ioef/code/rend2/tr_extramath.c
2012-10-26 01:23:06 +00:00

240 lines
8.4 KiB
C

/*
===========================================================================
Copyright (C) 2010 James Canete (use.less01@gmail.com)
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_extramath.c - extra math needed by the renderer not in qmath.c
#include "tr_local.h"
// Some matrix helper functions
// FIXME: do these already exist in ioq3 and I don't know about them?
void Matrix16Zero( matrix_t out )
{
out[ 0] = 0.0f; out[ 4] = 0.0f; out[ 8] = 0.0f; out[12] = 0.0f;
out[ 1] = 0.0f; out[ 5] = 0.0f; out[ 9] = 0.0f; out[13] = 0.0f;
out[ 2] = 0.0f; out[ 6] = 0.0f; out[10] = 0.0f; out[14] = 0.0f;
out[ 3] = 0.0f; out[ 7] = 0.0f; out[11] = 0.0f; out[15] = 0.0f;
}
void Matrix16Identity( matrix_t out )
{
out[ 0] = 1.0f; out[ 4] = 0.0f; out[ 8] = 0.0f; out[12] = 0.0f;
out[ 1] = 0.0f; out[ 5] = 1.0f; out[ 9] = 0.0f; out[13] = 0.0f;
out[ 2] = 0.0f; out[ 6] = 0.0f; out[10] = 1.0f; out[14] = 0.0f;
out[ 3] = 0.0f; out[ 7] = 0.0f; out[11] = 0.0f; out[15] = 1.0f;
}
void Matrix16Copy( const matrix_t in, matrix_t out )
{
out[ 0] = in[ 0]; out[ 4] = in[ 4]; out[ 8] = in[ 8]; out[12] = in[12];
out[ 1] = in[ 1]; out[ 5] = in[ 5]; out[ 9] = in[ 9]; out[13] = in[13];
out[ 2] = in[ 2]; out[ 6] = in[ 6]; out[10] = in[10]; out[14] = in[14];
out[ 3] = in[ 3]; out[ 7] = in[ 7]; out[11] = in[11]; out[15] = in[15];
}
void Matrix16Multiply( const matrix_t in1, const matrix_t in2, matrix_t out )
{
out[ 0] = in1[ 0] * in2[ 0] + in1[ 4] * in2[ 1] + in1[ 8] * in2[ 2] + in1[12] * in2[ 3];
out[ 1] = in1[ 1] * in2[ 0] + in1[ 5] * in2[ 1] + in1[ 9] * in2[ 2] + in1[13] * in2[ 3];
out[ 2] = in1[ 2] * in2[ 0] + in1[ 6] * in2[ 1] + in1[10] * in2[ 2] + in1[14] * in2[ 3];
out[ 3] = in1[ 3] * in2[ 0] + in1[ 7] * in2[ 1] + in1[11] * in2[ 2] + in1[15] * in2[ 3];
out[ 4] = in1[ 0] * in2[ 4] + in1[ 4] * in2[ 5] + in1[ 8] * in2[ 6] + in1[12] * in2[ 7];
out[ 5] = in1[ 1] * in2[ 4] + in1[ 5] * in2[ 5] + in1[ 9] * in2[ 6] + in1[13] * in2[ 7];
out[ 6] = in1[ 2] * in2[ 4] + in1[ 6] * in2[ 5] + in1[10] * in2[ 6] + in1[14] * in2[ 7];
out[ 7] = in1[ 3] * in2[ 4] + in1[ 7] * in2[ 5] + in1[11] * in2[ 6] + in1[15] * in2[ 7];
out[ 8] = in1[ 0] * in2[ 8] + in1[ 4] * in2[ 9] + in1[ 8] * in2[10] + in1[12] * in2[11];
out[ 9] = in1[ 1] * in2[ 8] + in1[ 5] * in2[ 9] + in1[ 9] * in2[10] + in1[13] * in2[11];
out[10] = in1[ 2] * in2[ 8] + in1[ 6] * in2[ 9] + in1[10] * in2[10] + in1[14] * in2[11];
out[11] = in1[ 3] * in2[ 8] + in1[ 7] * in2[ 9] + in1[11] * in2[10] + in1[15] * in2[11];
out[12] = in1[ 0] * in2[12] + in1[ 4] * in2[13] + in1[ 8] * in2[14] + in1[12] * in2[15];
out[13] = in1[ 1] * in2[12] + in1[ 5] * in2[13] + in1[ 9] * in2[14] + in1[13] * in2[15];
out[14] = in1[ 2] * in2[12] + in1[ 6] * in2[13] + in1[10] * in2[14] + in1[14] * in2[15];
out[15] = in1[ 3] * in2[12] + in1[ 7] * in2[13] + in1[11] * in2[14] + in1[15] * in2[15];
}
void Matrix16Transform( const matrix_t in1, const vec4_t in2, vec4_t out )
{
out[ 0] = in1[ 0] * in2[ 0] + in1[ 4] * in2[ 1] + in1[ 8] * in2[ 2] + in1[12] * in2[ 3];
out[ 1] = in1[ 1] * in2[ 0] + in1[ 5] * in2[ 1] + in1[ 9] * in2[ 2] + in1[13] * in2[ 3];
out[ 2] = in1[ 2] * in2[ 0] + in1[ 6] * in2[ 1] + in1[10] * in2[ 2] + in1[14] * in2[ 3];
out[ 3] = in1[ 3] * in2[ 0] + in1[ 7] * in2[ 1] + in1[11] * in2[ 2] + in1[15] * in2[ 3];
}
qboolean Matrix16Compare( const matrix_t a, const matrix_t b )
{
return !(a[ 0] != b[ 0] || a[ 4] != b[ 4] || a[ 8] != b[ 8] || a[12] != b[12] ||
a[ 1] != b[ 1] || a[ 5] != b[ 5] || a[ 9] != b[ 9] || a[13] != b[13] ||
a[ 2] != b[ 2] || a[ 6] != b[ 6] || a[10] != b[10] || a[14] != b[14] ||
a[ 3] != b[ 3] || a[ 7] != b[ 7] || a[11] != b[11] || a[15] != b[15]);
}
void Matrix16Dump( const matrix_t in )
{
ri.Printf(PRINT_ALL, "%3.5f %3.5f %3.5f %3.5f\n", in[ 0], in[ 4], in[ 8], in[12]);
ri.Printf(PRINT_ALL, "%3.5f %3.5f %3.5f %3.5f\n", in[ 1], in[ 5], in[ 9], in[13]);
ri.Printf(PRINT_ALL, "%3.5f %3.5f %3.5f %3.5f\n", in[ 2], in[ 6], in[10], in[14]);
ri.Printf(PRINT_ALL, "%3.5f %3.5f %3.5f %3.5f\n", in[ 3], in[ 7], in[11], in[15]);
}
void Matrix16Translation( vec3_t vec, matrix_t out )
{
out[ 0] = 1.0f; out[ 4] = 0.0f; out[ 8] = 0.0f; out[12] = vec[0];
out[ 1] = 0.0f; out[ 5] = 1.0f; out[ 9] = 0.0f; out[13] = vec[1];
out[ 2] = 0.0f; out[ 6] = 0.0f; out[10] = 1.0f; out[14] = vec[2];
out[ 3] = 0.0f; out[ 7] = 0.0f; out[11] = 0.0f; out[15] = 1.0f;
}
void Matrix16Ortho( float left, float right, float bottom, float top, float znear, float zfar, matrix_t out )
{
out[ 0] = 2.0f / (right - left); out[ 4] = 0.0f; out[ 8] = 0.0f; out[12] = -(right + left) / (right - left);
out[ 1] = 0.0f; out[ 5] = 2.0f / (top - bottom); out[ 9] = 0.0f; out[13] = -(top + bottom) / (top - bottom);
out[ 2] = 0.0f; out[ 6] = 0.0f; out[10] = 2.0f / (zfar - znear); out[14] = -(zfar + znear) / (zfar - znear);
out[ 3] = 0.0f; out[ 7] = 0.0f; out[11] = 0.0f; out[15] = 1.0f;
}
void Matrix16View(vec3_t axes[3], vec3_t origin, matrix_t out)
{
out[0] = axes[0][0];
out[1] = axes[1][0];
out[2] = axes[2][0];
out[3] = 0;
out[4] = axes[0][1];
out[5] = axes[1][1];
out[6] = axes[2][1];
out[7] = 0;
out[8] = axes[0][2];
out[9] = axes[1][2];
out[10] = axes[2][2];
out[11] = 0;
out[12] = -DotProduct(origin, axes[0]);
out[13] = -DotProduct(origin, axes[1]);
out[14] = -DotProduct(origin, axes[2]);
out[15] = 1;
}
void Matrix16SimpleInverse( const matrix_t in, matrix_t out)
{
vec3_t v;
float invSqrLen;
VectorCopy(in + 0, v);
invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);
out[ 0] = v[0]; out[ 4] = v[1]; out[ 8] = v[2]; out[12] = -DotProduct(v, &in[12]);
VectorCopy(in + 4, v);
invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);
out[ 1] = v[0]; out[ 5] = v[1]; out[ 9] = v[2]; out[13] = -DotProduct(v, &in[12]);
VectorCopy(in + 8, v);
invSqrLen = 1.0f / DotProduct(v, v); VectorScale(v, invSqrLen, v);
out[ 2] = v[0]; out[ 6] = v[1]; out[10] = v[2]; out[14] = -DotProduct(v, &in[12]);
out[ 3] = 0.0f; out[ 7] = 0.0f; out[11] = 0.0f; out[15] = 1.0f;
}
void VectorLerp( vec3_t a, vec3_t b, float lerp, vec3_t c)
{
c[0] = a[0] * (1.0f - lerp) + b[0] * lerp;
c[1] = a[1] * (1.0f - lerp) + b[1] * lerp;
c[2] = a[2] * (1.0f - lerp) + b[2] * lerp;
}
qboolean SpheresIntersect(vec3_t origin1, float radius1, vec3_t origin2, float radius2)
{
float radiusSum = radius1 + radius2;
vec3_t diff;
VectorSubtract(origin1, origin2, diff);
if (DotProduct(diff, diff) <= radiusSum * radiusSum)
{
return qtrue;
}
return qfalse;
}
void BoundingSphereOfSpheres(vec3_t origin1, float radius1, vec3_t origin2, float radius2, vec3_t origin3, float *radius3)
{
vec3_t diff;
VectorScale(origin1, 0.5f, origin3);
VectorMA(origin3, 0.5f, origin2, origin3);
VectorSubtract(origin1, origin2, diff);
*radius3 = VectorLength(diff) * 0.5f + MAX(radius1, radius2);
}
int NextPowerOfTwo(int in)
{
int out;
for (out = 1; out < in; out <<= 1)
;
return out;
}
unsigned short FloatToHalf(float in)
{
unsigned short out;
union
{
float f;
unsigned int i;
} f32;
int sign, inExponent, inFraction;
int outExponent, outFraction;
f32.f = in;
sign = (f32.i & 0x80000000) >> 31;
inExponent = (f32.i & 0x7F800000) >> 23;
inFraction = f32.i & 0x007FFFFF;
outExponent = CLAMP(inExponent - 127, -15, 16) + 15;
outFraction = 0;
if (outExponent == 0x1F)
{
if (inExponent == 0xFF && inFraction != 0)
outFraction = 0x3FF;
}
else if (outExponent == 0x00)
{
if (inExponent == 0x00 && inFraction != 0)
outFraction = 0x3FF;
}
else
outFraction = inFraction >> 13;
out = (sign << 15) | (outExponent << 10) | outFraction;
return out;
}