mirror of
https://github.com/UberGames/GtkRadiant.git
synced 2025-01-22 09:21:50 +00:00
9998050654
git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant/branches/ZeroRadiant@183 8a3a26a2-13c4-0310-b231-cf6edde360e5
190 lines
4 KiB
C++
190 lines
4 KiB
C++
/*
|
|
Copyright (C) 1999-2007 id Software, Inc. and contributors.
|
|
For a list of contributors, see the accompanying CONTRIBUTORS file.
|
|
|
|
This file is part of GtkRadiant.
|
|
|
|
GtkRadiant is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
GtkRadiant is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GtkRadiant; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#ifndef __MATH_QUATERNION_H__
|
|
#define __MATH_QUATERNION_H__
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
class idVec3_t;
|
|
class angles_t;
|
|
class mat3_t;
|
|
|
|
class quat_t {
|
|
public:
|
|
float x;
|
|
float y;
|
|
float z;
|
|
float w;
|
|
|
|
quat_t();
|
|
quat_t( float x, float y, float z, float w );
|
|
|
|
friend void toQuat( idVec3_t &src, quat_t &dst );
|
|
friend void toQuat( angles_t &src, quat_t &dst );
|
|
friend void toQuat( mat3_t &src, quat_t &dst );
|
|
|
|
float *vec4( void );
|
|
|
|
float operator[]( int index ) const;
|
|
float &operator[]( int index );
|
|
|
|
void set( float x, float y, float z, float w );
|
|
|
|
void operator=( quat_t a );
|
|
|
|
friend quat_t operator+( quat_t a, quat_t b );
|
|
quat_t &operator+=( quat_t a );
|
|
|
|
friend quat_t operator-( quat_t a, quat_t b );
|
|
quat_t &operator-=( quat_t a );
|
|
|
|
friend quat_t operator*( quat_t a, float b );
|
|
friend quat_t operator*( float a, quat_t b );
|
|
quat_t &operator*=( float a );
|
|
|
|
friend int operator==( quat_t a, quat_t b );
|
|
friend int operator!=( quat_t a, quat_t b );
|
|
|
|
float Length( void );
|
|
quat_t &Normalize( void );
|
|
|
|
quat_t operator-();
|
|
};
|
|
|
|
inline quat_t::quat_t() {
|
|
}
|
|
|
|
inline quat_t::quat_t( float x, float y, float z, float w ) {
|
|
this->x = x;
|
|
this->y = y;
|
|
this->z = z;
|
|
this->w = w;
|
|
}
|
|
|
|
inline float *quat_t::vec4( void ) {
|
|
return &x;
|
|
}
|
|
|
|
inline float quat_t::operator[]( int index ) const {
|
|
assert( ( index >= 0 ) && ( index < 4 ) );
|
|
return ( &x )[ index ];
|
|
}
|
|
|
|
inline float& quat_t::operator[]( int index ) {
|
|
assert( ( index >= 0 ) && ( index < 4 ) );
|
|
return ( &x )[ index ];
|
|
}
|
|
|
|
inline void quat_t::set( float x, float y, float z, float w ) {
|
|
this->x = x;
|
|
this->y = y;
|
|
this->z = z;
|
|
this->w = w;
|
|
}
|
|
|
|
inline void quat_t::operator=( quat_t a ) {
|
|
x = a.x;
|
|
y = a.y;
|
|
z = a.z;
|
|
w = a.w;
|
|
}
|
|
|
|
inline quat_t operator+( quat_t a, quat_t b ) {
|
|
return quat_t( a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w );
|
|
}
|
|
|
|
inline quat_t& quat_t::operator+=( quat_t a ) {
|
|
x += a.x;
|
|
y += a.y;
|
|
z += a.z;
|
|
w += a.w;
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline quat_t operator-( quat_t a, quat_t b ) {
|
|
return quat_t( a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w );
|
|
}
|
|
|
|
inline quat_t& quat_t::operator-=( quat_t a ) {
|
|
x -= a.x;
|
|
y -= a.y;
|
|
z -= a.z;
|
|
w -= a.w;
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline quat_t operator*( quat_t a, float b ) {
|
|
return quat_t( a.x * b, a.y * b, a.z * b, a.w * b );
|
|
}
|
|
|
|
inline quat_t operator*( float a, quat_t b ) {
|
|
return b * a;
|
|
}
|
|
|
|
inline quat_t& quat_t::operator*=( float a ) {
|
|
x *= a;
|
|
y *= a;
|
|
z *= a;
|
|
w *= a;
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline int operator==( quat_t a, quat_t b ) {
|
|
return ( ( a.x == b.x ) && ( a.y == b.y ) && ( a.z == b.z ) && ( a.w == b.w ) );
|
|
}
|
|
|
|
inline int operator!=( quat_t a, quat_t b ) {
|
|
return ( ( a.x != b.x ) || ( a.y != b.y ) || ( a.z != b.z ) && ( a.w != b.w ) );
|
|
}
|
|
|
|
inline float quat_t::Length( void ) {
|
|
float length;
|
|
|
|
length = x * x + y * y + z * z + w * w;
|
|
return ( float )sqrt( length );
|
|
}
|
|
|
|
inline quat_t& quat_t::Normalize( void ) {
|
|
float length;
|
|
float ilength;
|
|
|
|
length = this->Length();
|
|
if ( length ) {
|
|
ilength = 1 / length;
|
|
x *= ilength;
|
|
y *= ilength;
|
|
z *= ilength;
|
|
w *= ilength;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline quat_t quat_t::operator-() {
|
|
return quat_t( -x, -y, -z, -w );
|
|
}
|
|
|
|
#endif /* !__MATH_QUATERNION_H__ */
|