ioef/code/renderergl2/tr_world.c
2013-09-16 00:54:26 -07:00

854 lines
21 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include "tr_local.h"
/*
================
R_CullSurface
Tries to cull surfaces before they are lighted or
added to the sorting list.
================
*/
static qboolean R_CullSurface( msurface_t *surf ) {
if ( r_nocull->integer || surf->cullinfo.type == CULLINFO_NONE) {
return qfalse;
}
if ( *surf->data == SF_GRID && r_nocurves->integer ) {
return qtrue;
}
if (surf->cullinfo.type & CULLINFO_PLANE)
{
// Only true for SF_FACE, so treat like its own function
float d;
cullType_t ct;
if ( !r_facePlaneCull->integer ) {
return qfalse;
}
ct = surf->shader->cullType;
if (ct == CT_TWO_SIDED)
{
return qfalse;
}
// don't cull for depth shadow
/*
if ( tr.viewParms.flags & VPF_DEPTHSHADOW )
{
return qfalse;
}
*/
// shadowmaps draw back surfaces
if ( tr.viewParms.flags & (VPF_SHADOWMAP | VPF_DEPTHSHADOW) )
{
if (ct == CT_FRONT_SIDED)
{
ct = CT_BACK_SIDED;
}
else
{
ct = CT_FRONT_SIDED;
}
}
// do proper cull for orthographic projection
if (tr.viewParms.flags & VPF_ORTHOGRAPHIC) {
d = DotProduct(tr.viewParms.or.axis[0], surf->cullinfo.plane.normal);
if ( ct == CT_FRONT_SIDED ) {
if (d > 0)
return qtrue;
} else {
if (d < 0)
return qtrue;
}
return qfalse;
}
d = DotProduct (tr.or.viewOrigin, surf->cullinfo.plane.normal);
// don't cull exactly on the plane, because there are levels of rounding
// through the BSP, ICD, and hardware that may cause pixel gaps if an
// epsilon isn't allowed here
if ( ct == CT_FRONT_SIDED ) {
if ( d < surf->cullinfo.plane.dist - 8 ) {
return qtrue;
}
} else {
if ( d > surf->cullinfo.plane.dist + 8 ) {
return qtrue;
}
}
return qfalse;
}
if (surf->cullinfo.type & CULLINFO_SPHERE)
{
int sphereCull;
if ( tr.currentEntityNum != REFENTITYNUM_WORLD ) {
sphereCull = R_CullLocalPointAndRadius( surf->cullinfo.localOrigin, surf->cullinfo.radius );
} else {
sphereCull = R_CullPointAndRadius( surf->cullinfo.localOrigin, surf->cullinfo.radius );
}
if ( sphereCull == CULL_OUT )
{
return qtrue;
}
}
if (surf->cullinfo.type & CULLINFO_BOX)
{
int boxCull;
if ( tr.currentEntityNum != REFENTITYNUM_WORLD ) {
boxCull = R_CullLocalBox( surf->cullinfo.bounds );
} else {
boxCull = R_CullBox( surf->cullinfo.bounds );
}
if ( boxCull == CULL_OUT )
{
return qtrue;
}
}
return qfalse;
}
/*
====================
R_DlightSurface
The given surface is going to be drawn, and it touches a leaf
that is touched by one or more dlights, so try to throw out
more dlights if possible.
====================
*/
static int R_DlightSurface( msurface_t *surf, int dlightBits ) {
float d;
int i;
dlight_t *dl;
if ( surf->cullinfo.type & CULLINFO_PLANE )
{
for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) {
if ( ! ( dlightBits & ( 1 << i ) ) ) {
continue;
}
dl = &tr.refdef.dlights[i];
d = DotProduct( dl->origin, surf->cullinfo.plane.normal ) - surf->cullinfo.plane.dist;
if ( d < -dl->radius || d > dl->radius ) {
// dlight doesn't reach the plane
dlightBits &= ~( 1 << i );
}
}
}
if ( surf->cullinfo.type & CULLINFO_BOX )
{
for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) {
if ( ! ( dlightBits & ( 1 << i ) ) ) {
continue;
}
dl = &tr.refdef.dlights[i];
if ( dl->origin[0] - dl->radius > surf->cullinfo.bounds[1][0]
|| dl->origin[0] + dl->radius < surf->cullinfo.bounds[0][0]
|| dl->origin[1] - dl->radius > surf->cullinfo.bounds[1][1]
|| dl->origin[1] + dl->radius < surf->cullinfo.bounds[0][1]
|| dl->origin[2] - dl->radius > surf->cullinfo.bounds[1][2]
|| dl->origin[2] + dl->radius < surf->cullinfo.bounds[0][2] ) {
// dlight doesn't reach the bounds
dlightBits &= ~( 1 << i );
}
}
}
if ( surf->cullinfo.type & CULLINFO_SPHERE )
{
for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) {
if ( ! ( dlightBits & ( 1 << i ) ) ) {
continue;
}
dl = &tr.refdef.dlights[i];
if (!SpheresIntersect(dl->origin, dl->radius, surf->cullinfo.localOrigin, surf->cullinfo.radius))
{
// dlight doesn't reach the bounds
dlightBits &= ~( 1 << i );
}
}
}
if ( *surf->data == SF_FACE ) {
((srfSurfaceFace_t *)surf->data)->dlightBits = dlightBits;
} else if ( *surf->data == SF_GRID ) {
((srfGridMesh_t *)surf->data)->dlightBits = dlightBits;
} else if ( *surf->data == SF_TRIANGLES ) {
((srfTriangles_t *)surf->data)->dlightBits = dlightBits;
} else if ( *surf->data == SF_VBO_MESH ) {
((srfVBOMesh_t *)surf->data)->dlightBits = dlightBits;
} else {
dlightBits = 0;
}
if ( dlightBits ) {
tr.pc.c_dlightSurfaces++;
} else {
tr.pc.c_dlightSurfacesCulled++;
}
return dlightBits;
}
/*
====================
R_PshadowSurface
Just like R_DlightSurface, cull any we can
====================
*/
static int R_PshadowSurface( msurface_t *surf, int pshadowBits ) {
float d;
int i;
pshadow_t *ps;
if ( surf->cullinfo.type & CULLINFO_PLANE )
{
for ( i = 0 ; i < tr.refdef.num_pshadows ; i++ ) {
if ( ! ( pshadowBits & ( 1 << i ) ) ) {
continue;
}
ps = &tr.refdef.pshadows[i];
d = DotProduct( ps->lightOrigin, surf->cullinfo.plane.normal ) - surf->cullinfo.plane.dist;
if ( d < -ps->lightRadius || d > ps->lightRadius ) {
// pshadow doesn't reach the plane
pshadowBits &= ~( 1 << i );
}
}
}
if ( surf->cullinfo.type & CULLINFO_BOX )
{
for ( i = 0 ; i < tr.refdef.num_pshadows ; i++ ) {
if ( ! ( pshadowBits & ( 1 << i ) ) ) {
continue;
}
ps = &tr.refdef.pshadows[i];
if ( ps->lightOrigin[0] - ps->lightRadius > surf->cullinfo.bounds[1][0]
|| ps->lightOrigin[0] + ps->lightRadius < surf->cullinfo.bounds[0][0]
|| ps->lightOrigin[1] - ps->lightRadius > surf->cullinfo.bounds[1][1]
|| ps->lightOrigin[1] + ps->lightRadius < surf->cullinfo.bounds[0][1]
|| ps->lightOrigin[2] - ps->lightRadius > surf->cullinfo.bounds[1][2]
|| ps->lightOrigin[2] + ps->lightRadius < surf->cullinfo.bounds[0][2]
|| BoxOnPlaneSide(surf->cullinfo.bounds[0], surf->cullinfo.bounds[1], &ps->cullPlane) == 2 ) {
// pshadow doesn't reach the bounds
pshadowBits &= ~( 1 << i );
}
}
}
if ( surf->cullinfo.type & CULLINFO_SPHERE )
{
for ( i = 0 ; i < tr.refdef.num_pshadows ; i++ ) {
if ( ! ( pshadowBits & ( 1 << i ) ) ) {
continue;
}
ps = &tr.refdef.pshadows[i];
if (!SpheresIntersect(ps->viewOrigin, ps->viewRadius, surf->cullinfo.localOrigin, surf->cullinfo.radius)
|| DotProduct( surf->cullinfo.localOrigin, ps->cullPlane.normal ) - ps->cullPlane.dist < -surf->cullinfo.radius)
{
// pshadow doesn't reach the bounds
pshadowBits &= ~( 1 << i );
}
}
}
if ( *surf->data == SF_FACE ) {
((srfSurfaceFace_t *)surf->data)->pshadowBits = pshadowBits;
} else if ( *surf->data == SF_GRID ) {
((srfGridMesh_t *)surf->data)->pshadowBits = pshadowBits;
} else if ( *surf->data == SF_TRIANGLES ) {
((srfTriangles_t *)surf->data)->pshadowBits = pshadowBits;
} else if ( *surf->data == SF_VBO_MESH ) {
((srfVBOMesh_t *)surf->data)->pshadowBits = pshadowBits;
} else {
pshadowBits = 0;
}
if ( pshadowBits ) {
//tr.pc.c_dlightSurfaces++;
}
return pshadowBits;
}
/*
======================
R_AddWorldSurface
======================
*/
static void R_AddWorldSurface( msurface_t *surf, int dlightBits, int pshadowBits ) {
// FIXME: bmodel fog?
// try to cull before dlighting or adding
if ( R_CullSurface( surf ) ) {
return;
}
// check for dlighting
if ( dlightBits ) {
dlightBits = R_DlightSurface( surf, dlightBits );
dlightBits = ( dlightBits != 0 );
}
// check for pshadows
/*if ( pshadowBits ) */{
pshadowBits = R_PshadowSurface( surf, pshadowBits);
pshadowBits = ( pshadowBits != 0 );
}
R_AddDrawSurf( surf->data, surf->shader, surf->fogIndex, dlightBits, pshadowBits, surf->cubemapIndex );
}
/*
=============================================================
BRUSH MODELS
=============================================================
*/
/*
=================
R_AddBrushModelSurfaces
=================
*/
void R_AddBrushModelSurfaces ( trRefEntity_t *ent ) {
bmodel_t *bmodel;
int clip;
model_t *pModel;
int i;
pModel = R_GetModelByHandle( ent->e.hModel );
bmodel = pModel->bmodel;
clip = R_CullLocalBox( bmodel->bounds );
if ( clip == CULL_OUT ) {
return;
}
R_SetupEntityLighting( &tr.refdef, ent );
R_DlightBmodel( bmodel );
for ( i = 0 ; i < bmodel->numSurfaces ; i++ ) {
int surf = bmodel->firstSurface + i;
if (tr.world->surfacesViewCount[surf] != tr.viewCount)
{
tr.world->surfacesViewCount[surf] = tr.viewCount;
R_AddWorldSurface( tr.world->surfaces + surf, tr.currentEntity->needDlights, 0 );
}
}
}
/*
=============================================================
WORLD MODEL
=============================================================
*/
/*
================
R_RecursiveWorldNode
================
*/
static void R_RecursiveWorldNode( mnode_t *node, int planeBits, int dlightBits, int pshadowBits ) {
do {
int newDlights[2];
unsigned int newPShadows[2];
// if the node wasn't marked as potentially visible, exit
// pvs is skipped for depth shadows
if (!(tr.viewParms.flags & VPF_DEPTHSHADOW) && node->visCounts[tr.visIndex] != tr.visCounts[tr.visIndex]) {
return;
}
// if the bounding volume is outside the frustum, nothing
// inside can be visible OPTIMIZE: don't do this all the way to leafs?
if ( !r_nocull->integer ) {
int r;
if ( planeBits & 1 ) {
r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[0]);
if (r == 2) {
return; // culled
}
if ( r == 1 ) {
planeBits &= ~1; // all descendants will also be in front
}
}
if ( planeBits & 2 ) {
r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[1]);
if (r == 2) {
return; // culled
}
if ( r == 1 ) {
planeBits &= ~2; // all descendants will also be in front
}
}
if ( planeBits & 4 ) {
r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[2]);
if (r == 2) {
return; // culled
}
if ( r == 1 ) {
planeBits &= ~4; // all descendants will also be in front
}
}
if ( planeBits & 8 ) {
r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[3]);
if (r == 2) {
return; // culled
}
if ( r == 1 ) {
planeBits &= ~8; // all descendants will also be in front
}
}
if ( planeBits & 16 ) {
r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[4]);
if (r == 2) {
return; // culled
}
if ( r == 1 ) {
planeBits &= ~16; // all descendants will also be in front
}
}
}
if ( node->contents != -1 ) {
break;
}
// node is just a decision point, so go down both sides
// since we don't care about sort orders, just go positive to negative
// determine which dlights are needed
newDlights[0] = 0;
newDlights[1] = 0;
if ( dlightBits ) {
int i;
for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) {
dlight_t *dl;
float dist;
if ( dlightBits & ( 1 << i ) ) {
dl = &tr.refdef.dlights[i];
dist = DotProduct( dl->origin, node->plane->normal ) - node->plane->dist;
if ( dist > -dl->radius ) {
newDlights[0] |= ( 1 << i );
}
if ( dist < dl->radius ) {
newDlights[1] |= ( 1 << i );
}
}
}
}
newPShadows[0] = 0;
newPShadows[1] = 0;
if ( pshadowBits ) {
int i;
for ( i = 0 ; i < tr.refdef.num_pshadows ; i++ ) {
pshadow_t *shadow;
float dist;
if ( pshadowBits & ( 1 << i ) ) {
shadow = &tr.refdef.pshadows[i];
dist = DotProduct( shadow->lightOrigin, node->plane->normal ) - node->plane->dist;
if ( dist > -shadow->lightRadius ) {
newPShadows[0] |= ( 1 << i );
}
if ( dist < shadow->lightRadius ) {
newPShadows[1] |= ( 1 << i );
}
}
}
}
// recurse down the children, front side first
R_RecursiveWorldNode (node->children[0], planeBits, newDlights[0], newPShadows[0] );
// tail recurse
node = node->children[1];
dlightBits = newDlights[1];
pshadowBits = newPShadows[1];
} while ( 1 );
{
// leaf node, so add mark surfaces
int c;
int surf, *view;
tr.pc.c_leafs++;
// add to z buffer bounds
if ( node->mins[0] < tr.viewParms.visBounds[0][0] ) {
tr.viewParms.visBounds[0][0] = node->mins[0];
}
if ( node->mins[1] < tr.viewParms.visBounds[0][1] ) {
tr.viewParms.visBounds[0][1] = node->mins[1];
}
if ( node->mins[2] < tr.viewParms.visBounds[0][2] ) {
tr.viewParms.visBounds[0][2] = node->mins[2];
}
if ( node->maxs[0] > tr.viewParms.visBounds[1][0] ) {
tr.viewParms.visBounds[1][0] = node->maxs[0];
}
if ( node->maxs[1] > tr.viewParms.visBounds[1][1] ) {
tr.viewParms.visBounds[1][1] = node->maxs[1];
}
if ( node->maxs[2] > tr.viewParms.visBounds[1][2] ) {
tr.viewParms.visBounds[1][2] = node->maxs[2];
}
// add merged and unmerged surfaces
if (tr.world->viewSurfaces && !r_nocurves->integer)
view = tr.world->viewSurfaces + node->firstmarksurface;
else
view = tr.world->marksurfaces + node->firstmarksurface;
c = node->nummarksurfaces;
while (c--) {
// just mark it as visible, so we don't jump out of the cache derefencing the surface
surf = *view;
if (surf < 0)
{
if (tr.world->mergedSurfacesViewCount[-surf - 1] != tr.viewCount)
{
tr.world->mergedSurfacesViewCount[-surf - 1] = tr.viewCount;
tr.world->mergedSurfacesDlightBits[-surf - 1] = dlightBits;
tr.world->mergedSurfacesPshadowBits[-surf - 1] = pshadowBits;
}
else
{
tr.world->mergedSurfacesDlightBits[-surf - 1] |= dlightBits;
tr.world->mergedSurfacesPshadowBits[-surf - 1] |= pshadowBits;
}
}
else
{
if (tr.world->surfacesViewCount[surf] != tr.viewCount)
{
tr.world->surfacesViewCount[surf] = tr.viewCount;
tr.world->surfacesDlightBits[surf] = dlightBits;
tr.world->surfacesPshadowBits[surf] = pshadowBits;
}
else
{
tr.world->surfacesDlightBits[surf] |= dlightBits;
tr.world->surfacesPshadowBits[surf] |= pshadowBits;
}
}
view++;
}
}
}
/*
===============
R_PointInLeaf
===============
*/
static mnode_t *R_PointInLeaf( const vec3_t p ) {
mnode_t *node;
float d;
cplane_t *plane;
if ( !tr.world ) {
ri.Error (ERR_DROP, "R_PointInLeaf: bad model");
}
node = tr.world->nodes;
while( 1 ) {
if (node->contents != -1) {
break;
}
plane = node->plane;
d = DotProduct (p,plane->normal) - plane->dist;
if (d > 0) {
node = node->children[0];
} else {
node = node->children[1];
}
}
return node;
}
/*
==============
R_ClusterPVS
==============
*/
static const byte *R_ClusterPVS (int cluster) {
if (!tr.world->vis || cluster < 0 || cluster >= tr.world->numClusters ) {
return tr.world->novis;
}
return tr.world->vis + cluster * tr.world->clusterBytes;
}
/*
=================
R_inPVS
=================
*/
qboolean R_inPVS( const vec3_t p1, const vec3_t p2 ) {
mnode_t *leaf;
byte *vis;
leaf = R_PointInLeaf( p1 );
vis = ri.CM_ClusterPVS( leaf->cluster ); // why not R_ClusterPVS ??
leaf = R_PointInLeaf( p2 );
if ( !(vis[leaf->cluster>>3] & (1<<(leaf->cluster&7))) ) {
return qfalse;
}
return qtrue;
}
/*
===============
R_MarkLeaves
Mark the leaves and nodes that are in the PVS for the current
cluster
===============
*/
static void R_MarkLeaves (void) {
const byte *vis;
mnode_t *leaf, *parent;
int i;
int cluster;
// lockpvs lets designers walk around to determine the
// extent of the current pvs
if ( r_lockpvs->integer ) {
return;
}
// current viewcluster
leaf = R_PointInLeaf( tr.viewParms.pvsOrigin );
cluster = leaf->cluster;
// if the cluster is the same and the area visibility matrix
// hasn't changed, we don't need to mark everything again
for(i = 0; i < MAX_VISCOUNTS; i++)
{
if(tr.visClusters[i] == cluster)
{
//tr.visIndex = i;
break;
}
}
// if r_showcluster was just turned on, remark everything
if(i != MAX_VISCOUNTS && !tr.refdef.areamaskModified && !r_showcluster->modified)// && !r_dynamicBspOcclusionCulling->modified)
{
if(tr.visClusters[i] != tr.visClusters[tr.visIndex] && r_showcluster->integer)
{
ri.Printf(PRINT_ALL, "found cluster:%i area:%i index:%i\n", cluster, leaf->area, i);
}
tr.visIndex = i;
return;
}
// if the areamask was modified, invalidate all visclusters
// this caused doors to open into undrawn areas
if (tr.refdef.areamaskModified)
{
memset(tr.visClusters, -2, sizeof(tr.visClusters));
}
tr.visIndex = (tr.visIndex + 1) % MAX_VISCOUNTS;
tr.visCounts[tr.visIndex]++;
tr.visClusters[tr.visIndex] = cluster;
if ( r_showcluster->modified || r_showcluster->integer ) {
r_showcluster->modified = qfalse;
if ( r_showcluster->integer ) {
ri.Printf( PRINT_ALL, "cluster:%i area:%i\n", cluster, leaf->area );
}
}
// set all nodes to visible if there is no vis
// this caused some levels to simply not render
if (r_novis->integer || !tr.world->vis || tr.visClusters[tr.visIndex] == -1) {
for (i=0 ; i<tr.world->numnodes ; i++) {
if (tr.world->nodes[i].contents != CONTENTS_SOLID) {
tr.world->nodes[i].visCounts[tr.visIndex] = tr.visCounts[tr.visIndex];
}
}
return;
}
vis = R_ClusterPVS(tr.visClusters[tr.visIndex]);
for (i=0,leaf=tr.world->nodes ; i<tr.world->numnodes ; i++, leaf++) {
cluster = leaf->cluster;
if ( cluster < 0 || cluster >= tr.world->numClusters ) {
continue;
}
// check general pvs
if ( !(vis[cluster>>3] & (1<<(cluster&7))) ) {
continue;
}
// check for door connection
if ( (tr.refdef.areamask[leaf->area>>3] & (1<<(leaf->area&7)) ) ) {
continue; // not visible
}
parent = leaf;
do {
if(parent->visCounts[tr.visIndex] == tr.visCounts[tr.visIndex])
break;
parent->visCounts[tr.visIndex] = tr.visCounts[tr.visIndex];
parent = parent->parent;
} while (parent);
}
}
/*
=============
R_AddWorldSurfaces
=============
*/
void R_AddWorldSurfaces (void) {
int planeBits, dlightBits, pshadowBits;
if ( !r_drawworld->integer ) {
return;
}
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
return;
}
tr.currentEntityNum = REFENTITYNUM_WORLD;
tr.shiftedEntityNum = tr.currentEntityNum << QSORT_REFENTITYNUM_SHIFT;
// determine which leaves are in the PVS / areamask
if (!(tr.viewParms.flags & VPF_DEPTHSHADOW))
R_MarkLeaves ();
// clear out the visible min/max
ClearBounds( tr.viewParms.visBounds[0], tr.viewParms.visBounds[1] );
// perform frustum culling and flag all the potentially visible surfaces
if ( tr.refdef.num_dlights > 32 ) {
tr.refdef.num_dlights = 32 ;
}
if ( tr.refdef.num_pshadows > 32 ) {
tr.refdef.num_pshadows = 32 ;
}
planeBits = (tr.viewParms.flags & VPF_FARPLANEFRUSTUM) ? 31 : 15;
if ( tr.viewParms.flags & VPF_DEPTHSHADOW )
{
dlightBits = 0;
pshadowBits = 0;
}
else if ( !(tr.viewParms.flags & VPF_SHADOWMAP) )
{
dlightBits = ( 1 << tr.refdef.num_dlights ) - 1;
pshadowBits = ( 1 << tr.refdef.num_pshadows ) - 1;
}
else
{
dlightBits = ( 1 << tr.refdef.num_dlights ) - 1;
pshadowBits = 0;
}
R_RecursiveWorldNode( tr.world->nodes, planeBits, dlightBits, pshadowBits);
// now add all the potentially visible surfaces
// also mask invisible dlights for next frame
{
int i;
tr.refdef.dlightMask = 0;
for (i = 0; i < tr.world->numWorldSurfaces; i++)
{
if (tr.world->surfacesViewCount[i] != tr.viewCount)
continue;
R_AddWorldSurface( tr.world->surfaces + i, tr.world->surfacesDlightBits[i], tr.world->surfacesPshadowBits[i] );
tr.refdef.dlightMask |= tr.world->surfacesDlightBits[i];
}
for (i = 0; i < tr.world->numMergedSurfaces; i++)
{
if (tr.world->mergedSurfacesViewCount[i] != tr.viewCount)
continue;
R_AddWorldSurface( tr.world->mergedSurfaces + i, tr.world->mergedSurfacesDlightBits[i], tr.world->mergedSurfacesPshadowBits[i] );
tr.refdef.dlightMask |= tr.world->mergedSurfacesDlightBits[i];
}
tr.refdef.dlightMask = ~tr.refdef.dlightMask;
}
}