mirror of
https://github.com/UberGames/ioef.git
synced 2024-11-24 13:11:30 +00:00
440 lines
23 KiB
C
440 lines
23 KiB
C
/***********************************************************************
|
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
|
names of specific contributors, may be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "main_FIX.h"
|
|
#include "tuning_parameters.h"
|
|
|
|
/* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */
|
|
/* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */
|
|
/* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */
|
|
/* coefficient in an array of coefficients, for monic filters. */
|
|
static inline opus_int32 warped_gain( /* gain in Q16*/
|
|
const opus_int32 *coefs_Q24,
|
|
opus_int lambda_Q16,
|
|
opus_int order
|
|
) {
|
|
opus_int i;
|
|
opus_int32 gain_Q24;
|
|
|
|
lambda_Q16 = -lambda_Q16;
|
|
gain_Q24 = coefs_Q24[ order - 1 ];
|
|
for( i = order - 2; i >= 0; i-- ) {
|
|
gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 );
|
|
}
|
|
gain_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 );
|
|
return silk_INVERSE32_varQ( gain_Q24, 40 );
|
|
}
|
|
|
|
/* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */
|
|
/* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */
|
|
static inline void limit_warped_coefs(
|
|
opus_int32 *coefs_syn_Q24,
|
|
opus_int32 *coefs_ana_Q24,
|
|
opus_int lambda_Q16,
|
|
opus_int32 limit_Q24,
|
|
opus_int order
|
|
) {
|
|
opus_int i, iter, ind = 0;
|
|
opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_syn_Q16, gain_ana_Q16;
|
|
opus_int32 nom_Q16, den_Q24;
|
|
|
|
/* Convert to monic coefficients */
|
|
lambda_Q16 = -lambda_Q16;
|
|
for( i = order - 1; i > 0; i-- ) {
|
|
coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
|
|
coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
|
|
}
|
|
lambda_Q16 = -lambda_Q16;
|
|
nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 );
|
|
den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 );
|
|
gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
|
|
den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 );
|
|
gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
|
|
for( i = 0; i < order; i++ ) {
|
|
coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
|
|
coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
|
|
}
|
|
|
|
for( iter = 0; iter < 10; iter++ ) {
|
|
/* Find maximum absolute value */
|
|
maxabs_Q24 = -1;
|
|
for( i = 0; i < order; i++ ) {
|
|
tmp = silk_max( silk_abs_int32( coefs_syn_Q24[ i ] ), silk_abs_int32( coefs_ana_Q24[ i ] ) );
|
|
if( tmp > maxabs_Q24 ) {
|
|
maxabs_Q24 = tmp;
|
|
ind = i;
|
|
}
|
|
}
|
|
if( maxabs_Q24 <= limit_Q24 ) {
|
|
/* Coefficients are within range - done */
|
|
return;
|
|
}
|
|
|
|
/* Convert back to true warped coefficients */
|
|
for( i = 1; i < order; i++ ) {
|
|
coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
|
|
coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
|
|
}
|
|
gain_syn_Q16 = silk_INVERSE32_varQ( gain_syn_Q16, 32 );
|
|
gain_ana_Q16 = silk_INVERSE32_varQ( gain_ana_Q16, 32 );
|
|
for( i = 0; i < order; i++ ) {
|
|
coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
|
|
coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
|
|
}
|
|
|
|
/* Apply bandwidth expansion */
|
|
chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ(
|
|
silk_SMULWB( maxabs_Q24 - limit_Q24, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ),
|
|
silk_MUL( maxabs_Q24, ind + 1 ), 22 );
|
|
silk_bwexpander_32( coefs_syn_Q24, order, chirp_Q16 );
|
|
silk_bwexpander_32( coefs_ana_Q24, order, chirp_Q16 );
|
|
|
|
/* Convert to monic warped coefficients */
|
|
lambda_Q16 = -lambda_Q16;
|
|
for( i = order - 1; i > 0; i-- ) {
|
|
coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_Q24[ i ], lambda_Q16 );
|
|
coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_Q24[ i ], lambda_Q16 );
|
|
}
|
|
lambda_Q16 = -lambda_Q16;
|
|
nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 );
|
|
den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambda_Q16 );
|
|
gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
|
|
den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambda_Q16 );
|
|
gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
|
|
for( i = 0; i < order; i++ ) {
|
|
coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] );
|
|
coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] );
|
|
}
|
|
}
|
|
silk_assert( 0 );
|
|
}
|
|
|
|
/**************************************************************/
|
|
/* Compute noise shaping coefficients and initial gain values */
|
|
/**************************************************************/
|
|
void silk_noise_shape_analysis_FIX(
|
|
silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */
|
|
silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */
|
|
const opus_int16 *pitch_res, /* I LPC residual from pitch analysis */
|
|
const opus_int16 *x /* I Input signal [ frame_length + la_shape ] */
|
|
)
|
|
{
|
|
silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
|
|
opus_int k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0;
|
|
opus_int32 SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32;
|
|
opus_int32 nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7;
|
|
opus_int32 delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8;
|
|
opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ];
|
|
opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ];
|
|
opus_int32 AR1_Q24[ MAX_SHAPE_LPC_ORDER ];
|
|
opus_int32 AR2_Q24[ MAX_SHAPE_LPC_ORDER ];
|
|
opus_int16 x_windowed[ SHAPE_LPC_WIN_MAX ];
|
|
const opus_int16 *x_ptr, *pitch_res_ptr;
|
|
|
|
/* Point to start of first LPC analysis block */
|
|
x_ptr = x - psEnc->sCmn.la_shape;
|
|
|
|
/****************/
|
|
/* GAIN CONTROL */
|
|
/****************/
|
|
SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7;
|
|
|
|
/* Input quality is the average of the quality in the lowest two VAD bands */
|
|
psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ]
|
|
+ psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 );
|
|
|
|
/* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */
|
|
psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 -
|
|
SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 );
|
|
|
|
/* Reduce coding SNR during low speech activity */
|
|
if( psEnc->sCmn.useCBR == 0 ) {
|
|
b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8;
|
|
b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 );
|
|
SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
|
|
silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ), /* Q11*/
|
|
silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/
|
|
}
|
|
|
|
if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
|
/* Reduce gains for periodic signals */
|
|
SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 );
|
|
} else {
|
|
/* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
|
|
SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
|
|
silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ),
|
|
SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 );
|
|
}
|
|
|
|
/*************************/
|
|
/* SPARSENESS PROCESSING */
|
|
/*************************/
|
|
/* Set quantizer offset */
|
|
if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
|
/* Initially set to 0; may be overruled in process_gains(..) */
|
|
psEnc->sCmn.indices.quantOffsetType = 0;
|
|
psEncCtrl->sparseness_Q8 = 0;
|
|
} else {
|
|
/* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
|
|
nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 );
|
|
energy_variation_Q7 = 0;
|
|
log_energy_prev_Q7 = 0;
|
|
pitch_res_ptr = pitch_res;
|
|
for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2; k++ ) {
|
|
silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples );
|
|
nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/
|
|
|
|
log_energy_Q7 = silk_lin2log( nrg );
|
|
if( k > 0 ) {
|
|
energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 );
|
|
}
|
|
log_energy_prev_Q7 = log_energy_Q7;
|
|
pitch_res_ptr += nSamples;
|
|
}
|
|
|
|
psEncCtrl->sparseness_Q8 = silk_RSHIFT( silk_sigm_Q15( silk_SMULWB( energy_variation_Q7 -
|
|
SILK_FIX_CONST( 5.0, 7 ), SILK_FIX_CONST( 0.1, 16 ) ) ), 7 );
|
|
|
|
/* Set quantization offset depending on sparseness measure */
|
|
if( psEncCtrl->sparseness_Q8 > SILK_FIX_CONST( SPARSENESS_THRESHOLD_QNT_OFFSET, 8 ) ) {
|
|
psEnc->sCmn.indices.quantOffsetType = 0;
|
|
} else {
|
|
psEnc->sCmn.indices.quantOffsetType = 1;
|
|
}
|
|
|
|
/* Increase coding SNR for sparse signals */
|
|
SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( SPARSE_SNR_INCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SILK_FIX_CONST( 0.5, 8 ) );
|
|
}
|
|
|
|
/*******************************/
|
|
/* Control bandwidth expansion */
|
|
/*******************************/
|
|
/* More BWE for signals with high prediction gain */
|
|
strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) );
|
|
BWExp1_Q16 = BWExp2_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ),
|
|
silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 );
|
|
delta_Q16 = silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - silk_SMULBB( 3, psEncCtrl->coding_quality_Q14 ),
|
|
SILK_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) );
|
|
BWExp1_Q16 = silk_SUB32( BWExp1_Q16, delta_Q16 );
|
|
BWExp2_Q16 = silk_ADD32( BWExp2_Q16, delta_Q16 );
|
|
/* BWExp1 will be applied after BWExp2, so make it relative */
|
|
BWExp1_Q16 = silk_DIV32_16( silk_LSHIFT( BWExp1_Q16, 14 ), silk_RSHIFT( BWExp2_Q16, 2 ) );
|
|
|
|
if( psEnc->sCmn.warping_Q16 > 0 ) {
|
|
/* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
|
|
warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) );
|
|
} else {
|
|
warping_Q16 = 0;
|
|
}
|
|
|
|
/********************************************/
|
|
/* Compute noise shaping AR coefs and gains */
|
|
/********************************************/
|
|
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
|
/* Apply window: sine slope followed by flat part followed by cosine slope */
|
|
opus_int shift, slope_part, flat_part;
|
|
flat_part = psEnc->sCmn.fs_kHz * 3;
|
|
slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 );
|
|
|
|
silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part );
|
|
shift = slope_part;
|
|
silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) );
|
|
shift += flat_part;
|
|
silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part );
|
|
|
|
/* Update pointer: next LPC analysis block */
|
|
x_ptr += psEnc->sCmn.subfr_length;
|
|
|
|
if( psEnc->sCmn.warping_Q16 > 0 ) {
|
|
/* Calculate warped auto correlation */
|
|
silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder );
|
|
} else {
|
|
/* Calculate regular auto correlation */
|
|
silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1 );
|
|
}
|
|
|
|
/* Add white noise, as a fraction of energy */
|
|
auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ),
|
|
SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) );
|
|
|
|
/* Calculate the reflection coefficients using schur */
|
|
nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder );
|
|
silk_assert( nrg >= 0 );
|
|
|
|
/* Convert reflection coefficients to prediction coefficients */
|
|
silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder );
|
|
|
|
Qnrg = -scale; /* range: -12...30*/
|
|
silk_assert( Qnrg >= -12 );
|
|
silk_assert( Qnrg <= 30 );
|
|
|
|
/* Make sure that Qnrg is an even number */
|
|
if( Qnrg & 1 ) {
|
|
Qnrg -= 1;
|
|
nrg >>= 1;
|
|
}
|
|
|
|
tmp32 = silk_SQRT_APPROX( nrg );
|
|
Qnrg >>= 1; /* range: -6...15*/
|
|
|
|
psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg );
|
|
|
|
if( psEnc->sCmn.warping_Q16 > 0 ) {
|
|
/* Adjust gain for warping */
|
|
gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder );
|
|
silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
|
|
if ( silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 ) >= ( silk_int32_MAX >> 1 ) ) {
|
|
psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX;
|
|
} else {
|
|
psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
|
|
}
|
|
}
|
|
|
|
/* Bandwidth expansion for synthesis filter shaping */
|
|
silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 );
|
|
|
|
/* Compute noise shaping filter coefficients */
|
|
silk_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( opus_int32 ) );
|
|
|
|
/* Bandwidth expansion for analysis filter shaping */
|
|
silk_assert( BWExp1_Q16 <= SILK_FIX_CONST( 1.0, 16 ) );
|
|
silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 );
|
|
|
|
/* Ratio of prediction gains, in energy domain */
|
|
pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapingLPCOrder );
|
|
nrg = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapingLPCOrder );
|
|
|
|
/*psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.3f + 0.7f * pre_nrg / nrg;*/
|
|
pre_nrg_Q30 = silk_LSHIFT32( silk_SMULWB( pre_nrg_Q30, SILK_FIX_CONST( 0.7, 15 ) ), 1 );
|
|
psEncCtrl->GainsPre_Q14[ k ] = ( opus_int ) SILK_FIX_CONST( 0.3, 14 ) + silk_DIV32_varQ( pre_nrg_Q30, nrg, 14 );
|
|
|
|
/* Convert to monic warped prediction coefficients and limit absolute values */
|
|
limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder );
|
|
|
|
/* Convert from Q24 to Q13 and store in int16 */
|
|
for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) {
|
|
psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) );
|
|
psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) );
|
|
}
|
|
}
|
|
|
|
/*****************/
|
|
/* Gain tweaking */
|
|
/*****************/
|
|
/* Increase gains during low speech activity and put lower limit on gains */
|
|
gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) );
|
|
gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) );
|
|
silk_assert( gain_mult_Q16 > 0 );
|
|
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
|
psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
|
|
silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
|
|
psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 );
|
|
}
|
|
|
|
gain_mult_Q16 = SILK_FIX_CONST( 1.0, 16 ) + silk_RSHIFT_ROUND( silk_MLA( SILK_FIX_CONST( INPUT_TILT, 26 ),
|
|
psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( HIGH_RATE_INPUT_TILT, 12 ) ), 10 );
|
|
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
|
psEncCtrl->GainsPre_Q14[ k ] = silk_SMULWB( gain_mult_Q16, psEncCtrl->GainsPre_Q14[ k ] );
|
|
}
|
|
|
|
/************************************************/
|
|
/* Control low-frequency shaping and noise tilt */
|
|
/************************************************/
|
|
/* Less low frequency shaping for noisy inputs */
|
|
strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ),
|
|
SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) );
|
|
strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 );
|
|
if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
|
/* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */
|
|
/*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/
|
|
opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz );
|
|
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
|
|
b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] );
|
|
/* Pack two coefficients in one int32 */
|
|
psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 );
|
|
psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
|
|
}
|
|
silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/
|
|
Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) -
|
|
silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ),
|
|
silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) );
|
|
} else {
|
|
b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/
|
|
/* Pack two coefficients in one int32 */
|
|
psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 -
|
|
silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 );
|
|
psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
|
|
for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) {
|
|
psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ];
|
|
}
|
|
Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 );
|
|
}
|
|
|
|
/****************************/
|
|
/* HARMONIC SHAPING CONTROL */
|
|
/****************************/
|
|
/* Control boosting of harmonic frequencies */
|
|
HarmBoost_Q16 = silk_SMULWB( silk_SMULWB( SILK_FIX_CONST( 1.0, 17 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 3 ),
|
|
psEnc->LTPCorr_Q15 ), SILK_FIX_CONST( LOW_RATE_HARMONIC_BOOST, 16 ) );
|
|
|
|
/* More harmonic boost for noisy input signals */
|
|
HarmBoost_Q16 = silk_SMLAWB( HarmBoost_Q16,
|
|
SILK_FIX_CONST( 1.0, 16 ) - silk_LSHIFT( psEncCtrl->input_quality_Q14, 2 ), SILK_FIX_CONST( LOW_INPUT_QUALITY_HARMONIC_BOOST, 16 ) );
|
|
|
|
if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
|
|
/* More harmonic noise shaping for high bitrates or noisy input */
|
|
HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ),
|
|
SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ),
|
|
psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) );
|
|
|
|
/* Less harmonic noise shaping for less periodic signals */
|
|
HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ),
|
|
silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) );
|
|
} else {
|
|
HarmShapeGain_Q16 = 0;
|
|
}
|
|
|
|
/*************************/
|
|
/* Smooth over subframes */
|
|
/*************************/
|
|
for( k = 0; k < MAX_NB_SUBFR; k++ ) {
|
|
psShapeSt->HarmBoost_smth_Q16 =
|
|
silk_SMLAWB( psShapeSt->HarmBoost_smth_Q16, HarmBoost_Q16 - psShapeSt->HarmBoost_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
|
|
psShapeSt->HarmShapeGain_smth_Q16 =
|
|
silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
|
|
psShapeSt->Tilt_smth_Q16 =
|
|
silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
|
|
|
|
psEncCtrl->HarmBoost_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmBoost_smth_Q16, 2 );
|
|
psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 );
|
|
psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 );
|
|
}
|
|
}
|