mirror of
https://github.com/UberGames/GtkRadiant.git
synced 2024-11-14 16:31:36 +00:00
12b372f89c
git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant@1 8a3a26a2-13c4-0310-b231-cf6edde360e5
153 lines
4.7 KiB
C++
153 lines
4.7 KiB
C++
/*
|
|
Copyright (C) 2001-2006, William Joseph.
|
|
All Rights Reserved.
|
|
|
|
This file is part of GtkRadiant.
|
|
|
|
GtkRadiant is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
GtkRadiant is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GtkRadiant; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#if !defined(INCLUDED_MATH_PLANE_H)
|
|
#define INCLUDED_MATH_PLANE_H
|
|
|
|
/// \file
|
|
/// \brief Plane data types and related operations.
|
|
|
|
#include "math/matrix.h"
|
|
|
|
/// \brief A plane equation stored in double-precision floating-point.
|
|
class Plane3
|
|
{
|
|
public:
|
|
double a, b, c, d;
|
|
|
|
Plane3()
|
|
{
|
|
}
|
|
Plane3(double _a, double _b, double _c, double _d)
|
|
: a(_a), b(_b), c(_c), d(_d)
|
|
{
|
|
}
|
|
template<typename Element>
|
|
Plane3(const BasicVector3<Element>& normal, double dist)
|
|
: a(normal.x()), b(normal.y()), c(normal.z()), d(dist)
|
|
{
|
|
}
|
|
|
|
BasicVector3<double>& normal()
|
|
{
|
|
return reinterpret_cast<BasicVector3<double>&>(*this);
|
|
}
|
|
const BasicVector3<double>& normal() const
|
|
{
|
|
return reinterpret_cast<const BasicVector3<double>&>(*this);
|
|
}
|
|
double& dist()
|
|
{
|
|
return d;
|
|
}
|
|
const double& dist() const
|
|
{
|
|
return d;
|
|
}
|
|
};
|
|
|
|
inline Plane3 plane3_normalised(const Plane3& plane)
|
|
{
|
|
double rmagnitude = 1.0 / sqrt(plane.a * plane.a + plane.b * plane.b + plane.c * plane.c);
|
|
return Plane3(
|
|
plane.a * rmagnitude,
|
|
plane.b * rmagnitude,
|
|
plane.c * rmagnitude,
|
|
plane.d * rmagnitude
|
|
);
|
|
}
|
|
|
|
inline Plane3 plane3_translated(const Plane3& plane, const Vector3& translation)
|
|
{
|
|
Plane3 transformed;
|
|
transformed.a = plane.a;
|
|
transformed.b = plane.b;
|
|
transformed.c = plane.c;
|
|
transformed.d = -((-plane.d * transformed.a + translation.x()) * transformed.a +
|
|
(-plane.d * transformed.b + translation.y()) * transformed.b +
|
|
(-plane.d * transformed.c + translation.z()) * transformed.c);
|
|
return transformed;
|
|
}
|
|
|
|
inline Plane3 plane3_transformed(const Plane3& plane, const Matrix4& transform)
|
|
{
|
|
Plane3 transformed;
|
|
transformed.a = transform[0] * plane.a + transform[4] * plane.b + transform[8] * plane.c;
|
|
transformed.b = transform[1] * plane.a + transform[5] * plane.b + transform[9] * plane.c;
|
|
transformed.c = transform[2] * plane.a + transform[6] * plane.b + transform[10] * plane.c;
|
|
transformed.d = -((-plane.d * transformed.a + transform[12]) * transformed.a +
|
|
(-plane.d * transformed.b + transform[13]) * transformed.b +
|
|
(-plane.d * transformed.c + transform[14]) * transformed.c);
|
|
return transformed;
|
|
}
|
|
|
|
inline Plane3 plane3_inverse_transformed(const Plane3& plane, const Matrix4& transform)
|
|
{
|
|
return Plane3
|
|
(
|
|
transform[ 0] * plane.a + transform[ 1] * plane.b + transform[ 2] * plane.c + transform[ 3] * plane.d,
|
|
transform[ 4] * plane.a + transform[ 5] * plane.b + transform[ 6] * plane.c + transform[ 7] * plane.d,
|
|
transform[ 8] * plane.a + transform[ 9] * plane.b + transform[10] * plane.c + transform[11] * plane.d,
|
|
transform[12] * plane.a + transform[13] * plane.b + transform[14] * plane.c + transform[15] * plane.d
|
|
);
|
|
}
|
|
|
|
inline Plane3 plane3_flipped(const Plane3& plane)
|
|
{
|
|
return Plane3(vector3_negated(plane.normal()), -plane.dist());
|
|
}
|
|
|
|
const double c_PLANE_NORMAL_EPSILON = 0.0001f;
|
|
const double c_PLANE_DIST_EPSILON = 0.02;
|
|
|
|
inline bool plane3_equal(const Plane3& self, const Plane3& other)
|
|
{
|
|
return vector3_equal_epsilon(self.normal(), other.normal(), c_PLANE_NORMAL_EPSILON)
|
|
&& float_equal_epsilon(self.dist(), other.dist(), c_PLANE_DIST_EPSILON);
|
|
}
|
|
|
|
inline bool plane3_opposing(const Plane3& self, const Plane3& other)
|
|
{
|
|
return plane3_equal(self, plane3_flipped(other));
|
|
}
|
|
|
|
inline bool plane3_valid(const Plane3& self)
|
|
{
|
|
return float_equal_epsilon(vector3_dot(self.normal(), self.normal()), 1.0, 0.01);
|
|
}
|
|
|
|
template<typename Element>
|
|
inline Plane3 plane3_for_points(const BasicVector3<Element>& p0, const BasicVector3<Element>& p1, const BasicVector3<Element>& p2)
|
|
{
|
|
Plane3 self;
|
|
self.normal() = vector3_normalised(vector3_cross(vector3_subtracted(p1, p0), vector3_subtracted(p2, p0)));
|
|
self.dist() = vector3_dot(p0, self.normal());
|
|
return self;
|
|
}
|
|
|
|
template<typename Element>
|
|
inline Plane3 plane3_for_points(const BasicVector3<Element> planepts[3])
|
|
{
|
|
return plane3_for_points(planepts[2], planepts[1], planepts[0]);
|
|
}
|
|
|
|
|
|
#endif
|