 0.0 && d_back > -1.0) )
(*epsilonbrush)++;
#if 0
if (*numsplits == 0)
{ // didn't really need to be split
if (front) s = PSIDE_FRONT;
else if (back) s = PSIDE_BACK;
else s = 0;
}
#endif
return s;
} //end of the function TestBrushToPlanenum
//===========================================================================
// Returns true if the winding would be crunched out of
// existance by the vertex snapping.
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
#define EDGE_LENGTH 0.2
qboolean WindingIsTiny (winding_t *w)
{
#if 0
if (WindingArea (w) < 1)
return true;
return false;
#else
int i, j;
vec_t len;
vec3_t delta;
int edges;
edges = 0;
for (i=0 ; i<w->numpoints ; i++)
{
j = i == w->numpoints - 1 ? 0 : i+1;
VectorSubtract (w->p[j], w->p[i], delta);
len = VectorLength (delta);
if (len > EDGE_LENGTH)
{
if (++edges == 3)
return false;
}
}
return true;
#endif
} //end of the function WindingIsTiny
//===========================================================================
// Returns true if the winding still has one of the points
// from basewinding for plane
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
qboolean WindingIsHuge (winding_t *w)
{
int i, j;
for (i=0 ; i<w->numpoints ; i++)
{
for (j=0 ; j<3 ; j++)
if (w->p[i][j] < -BOGUS_RANGE+1 || w->p[i][j] > BOGUS_RANGE-1)
return true;
}
return false;
} //end of the function WindingIsHuge
//===========================================================================
// creates a leaf out of the given nodes with the given brushes
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void LeafNode(node_t *node, bspbrush_t *brushes)
{
bspbrush_t *b;
int i;
node->side = NULL;
node->planenum = PLANENUM_LEAF;
node->contents = 0;
for (b = brushes; b; b = b->next)
{
// if the brush is solid and all of its sides are on nodes,
// it eats everything
if (b->original->contents & CONTENTS_SOLID)
{
for (i=0 ; i<b->numsides ; i++)
if (b->sides[i].texinfo != TEXINFO_NODE)
break;
if (i == b->numsides)
{
node->contents = CONTENTS_SOLID;
break;
} //end if
} //end if
node->contents |= b->original->contents;
} //end for
if (create_aas)
{
node->expansionbboxes = 0;
node->contents = 0;
for (b = brushes; b; b = b->next)
{
node->expansionbboxes |= b->original->expansionbbox;
node->contents |= b->original->contents;
if (b->original->modelnum)
node->modelnum = b->original->modelnum;
} //end for
if (node->contents & CONTENTS_SOLID)
{
if (node->expansionbboxes != cfg.allpresencetypes)
{
node->contents &= ~CONTENTS_SOLID;
} //end if
} //end if
} //end if
node->brushlist = brushes;
} //end of the function LeafNode
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void CheckPlaneAgainstParents (int pnum, node_t *node)
{
node_t *p;
for (p = node->parent; p; p = p->parent)
{
if (p->planenum == pnum) Error("Tried parent");
} //end for
} //end of the function CheckPlaneAgainstParants
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
qboolean CheckPlaneAgainstVolume (int pnum, node_t *node)
{
bspbrush_t *front, *back;
qboolean good;
SplitBrush (node->volume, pnum, &front, &back);
good = (front && back);
if (front) FreeBrush (front);
if (back) FreeBrush (back);
return good;
} //end of the function CheckPlaneAgaintsVolume
//===========================================================================
// Using a hueristic, choses one of the sides out of the brushlist
// to partition the brushes with.
// Returns NULL if there are no valid planes to split with..
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
side_t *SelectSplitSide (bspbrush_t *brushes, node_t *node)
{
int value, bestvalue;
bspbrush_t *brush, *test;
side_t *side, *bestside;
int i, pass, numpasses;
int pnum;
int s;
int front, back, both, facing, splits;
int bsplits;
int bestsplits;
int epsilonbrush;
qboolean hintsplit = false;
bestside = NULL;
bestvalue = -99999;
bestsplits = 0;
// the search order goes: visible-structural, visible-detail,
// nonvisible-structural, nonvisible-detail.
// If any valid plane is available in a pass, no further
// passes will be tried.
numpasses = 2;
for (pass = 0; pass < numpasses; pass++)
{
for (brush = brushes; brush; brush = brush->next)
{
// only check detail the second pass
// if ( (pass & 1) && !(brush->original->contents & CONTENTS_DETAIL) )
// continue;
// if ( !(pass & 1) && (brush->original->contents & CONTENTS_DETAIL) )
// continue;
for (i = 0; i < brush->numsides; i++)
{
side = brush->sides + i;
// if (side->flags & SFL_BEVEL)
// continue; // never use a bevel as a spliter
if (!side->winding)
continue; // nothing visible, so it can't split
if (side->texinfo == TEXINFO_NODE)
continue; // allready a node splitter
if (side->flags & SFL_TESTED)
continue; // we allready have metrics for this plane
// if (side->surf & SURF_SKIP)
// continue; // skip surfaces are never chosen
// if (!(side->flags & SFL_VISIBLE) && (pass < 2))
// continue; // only check visible faces on first pass
if ((side->flags & SFL_CURVE) && (pass < 1))
continue; // only check curves the second pass
pnum = side->planenum;
pnum &= ~1; // allways use positive facing plane
CheckPlaneAgainstParents (pnum, node);
if (!CheckPlaneAgainstVolume (pnum, node))
continue; // would produce a tiny volume
front = 0;
back = 0;
both = 0;
facing = 0;
splits = 0;
epsilonbrush = 0;
//inner loop: optimize
for (test = brushes; test; test = test->next)
{
s = TestBrushToPlanenum (test, pnum, &bsplits, &hintsplit, &epsilonbrush);
splits += bsplits;
// if (bsplits && (s&PSIDE_FACING) )
// Error ("PSIDE_FACING with splits");
test->testside = s;
//
if (s & PSIDE_FACING) facing++;
if (s & PSIDE_FRONT) front++;
if (s & PSIDE_BACK) back++;
if (s == PSIDE_BOTH) both++;
} //end for
// give a value estimate for using this plane
value = 5*facing - 5*splits - abs(front-back);
// value = -5*splits;
// value = 5*facing - 5*splits;
if (mapplanes[pnum].type < 3)
value+=5; // axial is better
value -= epsilonbrush * 1000; // avoid!
// never split a hint side except with another hint
if (hintsplit && !(side->surf & SURF_HINT) )
value = -9999999;
// save off the side test so we don't need
// to recalculate it when we actually seperate
// the brushes
if (value > bestvalue)
{
bestvalue = value;
bestside = side;
bestsplits = splits;
for (test = brushes; test ; test = test->next)
test->side = test->testside;
} //end if
} //end for
} //end for (brush = brushes;
// if we found a good plane, don't bother trying any
// other passes
if (bestside)
{
if (pass > 1)
{
if (numthreads == 1) c_nonvis++;
}
if (pass > 0) node->detail_seperator = true; // not needed for vis
break;
} //end if
} //end for (pass = 0;
//
// clear all the tested flags we set
//
for (brush = brushes ; brush ; brush=brush->next)
{
for (i = 0; i < brush->numsides; i++)
{
brush->sides[i].flags &= ~SFL_TESTED;
} //end for
} //end for
return bestside;
} //end of the function SelectSplitSide
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
int BrushMostlyOnSide (bspbrush_t *brush, plane_t *plane)
{
int i, j;
winding_t *w;
vec_t d, max;
int side;
max = 0;
side = PSIDE_FRONT;
for (i=0 ; i<brush->numsides ; i++)
{
w = brush->sides[i].winding;
if (!w)
continue;
for (j=0 ; j<w->numpoints ; j++)
{
d = DotProduct (w->p[j], plane->normal) - plane->dist;
if (d > max)
{
max = d;
side = PSIDE_FRONT;
}
if (-d > max)
{
max = -d;
side = PSIDE_BACK;
}
}
}
return side;
} //end of the function BrushMostlyOnSide
//===========================================================================
// Generates two new brushes, leaving the original
// unchanged
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void SplitBrush (bspbrush_t *brush, int planenum,
bspbrush_t **front, bspbrush_t **back)
{
bspbrush_t *b[2];
int i, j;
winding_t *w, *cw[2], *midwinding;
plane_t *plane, *plane2;
side_t *s, *cs;
float d, d_front, d_back;
*front = *back = NULL;
plane = &mapplanes[planenum];
// check all points
d_front = d_back = 0;
for (i=0 ; i<brush->numsides ; i++)
{
w = brush->sides[i].winding;
if (!w)
continue;
for (j=0 ; j<w->numpoints ; j++)
{
d = DotProduct (w->p[j], plane->normal) - plane->dist;
if (d > 0 && d > d_front)
d_front = d;
if (d < 0 && d < d_back)
d_back = d;
}
}
if (d_front < 0.2) // PLANESIDE_EPSILON)
{ // only on back
*back = CopyBrush (brush);
return;
}
if (d_back > -0.2) // PLANESIDE_EPSILON)
{ // only on front
*front = CopyBrush (brush);
return;
}
// create a new winding from the split plane
w = BaseWindingForPlane (plane->normal, plane->dist);
for (i=0 ; i<brush->numsides && w ; i++)
{
plane2 = &mapplanes[brush->sides[i].planenum ^ 1];
ChopWindingInPlace (&w, plane2->normal, plane2->dist, 0); // PLANESIDE_EPSILON);
}
if (!w || WindingIsTiny(w))
{ // the brush isn't really split
int side;
side = BrushMostlyOnSide (brush, plane);
if (side == PSIDE_FRONT)
*front = CopyBrush (brush);
if (side == PSIDE_BACK)
*back = CopyBrush (brush);
//free a possible winding
if (w) FreeWinding(w);
return;
}
if (WindingIsHuge (w))
{
Log_Write("WARNING: huge winding\n");
}
midwinding = w;
// split it for real
for (i=0 ; i<2 ; i++)
{
b[i] = AllocBrush (brush->numsides+1);
b[i]->original = brush->original;
}
// split all the current windings
for (i=0 ; i<brush->numsides ; i++)
{
s = &brush->sides[i];
w = s->winding;
if (!w)
continue;
ClipWindingEpsilon (w, plane->normal, plane->dist,
0 /*PLANESIDE_EPSILON*/, &cw[0], &cw[1]);
for (j=0 ; j<2 ; j++)
{
if (!cw[j])
continue;
#if 0
if (WindingIsTiny (cw[j]))
{
FreeWinding (cw[j]);
continue;
}
#endif
cs = &b[j]->sides[b[j]->numsides];
b[j]->numsides++;
*cs = *s;
// cs->planenum = s->planenum;
// cs->texinfo = s->texinfo;
// cs->original = s->original;
cs->winding = cw[j];
cs->flags &= ~SFL_TESTED;
}
}
// see if we have valid polygons on both sides
for (i=0 ; i<2 ; i++)
{
BoundBrush (b[i]);
for (j=0 ; j<3 ; j++)
{
if (b[i]->mins[j] < -MAX_MAP_BOUNDS || b[i]->maxs[j] > MAX_MAP_BOUNDS)
{
Log_Write("bogus brush after clip");
break;
}
}
if (b[i]->numsides < 3 || j < 3)
{
FreeBrush (b[i]);
b[i] = NULL;
}
}
if ( !(b[0] && b[1]) )
{
if (!b[0] && !b[1])
Log_Write("split removed brush\r\n");
else
Log_Write("split not on both sides\r\n");
if (b[0])
{
FreeBrush (b[0]);
*front = CopyBrush (brush);
}
if (b[1])
{
FreeBrush (b[1]);
*back = CopyBrush (brush);
}
return;
}
// add the midwinding to both sides
for (i=0 ; i<2 ; i++)
{
cs = &b[i]->sides[b[i]->numsides];
b[i]->numsides++;
cs->planenum = planenum^i^1;
cs->texinfo = TEXINFO_NODE; //never use these sides as splitters
cs->flags &= ~SFL_VISIBLE;
cs->flags &= ~SFL_TESTED;
if (i==0)
cs->winding = CopyWinding (midwinding);
else
cs->winding = midwinding;
}
{
vec_t v1;
int i;
for (i = 0; i < 2; i++)
{
v1 = BrushVolume (b[i]);
if (v1 < 1.0)
{
FreeBrush(b[i]);
b[i] = NULL;
//Log_Write("tiny volume after clip");
}
}
if (!b[0] && !b[1])
{
Log_Write("two tiny brushes\r\n");
} //end if
}
*front = b[0];
*back = b[1];
} //end of the function SplitBrush
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void SplitBrushList (bspbrush_t *brushes,
node_t *node, bspbrush_t **front, bspbrush_t **back)
{
bspbrush_t *brush, *newbrush, *newbrush2;
side_t *side;
int sides;
int i;
*front = *back = NULL;
for (brush = brushes; brush; brush = brush->next)
{
sides = brush->side;
if (sides == PSIDE_BOTH)
{ // split into two brushes
SplitBrush (brush, node->planenum, &newbrush, &newbrush2);
if (newbrush)
{
newbrush->next = *front;
*front = newbrush;
} //end if
if (newbrush2)
{
newbrush2->next = *back;
*back = newbrush2;
} //end if
continue;
} //end if
newbrush = CopyBrush (brush);
// if the planenum is actualy a part of the brush
// find the plane and flag it as used so it won't be tried
// as a splitter again
if (sides & PSIDE_FACING)
{
for (i=0 ; i<newbrush->numsides ; i++)
{
side = newbrush->sides + i;
if ( (side->planenum& ~1) == node->planenum)
side->texinfo = TEXINFO_NODE;
} //end for
} //end if
if (sides & PSIDE_FRONT)
{
newbrush->next = *front;
*front = newbrush;
continue;
} //end if
if (sides & PSIDE_BACK)
{
newbrush->next = *back;
*back = newbrush;
continue;
} //end if
} //end for
} //end of the function SplitBrushList
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void CheckBrushLists(bspbrush_t *brushlist1, bspbrush_t *brushlist2)
{
bspbrush_t *brush1, *brush2;
for (brush1 = brushlist1; brush1; brush1 = brush1->next)
{
for (brush2 = brushlist2; brush2; brush2 = brush2->next)
{
assert(brush1 != brush2);
} //end for
} //end for
} //end of the function CheckBrushLists
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
int numrecurse = 0;
node_t *BuildTree_r (node_t *node, bspbrush_t *brushes)
{
node_t *newnode;
side_t *bestside;
int i, totalmem;
bspbrush_t *children[2];
qprintf("\r%6d", numrecurse);
numrecurse++;
if (numthreads == 1)
{
totalmem = WindingMemory() + c_nodememory + c_brushmemory;
if (totalmem > c_peak_totalbspmemory)
c_peak_totalbspmemory = totalmem;
c_nodes++;
} //endif
if (drawflag)
DrawBrushList(brushes, node);
// find the best plane to use as a splitter
bestside = SelectSplitSide (brushes, node);
if (!bestside)
{
// leaf node
node->side = NULL;
node->planenum = -1;
LeafNode(node, brushes);
if (node->contents & CONTENTS_SOLID) c_solidleafnodes++;
if (create_aas)
{
//free up memory!!!
FreeBrushList(node->brushlist);
node->brushlist = NULL;
//free the node volume brush
if (node->volume)
{
FreeBrush(node->volume);
node->volume = NULL;
} //end if
} //end if
return node;
} //end if
// this is a splitplane node
node->side = bestside;
node->planenum = bestside->planenum & ~1; // always use front facing
//split the brush list in two for both children
SplitBrushList (brushes, node, &children[0], &children[1]);
//free the old brush list
FreeBrushList (brushes);
// allocate children before recursing
for (i = 0; i < 2; i++)
{
newnode = AllocNode ();
newnode->parent = node;
node->children[i] = newnode;
} //end for
//split the volume brush of the node for the children
SplitBrush (node->volume, node->planenum, &node->children[0]->volume,
&node->children[1]->volume);
if (create_aas)
{
//free the volume brush
if (node->volume)
{
FreeBrush(node->volume);
node->volume = NULL;
} //end if
} //end if
// recursively process children
for (i = 0; i < 2; i++)
{
node->children[i] = BuildTree_r(node->children[i], children[i]);
} //end for
return node;
} //end of the function BuildTree_r
//===========================================================================
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
node_t *firstnode; //first node in the list
node_t *lastnode; //last node in the list
int nodelistsize; //number of nodes in the list
int use_nodequeue = 0; //use nodequeue, otherwise a node stack is used
int numwaiting = 0;
void (*AddNodeToList)(node_t *node);
//add the node to the front of the node list
//(effectively using a node stack)
void AddNodeToStack(node_t *node)
{
ThreadLock();
node->next = firstnode;
firstnode = node;
if (!lastnode) lastnode = node;
nodelistsize++;
ThreadUnlock();
//
ThreadSemaphoreIncrease(1);
} //end of the function AddNodeToStack
//add the node to the end of the node list
//(effectively using a node queue)
void AddNodeToQueue(node_t *node)
{
ThreadLock();
node->next = NULL;
if (lastnode) lastnode->next = node;
else firstnode = node;
lastnode = node;
nodelistsize++;
ThreadUnlock();
//
ThreadSemaphoreIncrease(1);
} //end of the function AddNodeToQueue
//get the first node from the front of the node list
node_t *NextNodeFromList(void)
{
node_t *node;
ThreadLock();
numwaiting++;
if (!firstnode)
{
if (numwaiting >= GetNumThreads()) ThreadSemaphoreIncrease(GetNumThreads());
} //end if
ThreadUnlock();
ThreadSemaphoreWait();
ThreadLock();
numwaiting--;
node = firstnode;
if (firstnode)
{
firstnode = firstnode->next;
nodelistsize--;
} //end if
if (!firstnode) lastnode = NULL;
ThreadUnlock();
return node;
} //end of the function NextNodeFromList
//returns the size of the node list
int NodeListSize(void)
{
int size;
ThreadLock();
size = nodelistsize;
ThreadUnlock();
return size;
} //end of the function NodeListSize
//
void IncreaseNodeCounter(void)
{
ThreadLock();
//if (verbose) printf("\r%6d", numrecurse++);
qprintf("\r%6d", numrecurse++);
//qprintf("\r%6d %d, %5d ", numrecurse++, GetNumThreads(), nodelistsize);
ThreadUnlock();
} //end of the function IncreaseNodeCounter
//thread function, gets nodes from the nodelist and processes them
void BuildTreeThread(int threadid)
{
node_t *newnode, *node;
side_t *bestside;
int i, totalmem;
bspbrush_t *brushes;
for (node = NextNodeFromList(); node; )
{
//if the nodelist isn't empty try to add another thread
//if (NodeListSize() > 10) AddThread(BuildTreeThread);
//display the number of nodes processed so far
if (numthreads == 1)
IncreaseNodeCounter();
brushes = node->brushlist;
if (numthreads == 1)
{
totalmem = WindingMemory() + c_nodememory + c_brushmemory;
if (totalmem > c_peak_totalbspmemory)
{
c_peak_totalbspmemory = totalmem;
} //end if
c_nodes++;
} //endif
if (drawflag)
{
DrawBrushList(brushes, node);
} //end if
if (cancelconversion)
{
bestside = NULL;
} //end if
else
{
// find the best plane to use as a splitter
bestside = SelectSplitSide(brushes, node);
} //end else
//if there's no split side left
if (!bestside)
{
//create a leaf out of the node
LeafNode(node, brushes);
if (node->contents & CONTENTS_SOLID) c_solidleafnodes++;
if (create_aas)
{
//free up memory!!!
FreeBrushList(node->brushlist);
node->brushlist = NULL;
} //end if
//free the node volume brush (it is not used anymore)
if (node->volume)
{
FreeBrush(node->volume);
node->volume = NULL;
} //end if
node = NextNodeFromList();
continue;
} //end if
// this is a splitplane node
node->side = bestside;
node->planenum = bestside->planenum & ~1; //always use front facing
//allocate children
for (i = 0; i < 2; i++)
{
newnode = AllocNode();
newnode->parent = node;
node->children[i] = newnode;
} //end for
//split the brush list in two for both children
SplitBrushList(brushes, node, &node->children[0]->brushlist, &node->children[1]->brushlist);
CheckBrushLists(node->children[0]->brushlist, node->children[1]->brushlist);
//free the old brush list
FreeBrushList(brushes);
node->brushlist = NULL;
//split the volume brush of the node for the children
SplitBrush(node->volume, node->planenum, &node->children[0]->volume,
&node->children[1]->volume);
if (!node->children[0]->volume || !node->children[1]->volume)
{
Error("child without volume brush");
} //end if
//free the volume brush
if (node->volume)
{
FreeBrush(node->volume);
node->volume = NULL;
} //end if
//add both children to the node list
//AddNodeToList(node->children[0]);
AddNodeToList(node->children[1]);
node = node->children[0];
} //end while
RemoveThread(threadid);
} //end of the function BuildTreeThread
//===========================================================================
// build the bsp tree using a node list
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
void BuildTree(tree_t *tree)
{
int i;
firstnode = NULL;
lastnode = NULL;
//use a node queue or node stack
if (use_nodequeue) AddNodeToList = AddNodeToQueue;
else AddNodeToList = AddNodeToStack;
//setup thread locking
ThreadSetupLock();
ThreadSetupSemaphore();
numwaiting = 0;
//
Log_Print("%6d threads max\n", numthreads);
if (use_nodequeue) Log_Print("breadth first bsp building\n");
else Log_Print("depth first bsp building\n");
qprintf("%6d splits", 0);
//add the first node to the list
AddNodeToList(tree->headnode);
//start the threads
for (i = 0; i < numthreads; i++)
AddThread(BuildTreeThread);
//wait for all added threads to be finished
WaitForAllThreadsFinished();
//shutdown the thread locking
ThreadShutdownLock();
ThreadShutdownSemaphore();
} //end of the function BuildTree
//===========================================================================
// The incoming brush list will be freed before exiting
//
// Parameter: -
// Returns: -
// Changes Globals: -
//===========================================================================
tree_t *BrushBSP(bspbrush_t *brushlist, vec3_t mins, vec3_t maxs)
{
int i, c_faces, c_nonvisfaces, c_brushes;
bspbrush_t *b;
node_t *node;
tree_t *tree;
vec_t volume;
// vec3_t point;
Log_Print("-------- Brush BSP ---------\n");
tree = Tree_Alloc();
c_faces = 0;
c_nonvisfaces = 0;
c_brushes = 0;
c_totalsides = 0;
for (b = brushlist; b; b = b->next)
{
c_brushes++;
volume = BrushVolume(b);
if (volume < microvolume)
{
Log_Print("WARNING: entity %i, brush %i: microbrush\n",
b->original->entitynum, b->original->brushnum);
} //end if
for (i=0 ; i<b->numsides ; i++)
{
if (b->sides[i].flags & SFL_BEVEL)
continue;
if (!b->sides[i].winding)
continue;
if (b->sides[i].texinfo == TEXINFO_NODE)
continue;
if (b->sides[i].flags & SFL_VISIBLE)
{
c_faces++;
} //end if
else
{
c_nonvisfaces++;
//if (create_aas) b->sides[i].texinfo = TEXINFO_NODE;
} //end if
} //end for
c_totalsides += b->numsides;
AddPointToBounds (b->mins, tree->mins, tree->maxs);
AddPointToBounds (b->maxs, tree->mins, tree->maxs);
} //end for
Log_Print("%6i brushes\n", c_brushes);
Log_Print("%6i visible faces\n", c_faces);
Log_Print("%6i nonvisible faces\n", c_nonvisfaces);
Log_Print("%6i total sides\n", c_totalsides);
c_active_brushes = c_brushes;
c_nodememory = 0;
c_brushmemory = 0;
c_peak_brushmemory = 0;
c_nodes = 0;
c_nonvis = 0;
node = AllocNode ();
//volume of first node (head node)
node->volume = BrushFromBounds (mins, maxs);
//
tree->headnode = node;
//just get some statistics and the mins/maxs of the node
numrecurse = 0;
// qprintf("%6d splits", numrecurse);
tree->headnode->brushlist = brushlist;
BuildTree(tree);
//build the bsp tree with the start node from the brushlist
// node = BuildTree_r(node, brushlist);
//if the conversion is cancelled
if (cancelconversion) return tree;
qprintf("\n");
Log_Write("%6d splits\r\n", numrecurse);
// Log_Print("%6i visible nodes\n", c_nodes/2 - c_nonvis);
// Log_Print("%6i nonvis nodes\n", c_nonvis);
// Log_Print("%6i leaves\n", (c_nodes+1)/2);
// Log_Print("%6i solid leaf nodes\n", c_solidleafnodes);
// Log_Print("%6i active brushes\n", c_active_brushes);
if (numthreads == 1)
{
// Log_Print("%6i KB of node memory\n", c_nodememory >> 10);
// Log_Print("%6i KB of brush memory\n", c_brushmemory >> 10);
// Log_Print("%6i KB of peak brush memory\n", c_peak_brushmemory >> 10);
// Log_Print("%6i KB of winding memory\n", WindingMemory() >> 10);
// Log_Print("%6i KB of peak winding memory\n", WindingPeakMemory() >> 10);
Log_Print("%6i KB of peak total bsp memory\n", c_peak_totalbspmemory >> 10);
} //end if
/*
point[0] = 1485;
point[1] = 956.125;
point[2] = 352.125;
node = PointInLeaf(tree->headnode, point);
if (node->planenum != PLANENUM_LEAF)
{
Log_Print("node not a leaf\n");
} //end if
Log_Print("at %f %f %f:\n", point[0], point[1], point[2]);
PrintContents(node->contents);
Log_Print("node->expansionbboxes = %d\n", node->expansionbboxes);
//*/
return tree;
} //end of the function BrushBSP