gtkradiant/tools/quake3/q3map2/light_ydnar.c
Forest Hale 88cea027e6 ported over the 1.5 branch version of q3map2 which is newer
made Visual Studio files work in VS2005 Express
fixed a ton of warnings in VS2005 Express
fixed some compile problems on OpenSUSE 11.0


git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant/trunk@302 8a3a26a2-13c4-0310-b231-cf6edde360e5
2008-07-25 07:31:37 +00:00

3593 lines
93 KiB
C

/* -------------------------------------------------------------------------------
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
----------------------------------------------------------------------------------
This code has been altered significantly from its original form, to support
several games based on the Quake III Arena engine, in the form of "Q3Map2."
------------------------------------------------------------------------------- */
/* marker */
#define LIGHT_YDNAR_C
/* dependencies */
#include "q3map2.h"
/*
ColorToBytes()
ydnar: moved to here 2001-02-04
*/
void ColorToBytes( const float *color, byte *colorBytes, float scale )
{
int i;
float max, gamma;
vec3_t sample;
/* ydnar: scaling necessary for simulating r_overbrightBits on external lightmaps */
if( scale <= 0.0f )
scale = 1.0f;
/* make a local copy */
VectorScale( color, scale, sample );
/* muck with it */
gamma = 1.0f / lightmapGamma;
for( i = 0; i < 3; i++ )
{
/* handle negative light */
if( sample[ i ] < 0.0f )
{
sample[ i ] = 0.0f;
continue;
}
/* gamma */
sample[ i ] = pow( sample[ i ] / 255.0f, gamma ) * 255.0f;
}
/* clamp with color normalization */
max = sample[ 0 ];
if( sample[ 1 ] > max )
max = sample[ 1 ];
if( sample[ 2 ] > max )
max = sample[ 2 ];
if( max > 255.0f )
VectorScale( sample, (255.0f / max), sample );
/* compensate for ingame overbrighting/bitshifting */
VectorScale( sample, (1.0f / lightmapCompensate), sample );
/* store it off */
colorBytes[ 0 ] = sample[ 0 ];
colorBytes[ 1 ] = sample[ 1 ];
colorBytes[ 2 ] = sample[ 2 ];
}
/* -------------------------------------------------------------------------------
this section deals with phong shading (normal interpolation across brush faces)
------------------------------------------------------------------------------- */
/*
SmoothNormals()
smooths together coincident vertex normals across the bsp
*/
#define MAX_SAMPLES 256
#define THETA_EPSILON 0.000001
#define EQUAL_NORMAL_EPSILON 0.01
void SmoothNormals( void )
{
int i, j, k, f, cs, numVerts, numVotes, fOld, start;
float shadeAngle, defaultShadeAngle, maxShadeAngle, dot, testAngle;
bspDrawSurface_t *ds;
shaderInfo_t *si;
float *shadeAngles;
byte *smoothed;
vec3_t average, diff;
int indexes[ MAX_SAMPLES ];
vec3_t votes[ MAX_SAMPLES ];
/* allocate shade angle table */
shadeAngles = safe_malloc( numBSPDrawVerts * sizeof( float ) );
memset( shadeAngles, 0, numBSPDrawVerts * sizeof( float ) );
/* allocate smoothed table */
cs = (numBSPDrawVerts / 8) + 1;
smoothed = safe_malloc( cs );
memset( smoothed, 0, cs );
/* set default shade angle */
defaultShadeAngle = DEG2RAD( shadeAngleDegrees );
maxShadeAngle = 0;
/* run through every surface and flag verts belonging to non-lightmapped surfaces
and set per-vertex smoothing angle */
for( i = 0; i < numBSPDrawSurfaces; i++ )
{
/* get drawsurf */
ds = &bspDrawSurfaces[ i ];
/* get shader for shade angle */
si = surfaceInfos[ i ].si;
if( si->shadeAngleDegrees )
shadeAngle = DEG2RAD( si->shadeAngleDegrees );
else
shadeAngle = defaultShadeAngle;
if( shadeAngle > maxShadeAngle )
maxShadeAngle = shadeAngle;
/* flag its verts */
for( j = 0; j < ds->numVerts; j++ )
{
f = ds->firstVert + j;
shadeAngles[ f ] = shadeAngle;
if( ds->surfaceType == MST_TRIANGLE_SOUP )
smoothed[ f >> 3 ] |= (1 << (f & 7));
}
/* ydnar: optional force-to-trisoup */
if( trisoup && ds->surfaceType == MST_PLANAR )
{
ds->surfaceType = MST_TRIANGLE_SOUP;
ds->lightmapNum[ 0 ] = -3;
}
}
/* bail if no surfaces have a shade angle */
if( maxShadeAngle == 0 )
{
free( shadeAngles );
free( smoothed );
return;
}
/* init pacifier */
fOld = -1;
start = I_FloatTime();
/* go through the list of vertexes */
for( i = 0; i < numBSPDrawVerts; i++ )
{
/* print pacifier */
f = 10 * i / numBSPDrawVerts;
if( f != fOld )
{
fOld = f;
Sys_Printf( "%i...", f );
}
/* already smoothed? */
if( smoothed[ i >> 3 ] & (1 << (i & 7)) )
continue;
/* clear */
VectorClear( average );
numVerts = 0;
numVotes = 0;
/* build a table of coincident vertexes */
for( j = i; j < numBSPDrawVerts && numVerts < MAX_SAMPLES; j++ )
{
/* already smoothed? */
if( smoothed[ j >> 3 ] & (1 << (j & 7)) )
continue;
/* test vertexes */
if( VectorCompare( yDrawVerts[ i ].xyz, yDrawVerts[ j ].xyz ) == qfalse )
continue;
/* use smallest shade angle */
shadeAngle = (shadeAngles[ i ] < shadeAngles[ j ] ? shadeAngles[ i ] : shadeAngles[ j ]);
/* check shade angle */
dot = DotProduct( bspDrawVerts[ i ].normal, bspDrawVerts[ j ].normal );
if( dot > 1.0 )
dot = 1.0;
else if( dot < -1.0 )
dot = -1.0;
testAngle = acos( dot ) + THETA_EPSILON;
if( testAngle >= shadeAngle )
{
//Sys_Printf( "F(%3.3f >= %3.3f) ", RAD2DEG( testAngle ), RAD2DEG( shadeAngle ) );
continue;
}
//Sys_Printf( "P(%3.3f < %3.3f) ", RAD2DEG( testAngle ), RAD2DEG( shadeAngle ) );
/* add to the list */
indexes[ numVerts++ ] = j;
/* flag vertex */
smoothed[ j >> 3 ] |= (1 << (j & 7));
/* see if this normal has already been voted */
for( k = 0; k < numVotes; k++ )
{
VectorSubtract( bspDrawVerts[ j ].normal, votes[ k ], diff );
if( fabs( diff[ 0 ] ) < EQUAL_NORMAL_EPSILON &&
fabs( diff[ 1 ] ) < EQUAL_NORMAL_EPSILON &&
fabs( diff[ 2 ] ) < EQUAL_NORMAL_EPSILON )
break;
}
/* add a new vote? */
if( k == numVotes && numVotes < MAX_SAMPLES )
{
VectorAdd( average, bspDrawVerts[ j ].normal, average );
VectorCopy( bspDrawVerts[ j ].normal, votes[ numVotes ] );
numVotes++;
}
}
/* don't average for less than 2 verts */
if( numVerts < 2 )
continue;
/* average normal */
if( VectorNormalize( average, average ) > 0 )
{
/* smooth */
for( j = 0; j < numVerts; j++ )
VectorCopy( average, yDrawVerts[ indexes[ j ] ].normal );
}
}
/* free the tables */
free( shadeAngles );
free( smoothed );
/* print time */
Sys_Printf( " (%i)\n", (int) (I_FloatTime() - start) );
}
/* -------------------------------------------------------------------------------
this section deals with phong shaded lightmap tracing
------------------------------------------------------------------------------- */
/* 9th rewrite (recursive subdivision of a lightmap triangle) */
/*
CalcTangentVectors()
calculates the st tangent vectors for normalmapping
*/
static qboolean CalcTangentVectors( int numVerts, bspDrawVert_t **dv, vec3_t *stv, vec3_t *ttv )
{
int i;
float bb, s, t;
vec3_t bary;
/* calculate barycentric basis for the triangle */
bb = (dv[ 1 ]->st[ 0 ] - dv[ 0 ]->st[ 0 ]) * (dv[ 2 ]->st[ 1 ] - dv[ 0 ]->st[ 1 ]) - (dv[ 2 ]->st[ 0 ] - dv[ 0 ]->st[ 0 ]) * (dv[ 1 ]->st[ 1 ] - dv[ 0 ]->st[ 1 ]);
if( fabs( bb ) < 0.00000001f )
return qfalse;
/* do each vertex */
for( i = 0; i < numVerts; i++ )
{
/* calculate s tangent vector */
s = dv[ i ]->st[ 0 ] + 10.0f;
t = dv[ i ]->st[ 1 ];
bary[ 0 ] = ((dv[ 1 ]->st[ 0 ] - s) * (dv[ 2 ]->st[ 1 ] - t) - (dv[ 2 ]->st[ 0 ] - s) * (dv[ 1 ]->st[ 1 ] - t)) / bb;
bary[ 1 ] = ((dv[ 2 ]->st[ 0 ] - s) * (dv[ 0 ]->st[ 1 ] - t) - (dv[ 0 ]->st[ 0 ] - s) * (dv[ 2 ]->st[ 1 ] - t)) / bb;
bary[ 2 ] = ((dv[ 0 ]->st[ 0 ] - s) * (dv[ 1 ]->st[ 1 ] - t) - (dv[ 1 ]->st[ 0 ] - s) * (dv[ 0 ]->st[ 1 ] - t)) / bb;
stv[ i ][ 0 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 0 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 0 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 0 ];
stv[ i ][ 1 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 1 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 1 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 1 ];
stv[ i ][ 2 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 2 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 2 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 2 ];
VectorSubtract( stv[ i ], dv[ i ]->xyz, stv[ i ] );
VectorNormalize( stv[ i ], stv[ i ] );
/* calculate t tangent vector */
s = dv[ i ]->st[ 0 ];
t = dv[ i ]->st[ 1 ] + 10.0f;
bary[ 0 ] = ((dv[ 1 ]->st[ 0 ] - s) * (dv[ 2 ]->st[ 1 ] - t) - (dv[ 2 ]->st[ 0 ] - s) * (dv[ 1 ]->st[ 1 ] - t)) / bb;
bary[ 1 ] = ((dv[ 2 ]->st[ 0 ] - s) * (dv[ 0 ]->st[ 1 ] - t) - (dv[ 0 ]->st[ 0 ] - s) * (dv[ 2 ]->st[ 1 ] - t)) / bb;
bary[ 2 ] = ((dv[ 0 ]->st[ 0 ] - s) * (dv[ 1 ]->st[ 1 ] - t) - (dv[ 1 ]->st[ 0 ] - s) * (dv[ 0 ]->st[ 1 ] - t)) / bb;
ttv[ i ][ 0 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 0 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 0 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 0 ];
ttv[ i ][ 1 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 1 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 1 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 1 ];
ttv[ i ][ 2 ] = bary[ 0 ] * dv[ 0 ]->xyz[ 2 ] + bary[ 1 ] * dv[ 1 ]->xyz[ 2 ] + bary[ 2 ] * dv[ 2 ]->xyz[ 2 ];
VectorSubtract( ttv[ i ], dv[ i ]->xyz, ttv[ i ] );
VectorNormalize( ttv[ i ], ttv[ i ] );
/* debug code */
//% Sys_FPrintf( SYS_VRB, "%d S: (%f %f %f) T: (%f %f %f)\n", i,
//% stv[ i ][ 0 ], stv[ i ][ 1 ], stv[ i ][ 2 ], ttv[ i ][ 0 ], ttv[ i ][ 1 ], ttv[ i ][ 2 ] );
}
/* return to caller */
return qtrue;
}
/*
PerturbNormal()
perterbs the normal by the shader's normalmap in tangent space
*/
static void PerturbNormal( bspDrawVert_t *dv, shaderInfo_t *si, vec3_t pNormal, vec3_t stv[ 3 ], vec3_t ttv[ 3 ] )
{
int i;
vec4_t bump;
/* passthrough */
VectorCopy( dv->normal, pNormal );
/* sample normalmap */
if( RadSampleImage( si->normalImage->pixels, si->normalImage->width, si->normalImage->height, dv->st, bump ) == qfalse )
return;
/* remap sampled normal from [0,255] to [-1,-1] */
for( i = 0; i < 3; i++ )
bump[ i ] = (bump[ i ] - 127.0f) * (1.0f / 127.5f);
/* scale tangent vectors and add to original normal */
VectorMA( dv->normal, bump[ 0 ], stv[ 0 ], pNormal );
VectorMA( pNormal, bump[ 1 ], ttv[ 0 ], pNormal );
VectorMA( pNormal, bump[ 2 ], dv->normal, pNormal );
/* renormalize and return */
VectorNormalize( pNormal, pNormal );
}
/*
MapSingleLuxel()
maps a luxel for triangle bv at
*/
#define NUDGE 0.5f
#define BOGUS_NUDGE -99999.0f
static int MapSingleLuxel( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv, vec4_t plane, float pass, vec3_t stv[ 3 ], vec3_t ttv[ 3 ] )
{
int i, x, y, numClusters, *clusters, pointCluster, *cluster;
float *luxel, *origin, *normal, d, lightmapSampleOffset;
shaderInfo_t *si;
vec3_t pNormal;
vec3_t vecs[ 3 ];
vec3_t nudged;
float *nudge;
static float nudges[][ 2 ] =
{
//%{ 0, 0 }, /* try center first */
{ -NUDGE, 0 }, /* left */
{ NUDGE, 0 }, /* right */
{ 0, NUDGE }, /* up */
{ 0, -NUDGE }, /* down */
{ -NUDGE, NUDGE }, /* left/up */
{ NUDGE, -NUDGE }, /* right/down */
{ NUDGE, NUDGE }, /* right/up */
{ -NUDGE, -NUDGE }, /* left/down */
{ BOGUS_NUDGE, BOGUS_NUDGE }
};
/* find luxel xy coords (fixme: subtract 0.5?) */
x = dv->lightmap[ 0 ][ 0 ];
y = dv->lightmap[ 0 ][ 1 ];
if( x < 0 )
x = 0;
else if( x >= lm->sw )
x = lm->sw - 1;
if( y < 0 )
y = 0;
else if( y >= lm->sh )
y = lm->sh - 1;
/* set shader and cluster list */
if( info != NULL )
{
si = info->si;
numClusters = info->numSurfaceClusters;
clusters = &surfaceClusters[ info->firstSurfaceCluster ];
}
else
{
si = NULL;
numClusters = 0;
clusters = NULL;
}
/* get luxel, origin, cluster, and normal */
luxel = SUPER_LUXEL( 0, x, y );
origin = SUPER_ORIGIN( x, y );
normal = SUPER_NORMAL( x, y );
cluster = SUPER_CLUSTER( x, y );
/* don't attempt to remap occluded luxels for planar surfaces */
if( (*cluster) == CLUSTER_OCCLUDED && lm->plane != NULL )
return (*cluster);
/* only average the normal for premapped luxels */
else if( (*cluster) >= 0 )
{
/* do bumpmap calculations */
if( stv != NULL )
PerturbNormal( dv, si, pNormal, stv, ttv );
else
VectorCopy( dv->normal, pNormal );
/* add the additional normal data */
VectorAdd( normal, pNormal, normal );
luxel[ 3 ] += 1.0f;
return (*cluster);
}
/* otherwise, unmapped luxels (*cluster == CLUSTER_UNMAPPED) will have their full attributes calculated */
/* get origin */
/* axial lightmap projection */
if( lm->vecs != NULL )
{
/* calculate an origin for the sample from the lightmap vectors */
VectorCopy( lm->origin, origin );
for( i = 0; i < 3; i++ )
{
/* add unless it's the axis, which is taken care of later */
if( i == lm->axisNum )
continue;
origin[ i ] += (x * lm->vecs[ 0 ][ i ]) + (y * lm->vecs[ 1 ][ i ]);
}
/* project the origin onto the plane */
d = DotProduct( origin, plane ) - plane[ 3 ];
d /= plane[ lm->axisNum ];
origin[ lm->axisNum ] -= d;
}
/* non axial lightmap projection (explicit xyz) */
else
VectorCopy( dv->xyz, origin );
/* planar surfaces have precalculated lightmap vectors for nudging */
if( lm->plane != NULL )
{
VectorCopy( lm->vecs[ 0 ], vecs[ 0 ] );
VectorCopy( lm->vecs[ 1 ], vecs[ 1 ] );
VectorCopy( lm->plane, vecs[ 2 ] );
}
/* non-planar surfaces must calculate them */
else
{
if( plane != NULL )
VectorCopy( plane, vecs[ 2 ] );
else
VectorCopy( dv->normal, vecs[ 2 ] );
MakeNormalVectors( vecs[ 2 ], vecs[ 0 ], vecs[ 1 ] );
}
/* push the origin off the surface a bit */
if( si != NULL )
lightmapSampleOffset = si->lightmapSampleOffset;
else
lightmapSampleOffset = DEFAULT_LIGHTMAP_SAMPLE_OFFSET;
if( lm->axisNum < 0 )
VectorMA( origin, lightmapSampleOffset, vecs[ 2 ], origin );
else if( vecs[ 2 ][ lm->axisNum ] < 0.0f )
origin[ lm->axisNum ] -= lightmapSampleOffset;
else
origin[ lm->axisNum ] += lightmapSampleOffset;
/* get cluster */
pointCluster = ClusterForPointExtFilter( origin, LUXEL_EPSILON, numClusters, clusters );
/* another retarded hack, storing nudge count in luxel[ 1 ] */
luxel[ 1 ] = 0.0f;
/* point in solid? (except in dark mode) */
if( pointCluster < 0 && dark == qfalse )
{
/* nudge the the location around */
nudge = nudges[ 0 ];
while( nudge[ 0 ] > BOGUS_NUDGE && pointCluster < 0 )
{
/* nudge the vector around a bit */
for( i = 0; i < 3; i++ )
{
/* set nudged point*/
nudged[ i ] = origin[ i ] + (nudge[ 0 ] * vecs[ 0 ][ i ]) + (nudge[ 1 ] * vecs[ 1 ][ i ]);
}
nudge += 2;
/* get pvs cluster */
pointCluster = ClusterForPointExtFilter( nudged, LUXEL_EPSILON, numClusters, clusters ); //% + 0.625 );
if( pointCluster >= 0 )
VectorCopy( nudged, origin );
luxel[ 1 ] += 1.0f;
}
}
/* as a last resort, if still in solid, try drawvert origin offset by normal (except in dark mode) */
if( pointCluster < 0 && si != NULL && dark == qfalse )
{
VectorMA( dv->xyz, lightmapSampleOffset, dv->normal, nudged );
pointCluster = ClusterForPointExtFilter( nudged, LUXEL_EPSILON, numClusters, clusters );
if( pointCluster >= 0 )
VectorCopy( nudged, origin );
luxel[ 1 ] += 1.0f;
}
/* valid? */
if( pointCluster < 0 )
{
(*cluster) = CLUSTER_OCCLUDED;
VectorClear( origin );
VectorClear( normal );
numLuxelsOccluded++;
return (*cluster);
}
/* debug code */
//% Sys_Printf( "%f %f %f\n", origin[ 0 ], origin[ 1 ], origin[ 2 ] );
/* do bumpmap calculations */
if( stv )
PerturbNormal( dv, si, pNormal, stv, ttv );
else
VectorCopy( dv->normal, pNormal );
/* store the cluster and normal */
(*cluster) = pointCluster;
VectorCopy( pNormal, normal );
/* store explicit mapping pass and implicit mapping pass */
luxel[ 0 ] = pass;
luxel[ 3 ] = 1.0f;
/* add to count */
numLuxelsMapped++;
/* return ok */
return (*cluster);
}
/*
MapTriangle_r()
recursively subdivides a triangle until its edges are shorter
than the distance between two luxels (thanks jc :)
*/
static void MapTriangle_r( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv[ 3 ], vec4_t plane, vec3_t stv[ 3 ], vec3_t ttv[ 3 ] )
{
bspDrawVert_t mid, *dv2[ 3 ];
int max;
/* map the vertexes */
#if 0
MapSingleLuxel( lm, info, dv[ 0 ], plane, 1, stv, ttv );
MapSingleLuxel( lm, info, dv[ 1 ], plane, 1, stv, ttv );
MapSingleLuxel( lm, info, dv[ 2 ], plane, 1, stv, ttv );
#endif
/* subdivide calc */
{
int i;
float *a, *b, dx, dy, dist, maxDist;
/* find the longest edge and split it */
max = -1;
maxDist = 0;
for( i = 0; i < 3; i++ )
{
/* get verts */
a = dv[ i ]->lightmap[ 0 ];
b = dv[ (i + 1) % 3 ]->lightmap[ 0 ];
/* get dists */
dx = a[ 0 ] - b[ 0 ];
dy = a[ 1 ] - b[ 1 ];
dist = (dx * dx) + (dy * dy); //% sqrt( (dx * dx) + (dy * dy) );
/* longer? */
if( dist > maxDist )
{
maxDist = dist;
max = i;
}
}
/* try to early out */
if( max < 0 || maxDist <= subdivideThreshold ) /* ydnar: was i < 0 instead of max < 0 (?) */
return;
}
/* split the longest edge and map it */
LerpDrawVert( dv[ max ], dv[ (max + 1) % 3 ], &mid );
MapSingleLuxel( lm, info, &mid, plane, 1, stv, ttv );
/* push the point up a little bit to account for fp creep (fixme: revisit this) */
//% VectorMA( mid.xyz, 2.0f, mid.normal, mid.xyz );
/* recurse to first triangle */
VectorCopy( dv, dv2 );
dv2[ max ] = &mid;
MapTriangle_r( lm, info, dv2, plane, stv, ttv );
/* recurse to second triangle */
VectorCopy( dv, dv2 );
dv2[ (max + 1) % 3 ] = &mid;
MapTriangle_r( lm, info, dv2, plane, stv, ttv );
}
/*
MapTriangle()
seed function for MapTriangle_r()
requires a cw ordered triangle
*/
static qboolean MapTriangle( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv[ 3 ], qboolean mapNonAxial )
{
int i;
vec4_t plane;
vec3_t *stv, *ttv, stvStatic[ 3 ], ttvStatic[ 3 ];
/* get plane if possible */
if( lm->plane != NULL )
{
VectorCopy( lm->plane, plane );
plane[ 3 ] = lm->plane[ 3 ];
}
/* otherwise make one from the points */
else if( PlaneFromPoints( plane, dv[ 0 ]->xyz, dv[ 1 ]->xyz, dv[ 2 ]->xyz ) == qfalse )
return qfalse;
/* check to see if we need to calculate texture->world tangent vectors */
if( info->si->normalImage != NULL && CalcTangentVectors( 3, dv, stvStatic, ttvStatic ) )
{
stv = stvStatic;
ttv = ttvStatic;
}
else
{
stv = NULL;
ttv = NULL;
}
/* map the vertexes */
MapSingleLuxel( lm, info, dv[ 0 ], plane, 1, stv, ttv );
MapSingleLuxel( lm, info, dv[ 1 ], plane, 1, stv, ttv );
MapSingleLuxel( lm, info, dv[ 2 ], plane, 1, stv, ttv );
/* 2002-11-20: prefer axial triangle edges */
if( mapNonAxial )
{
/* subdivide the triangle */
MapTriangle_r( lm, info, dv, plane, stv, ttv );
return qtrue;
}
for( i = 0; i < 3; i++ )
{
float *a, *b;
bspDrawVert_t *dv2[ 3 ];
/* get verts */
a = dv[ i ]->lightmap[ 0 ];
b = dv[ (i + 1) % 3 ]->lightmap[ 0 ];
/* make degenerate triangles for mapping edges */
if( fabs( a[ 0 ] - b[ 0 ] ) < 0.01f || fabs( a[ 1 ] - b[ 1 ] ) < 0.01f )
{
dv2[ 0 ] = dv[ i ];
dv2[ 1 ] = dv[ (i + 1) % 3 ];
dv2[ 2 ] = dv[ (i + 1) % 3 ];
/* map the degenerate triangle */
MapTriangle_r( lm, info, dv2, plane, stv, ttv );
}
}
return qtrue;
}
/*
MapQuad_r()
recursively subdivides a quad until its edges are shorter
than the distance between two luxels
*/
static void MapQuad_r( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv[ 4 ], vec4_t plane, vec3_t stv[ 4 ], vec3_t ttv[ 4 ] )
{
bspDrawVert_t mid[ 2 ], *dv2[ 4 ];
int max;
/* subdivide calc */
{
int i;
float *a, *b, dx, dy, dist, maxDist;
/* find the longest edge and split it */
max = -1;
maxDist = 0;
for( i = 0; i < 4; i++ )
{
/* get verts */
a = dv[ i ]->lightmap[ 0 ];
b = dv[ (i + 1) % 4 ]->lightmap[ 0 ];
/* get dists */
dx = a[ 0 ] - b[ 0 ];
dy = a[ 1 ] - b[ 1 ];
dist = (dx * dx) + (dy * dy); //% sqrt( (dx * dx) + (dy * dy) );
/* longer? */
if( dist > maxDist )
{
maxDist = dist;
max = i;
}
}
/* try to early out */
if( max < 0 || maxDist <= subdivideThreshold )
return;
}
/* we only care about even/odd edges */
max &= 1;
/* split the longest edges */
LerpDrawVert( dv[ max ], dv[ (max + 1) % 4 ], &mid[ 0 ] );
LerpDrawVert( dv[ max + 2 ], dv[ (max + 3) % 4 ], &mid[ 1 ] );
/* map the vertexes */
MapSingleLuxel( lm, info, &mid[ 0 ], plane, 1, stv, ttv );
MapSingleLuxel( lm, info, &mid[ 1 ], plane, 1, stv, ttv );
/* 0 and 2 */
if( max == 0 )
{
/* recurse to first quad */
dv2[ 0 ] = dv[ 0 ];
dv2[ 1 ] = &mid[ 0 ];
dv2[ 2 ] = &mid[ 1 ];
dv2[ 3 ] = dv[ 3 ];
MapQuad_r( lm, info, dv2, plane, stv, ttv );
/* recurse to second quad */
dv2[ 0 ] = &mid[ 0 ];
dv2[ 1 ] = dv[ 1 ];
dv2[ 2 ] = dv[ 2 ];
dv2[ 3 ] = &mid[ 1 ];
MapQuad_r( lm, info, dv2, plane, stv, ttv );
}
/* 1 and 3 */
else
{
/* recurse to first quad */
dv2[ 0 ] = dv[ 0 ];
dv2[ 1 ] = dv[ 1 ];
dv2[ 2 ] = &mid[ 0 ];
dv2[ 3 ] = &mid[ 1 ];
MapQuad_r( lm, info, dv2, plane, stv, ttv );
/* recurse to second quad */
dv2[ 0 ] = &mid[ 1 ];
dv2[ 1 ] = &mid[ 0 ];
dv2[ 2 ] = dv[ 2 ];
dv2[ 3 ] = dv[ 3 ];
MapQuad_r( lm, info, dv2, plane, stv, ttv );
}
}
/*
MapQuad()
seed function for MapQuad_r()
requires a cw ordered triangle quad
*/
#define QUAD_PLANAR_EPSILON 0.5f
static qboolean MapQuad( rawLightmap_t *lm, surfaceInfo_t *info, bspDrawVert_t *dv[ 4 ] )
{
float dist;
vec4_t plane;
vec3_t *stv, *ttv, stvStatic[ 4 ], ttvStatic[ 4 ];
/* get plane if possible */
if( lm->plane != NULL )
{
VectorCopy( lm->plane, plane );
plane[ 3 ] = lm->plane[ 3 ];
}
/* otherwise make one from the points */
else if( PlaneFromPoints( plane, dv[ 0 ]->xyz, dv[ 1 ]->xyz, dv[ 2 ]->xyz ) == qfalse )
return qfalse;
/* 4th point must fall on the plane */
dist = DotProduct( plane, dv[ 3 ]->xyz ) - plane[ 3 ];
if( fabs( dist ) > QUAD_PLANAR_EPSILON )
return qfalse;
/* check to see if we need to calculate texture->world tangent vectors */
if( info->si->normalImage != NULL && CalcTangentVectors( 4, dv, stvStatic, ttvStatic ) )
{
stv = stvStatic;
ttv = ttvStatic;
}
else
{
stv = NULL;
ttv = NULL;
}
/* map the vertexes */
MapSingleLuxel( lm, info, dv[ 0 ], plane, 1, stv, ttv );
MapSingleLuxel( lm, info, dv[ 1 ], plane, 1, stv, ttv );
MapSingleLuxel( lm, info, dv[ 2 ], plane, 1, stv, ttv );
MapSingleLuxel( lm, info, dv[ 3 ], plane, 1, stv, ttv );
/* subdivide the quad */
MapQuad_r( lm, info, dv, plane, stv, ttv );
return qtrue;
}
/*
MapRawLightmap()
maps the locations, normals, and pvs clusters for a raw lightmap
*/
#define VectorDivide( in, d, out ) VectorScale( in, (1.0f / (d)), out ) //% (out)[ 0 ] = (in)[ 0 ] / (d), (out)[ 1 ] = (in)[ 1 ] / (d), (out)[ 2 ] = (in)[ 2 ] / (d)
void MapRawLightmap( int rawLightmapNum )
{
int n, num, i, x, y, sx, sy, pw[ 5 ], r, *cluster, mapNonAxial;
float *luxel, *origin, *normal, samples, radius, pass;
rawLightmap_t *lm;
bspDrawSurface_t *ds;
surfaceInfo_t *info;
mesh_t src, *subdivided, *mesh;
bspDrawVert_t *verts, *dv[ 4 ], fake;
/* bail if this number exceeds the number of raw lightmaps */
if( rawLightmapNum >= numRawLightmaps )
return;
/* get lightmap */
lm = &rawLightmaps[ rawLightmapNum ];
/* -----------------------------------------------------------------
map referenced surfaces onto the raw lightmap
----------------------------------------------------------------- */
/* walk the list of surfaces on this raw lightmap */
for( n = 0; n < lm->numLightSurfaces; n++ )
{
/* with > 1 surface per raw lightmap, clear occluded */
if( n > 0 )
{
for( y = 0; y < lm->sh; y++ )
{
for( x = 0; x < lm->sw; x++ )
{
/* get cluster */
cluster = SUPER_CLUSTER( x, y );
if( *cluster < 0 )
*cluster = CLUSTER_UNMAPPED;
}
}
}
/* get surface */
num = lightSurfaces[ lm->firstLightSurface + n ];
ds = &bspDrawSurfaces[ num ];
info = &surfaceInfos[ num ];
/* bail if no lightmap to calculate */
if( info->lm != lm )
{
Sys_Printf( "!" );
continue;
}
/* map the surface onto the lightmap origin/cluster/normal buffers */
switch( ds->surfaceType )
{
case MST_PLANAR:
/* get verts */
verts = yDrawVerts + ds->firstVert;
/* map the triangles */
for( mapNonAxial = 0; mapNonAxial < 2; mapNonAxial++ )
{
for( i = 0; i < ds->numIndexes; i += 3 )
{
dv[ 0 ] = &verts[ bspDrawIndexes[ ds->firstIndex + i ] ];
dv[ 1 ] = &verts[ bspDrawIndexes[ ds->firstIndex + i + 1 ] ];
dv[ 2 ] = &verts[ bspDrawIndexes[ ds->firstIndex + i + 2 ] ];
MapTriangle( lm, info, dv, mapNonAxial );
}
}
break;
case MST_PATCH:
/* make a mesh from the drawsurf */
src.width = ds->patchWidth;
src.height = ds->patchHeight;
src.verts = &yDrawVerts[ ds->firstVert ];
//% subdivided = SubdivideMesh( src, 8, 512 );
subdivided = SubdivideMesh2( src, info->patchIterations );
/* fit it to the curve and remove colinear verts on rows/columns */
PutMeshOnCurve( *subdivided );
mesh = RemoveLinearMeshColumnsRows( subdivided );
FreeMesh( subdivided );
/* get verts */
verts = mesh->verts;
/* debug code */
#if 0
if( lm->plane )
{
Sys_Printf( "Planar patch: [%1.3f %1.3f %1.3f] [%1.3f %1.3f %1.3f] [%1.3f %1.3f %1.3f]\n",
lm->plane[ 0 ], lm->plane[ 1 ], lm->plane[ 2 ],
lm->vecs[ 0 ][ 0 ], lm->vecs[ 0 ][ 1 ], lm->vecs[ 0 ][ 2 ],
lm->vecs[ 1 ][ 0 ], lm->vecs[ 1 ][ 1 ], lm->vecs[ 1 ][ 2 ] );
}
#endif
/* map the mesh quads */
#if 0
for( mapNonAxial = 0; mapNonAxial < 2; mapNonAxial++ )
{
for( y = 0; y < (mesh->height - 1); y++ )
{
for( x = 0; x < (mesh->width - 1); x++ )
{
/* set indexes */
pw[ 0 ] = x + (y * mesh->width);
pw[ 1 ] = x + ((y + 1) * mesh->width);
pw[ 2 ] = x + 1 + ((y + 1) * mesh->width);
pw[ 3 ] = x + 1 + (y * mesh->width);
pw[ 4 ] = x + (y * mesh->width); /* same as pw[ 0 ] */
/* set radix */
r = (x + y) & 1;
/* get drawverts and map first triangle */
dv[ 0 ] = &verts[ pw[ r + 0 ] ];
dv[ 1 ] = &verts[ pw[ r + 1 ] ];
dv[ 2 ] = &verts[ pw[ r + 2 ] ];
MapTriangle( lm, info, dv, mapNonAxial );
/* get drawverts and map second triangle */
dv[ 0 ] = &verts[ pw[ r + 0 ] ];
dv[ 1 ] = &verts[ pw[ r + 2 ] ];
dv[ 2 ] = &verts[ pw[ r + 3 ] ];
MapTriangle( lm, info, dv, mapNonAxial );
}
}
}
#else
for( y = 0; y < (mesh->height - 1); y++ )
{
for( x = 0; x < (mesh->width - 1); x++ )
{
/* set indexes */
pw[ 0 ] = x + (y * mesh->width);
pw[ 1 ] = x + ((y + 1) * mesh->width);
pw[ 2 ] = x + 1 + ((y + 1) * mesh->width);
pw[ 3 ] = x + 1 + (y * mesh->width);
pw[ 4 ] = pw[ 0 ];
/* set radix */
r = (x + y) & 1;
/* attempt to map quad first */
dv[ 0 ] = &verts[ pw[ r + 0 ] ];
dv[ 1 ] = &verts[ pw[ r + 1 ] ];
dv[ 2 ] = &verts[ pw[ r + 2 ] ];
dv[ 3 ] = &verts[ pw[ r + 3 ] ];
if( MapQuad( lm, info, dv ) )
continue;
/* get drawverts and map first triangle */
MapTriangle( lm, info, dv, mapNonAxial );
/* get drawverts and map second triangle */
dv[ 1 ] = &verts[ pw[ r + 2 ] ];
dv[ 2 ] = &verts[ pw[ r + 3 ] ];
MapTriangle( lm, info, dv, mapNonAxial );
}
}
#endif
/* free the mesh */
FreeMesh( mesh );
break;
default:
break;
}
}
/* -----------------------------------------------------------------
average and clean up luxel normals
----------------------------------------------------------------- */
/* walk the luxels */
for( y = 0; y < lm->sh; y++ )
{
for( x = 0; x < lm->sw; x++ )
{
/* get luxel */
luxel = SUPER_LUXEL( 0, x, y );
normal = SUPER_NORMAL( x, y );
cluster = SUPER_CLUSTER( x, y );
/* only look at mapped luxels */
if( *cluster < 0 )
continue;
/* the normal data could be the sum of multiple samples */
if( luxel[ 3 ] > 1.0f )
VectorNormalize( normal, normal );
/* mark this luxel as having only one normal */
luxel[ 3 ] = 1.0f;
}
}
/* non-planar surfaces stop here */
if( lm->plane == NULL )
return;
/* -----------------------------------------------------------------
map occluded or unuxed luxels
----------------------------------------------------------------- */
/* walk the luxels */
radius = floor( superSample / 2 );
radius = radius > 0 ? radius : 1.0f;
radius += 1.0f;
for( pass = 2.0f; pass <= radius; pass += 1.0f )
{
for( y = 0; y < lm->sh; y++ )
{
for( x = 0; x < lm->sw; x++ )
{
/* get luxel */
luxel = SUPER_LUXEL( 0, x, y );
normal = SUPER_NORMAL( x, y );
cluster = SUPER_CLUSTER( x, y );
/* only look at unmapped luxels */
if( *cluster != CLUSTER_UNMAPPED )
continue;
/* divine a normal and origin from neighboring luxels */
VectorClear( fake.xyz );
VectorClear( fake.normal );
fake.lightmap[ 0 ][ 0 ] = x; //% 0.0001 + x;
fake.lightmap[ 0 ][ 1 ] = y; //% 0.0001 + y;
samples = 0.0f;
for( sy = (y - 1); sy <= (y + 1); sy++ )
{
if( sy < 0 || sy >= lm->sh )
continue;
for( sx = (x - 1); sx <= (x + 1); sx++ )
{
if( sx < 0 || sx >= lm->sw || (sx == x && sy == y) )
continue;
/* get neighboring luxel */
luxel = SUPER_LUXEL( 0, sx, sy );
origin = SUPER_ORIGIN( sx, sy );
normal = SUPER_NORMAL( sx, sy );
cluster = SUPER_CLUSTER( sx, sy );
/* only consider luxels mapped in previous passes */
if( *cluster < 0 || luxel[ 0 ] >= pass )
continue;
/* add its distinctiveness to our own */
VectorAdd( fake.xyz, origin, fake.xyz );
VectorAdd( fake.normal, normal, fake.normal );
samples += luxel[ 3 ];
}
}
/* any samples? */
if( samples == 0.0f )
continue;
/* average */
VectorDivide( fake.xyz, samples, fake.xyz );
//% VectorDivide( fake.normal, samples, fake.normal );
if( VectorNormalize( fake.normal, fake.normal ) == 0.0f )
continue;
/* map the fake vert */
MapSingleLuxel( lm, NULL, &fake, lm->plane, pass, NULL, NULL );
}
}
}
/* -----------------------------------------------------------------
average and clean up luxel normals
----------------------------------------------------------------- */
/* walk the luxels */
for( y = 0; y < lm->sh; y++ )
{
for( x = 0; x < lm->sw; x++ )
{
/* get luxel */
luxel = SUPER_LUXEL( 0, x, y );
normal = SUPER_NORMAL( x, y );
cluster = SUPER_CLUSTER( x, y );
/* only look at mapped luxels */
if( *cluster < 0 )
continue;
/* the normal data could be the sum of multiple samples */
if( luxel[ 3 ] > 1.0f )
VectorNormalize( normal, normal );
/* mark this luxel as having only one normal */
luxel[ 3 ] = 1.0f;
}
}
/* debug code */
#if 0
Sys_Printf( "\n" );
for( y = 0; y < lm->sh; y++ )
{
for( x = 0; x < lm->sw; x++ )
{
vec3_t mins, maxs;
cluster = SUPER_CLUSTER( x, y );
origin = SUPER_ORIGIN( x, y );
normal = SUPER_NORMAL( x, y );
luxel = SUPER_LUXEL( x, y );
if( *cluster < 0 )
continue;
/* check if within the bounding boxes of all surfaces referenced */
ClearBounds( mins, maxs );
for( n = 0; n < lm->numLightSurfaces; n++ )
{
int TOL;
info = &surfaceInfos[ lightSurfaces[ lm->firstLightSurface + n ] ];
TOL = info->sampleSize + 2;
AddPointToBounds( info->mins, mins, maxs );
AddPointToBounds( info->maxs, mins, maxs );
if( origin[ 0 ] > (info->mins[ 0 ] - TOL) && origin[ 0 ] < (info->maxs[ 0 ] + TOL) &&
origin[ 1 ] > (info->mins[ 1 ] - TOL) && origin[ 1 ] < (info->maxs[ 1 ] + TOL) &&
origin[ 2 ] > (info->mins[ 2 ] - TOL) && origin[ 2 ] < (info->maxs[ 2 ] + TOL) )
break;
}
/* inside? */
if( n < lm->numLightSurfaces )
continue;
/* report bogus origin */
Sys_Printf( "%6d [%2d,%2d] (%4d): XYZ(%+4.1f %+4.1f %+4.1f) LO(%+4.1f %+4.1f %+4.1f) HI(%+4.1f %+4.1f %+4.1f) <%3.0f>\n",
rawLightmapNum, x, y, *cluster,
origin[ 0 ], origin[ 1 ], origin[ 2 ],
mins[ 0 ], mins[ 1 ], mins[ 2 ],
maxs[ 0 ], maxs[ 1 ], maxs[ 2 ],
luxel[ 3 ] );
}
}
#endif
}
/*
SetupDirt()
sets up dirtmap (ambient occlusion)
*/
#define DIRT_CONE_ANGLE 88 /* degrees */
#define DIRT_NUM_ANGLE_STEPS 16
#define DIRT_NUM_ELEVATION_STEPS 3
#define DIRT_NUM_VECTORS (DIRT_NUM_ANGLE_STEPS * DIRT_NUM_ELEVATION_STEPS)
static vec3_t dirtVectors[ DIRT_NUM_VECTORS ];
static int numDirtVectors = 0;
void SetupDirt( void )
{
int i, j;
float angle, elevation, angleStep, elevationStep;
/* note it */
Sys_FPrintf( SYS_VRB, "--- SetupDirt ---\n" );
/* calculate angular steps */
angleStep = DEG2RAD( 360.0f / DIRT_NUM_ANGLE_STEPS );
elevationStep = DEG2RAD( DIRT_CONE_ANGLE / DIRT_NUM_ELEVATION_STEPS );
/* iterate angle */
angle = 0.0f;
for( i = 0, angle = 0.0f; i < DIRT_NUM_ANGLE_STEPS; i++, angle += angleStep )
{
/* iterate elevation */
for( j = 0, elevation = elevationStep * 0.5f; j < DIRT_NUM_ELEVATION_STEPS; j++, elevation += elevationStep )
{
dirtVectors[ numDirtVectors ][ 0 ] = sin( elevation ) * cos( angle );
dirtVectors[ numDirtVectors ][ 1 ] = sin( elevation ) * sin( angle );
dirtVectors[ numDirtVectors ][ 2 ] = cos( elevation );
numDirtVectors++;
}
}
/* emit some statistics */
Sys_FPrintf( SYS_VRB, "%9d dirtmap vectors\n", numDirtVectors );
}
/*
DirtForSample()
calculates dirt value for a given sample
*/
float DirtForSample( trace_t *trace )
{
int i;
float gatherDirt, outDirt, angle, elevation, ooDepth;
vec3_t normal, worldUp, myUp, myRt, temp, direction, displacement;
/* dummy check */
if( !dirty )
return 1.0f;
if( trace == NULL || trace->cluster < 0 )
return 0.0f;
/* setup */
gatherDirt = 0.0f;
ooDepth = 1.0f / dirtDepth;
VectorCopy( trace->normal, normal );
/* check if the normal is aligned to the world-up */
if( normal[ 0 ] == 0.0f && normal[ 1 ] == 0.0f )
{
if( normal[ 2 ] == 1.0f )
{
VectorSet( myRt, 1.0f, 0.0f, 0.0f );
VectorSet( myUp, 0.0f, 1.0f, 0.0f );
}
else if( normal[ 2 ] == -1.0f )
{
VectorSet( myRt, -1.0f, 0.0f, 0.0f );
VectorSet( myUp, 0.0f, 1.0f, 0.0f );
}
}
else
{
VectorSet( worldUp, 0.0f, 0.0f, 1.0f );
CrossProduct( normal, worldUp, myRt );
VectorNormalize( myRt, myRt );
CrossProduct( myRt, normal, myUp );
VectorNormalize( myUp, myUp );
}
/* 1 = random mode, 0 (well everything else) = non-random mode */
if( dirtMode == 1 )
{
/* iterate */
for( i = 0; i < numDirtVectors; i++ )
{
/* get random vector */
angle = Random() * DEG2RAD( 360.0f );
elevation = Random() * DEG2RAD( DIRT_CONE_ANGLE );
temp[ 0 ] = cos( angle ) * sin( elevation );
temp[ 1 ] = sin( angle ) * sin( elevation );
temp[ 2 ] = cos( elevation );
/* transform into tangent space */
direction[ 0 ] = myRt[ 0 ] * temp[ 0 ] + myUp[ 0 ] * temp[ 1 ] + normal[ 0 ] * temp[ 2 ];
direction[ 1 ] = myRt[ 1 ] * temp[ 0 ] + myUp[ 1 ] * temp[ 1 ] + normal[ 1 ] * temp[ 2 ];
direction[ 2 ] = myRt[ 2 ] * temp[ 0 ] + myUp[ 2 ] * temp[ 1 ] + normal[ 2 ] * temp[ 2 ];
/* set endpoint */
VectorMA( trace->origin, dirtDepth, direction, trace->end );
SetupTrace( trace );
/* trace */
TraceLine( trace );
if( trace->opaque )
{
VectorSubtract( trace->hit, trace->origin, displacement );
gatherDirt += 1.0f - ooDepth * VectorLength( displacement );
}
}
}
else
{
/* iterate through ordered vectors */
for( i = 0; i < numDirtVectors; i++ )
{
/* transform vector into tangent space */
direction[ 0 ] = myRt[ 0 ] * dirtVectors[ i ][ 0 ] + myUp[ 0 ] * dirtVectors[ i ][ 1 ] + normal[ 0 ] * dirtVectors[ i ][ 2 ];
direction[ 1 ] = myRt[ 1 ] * dirtVectors[ i ][ 0 ] + myUp[ 1 ] * dirtVectors[ i ][ 1 ] + normal[ 1 ] * dirtVectors[ i ][ 2 ];
direction[ 2 ] = myRt[ 2 ] * dirtVectors[ i ][ 0 ] + myUp[ 2 ] * dirtVectors[ i ][ 1 ] + normal[ 2 ] * dirtVectors[ i ][ 2 ];
/* set endpoint */
VectorMA( trace->origin, dirtDepth, direction, trace->end );
SetupTrace( trace );
/* trace */
TraceLine( trace );
if( trace->opaque )
{
VectorSubtract( trace->hit, trace->origin, displacement );
gatherDirt += 1.0f - ooDepth * VectorLength( displacement );
}
}
}
/* direct ray */
VectorMA( trace->origin, dirtDepth, normal, trace->end );
SetupTrace( trace );
/* trace */
TraceLine( trace );
if( trace->opaque )
{
VectorSubtract( trace->hit, trace->origin, displacement );
gatherDirt += 1.0f - ooDepth * VectorLength( displacement );
}
/* early out */
if( gatherDirt <= 0.0f )
return 1.0f;
/* apply gain (does this even do much? heh) */
outDirt = pow( gatherDirt / (numDirtVectors + 1), dirtGain );
if( outDirt > 1.0f )
outDirt = 1.0f;
/* apply scale */
outDirt *= dirtScale;
if( outDirt > 1.0f )
outDirt = 1.0f;
/* return to sender */
return 1.0f - outDirt;
}
/*
DirtyRawLightmap()
calculates dirty fraction for each luxel
*/
void DirtyRawLightmap( int rawLightmapNum )
{
int i, x, y, sx, sy, *cluster;
float *origin, *normal, *dirt, *dirt2, average, samples;
rawLightmap_t *lm;
surfaceInfo_t *info;
trace_t trace;
/* bail if this number exceeds the number of raw lightmaps */
if( rawLightmapNum >= numRawLightmaps )
return;
/* get lightmap */
lm = &rawLightmaps[ rawLightmapNum ];
/* setup trace */
trace.testOcclusion = qtrue;
trace.forceSunlight = qfalse;
trace.recvShadows = lm->recvShadows;
trace.numSurfaces = lm->numLightSurfaces;
trace.surfaces = &lightSurfaces[ lm->firstLightSurface ];
trace.inhibitRadius = DEFAULT_INHIBIT_RADIUS;
trace.testAll = qfalse;
/* twosided lighting (may or may not be a good idea for lightmapped stuff) */
trace.twoSided = qfalse;
for( i = 0; i < trace.numSurfaces; i++ )
{
/* get surface */
info = &surfaceInfos[ trace.surfaces[ i ] ];
/* check twosidedness */
if( info->si->twoSided )
{
trace.twoSided = qtrue;
break;
}
}
/* gather dirt */
for( y = 0; y < lm->sh; y++ )
{
for( x = 0; x < lm->sw; x++ )
{
/* get luxel */
cluster = SUPER_CLUSTER( x, y );
origin = SUPER_ORIGIN( x, y );
normal = SUPER_NORMAL( x, y );
dirt = SUPER_DIRT( x, y );
/* set default dirt */
*dirt = 0.0f;
/* only look at mapped luxels */
if( *cluster < 0 )
continue;
/* copy to trace */
trace.cluster = *cluster;
VectorCopy( origin, trace.origin );
VectorCopy( normal, trace.normal );
/* get dirt */
*dirt = DirtForSample( &trace );
}
}
/* testing no filtering */
//% return;
/* filter dirt */
for( y = 0; y < lm->sh; y++ )
{
for( x = 0; x < lm->sw; x++ )
{
/* get luxel */
cluster = SUPER_CLUSTER( x, y );
dirt = SUPER_DIRT( x, y );
/* filter dirt by adjacency to unmapped luxels */
average = *dirt;
samples = 1.0f;
for( sy = (y - 1); sy <= (y + 1); sy++ )
{
if( sy < 0 || sy >= lm->sh )
continue;
for( sx = (x - 1); sx <= (x + 1); sx++ )
{
if( sx < 0 || sx >= lm->sw || (sx == x && sy == y) )
continue;
/* get neighboring luxel */
cluster = SUPER_CLUSTER( sx, sy );
dirt2 = SUPER_DIRT( sx, sy );
if( *cluster < 0 || *dirt2 <= 0.0f )
continue;
/* add it */
average += *dirt2;
samples += 1.0f;
}
/* bail */
if( samples <= 0.0f )
break;
}
/* bail */
if( samples <= 0.0f )
continue;
/* scale dirt */
*dirt = average / samples;
}
}
}
/*
SubmapRawLuxel()
calculates the pvs cluster, origin, normal of a sub-luxel
*/
static qboolean SubmapRawLuxel( rawLightmap_t *lm, int x, int y, float bx, float by, int *sampleCluster, vec3_t sampleOrigin, vec3_t sampleNormal )
{
int i, *cluster, *cluster2;
float *origin, *origin2, *normal; //% , *normal2;
vec3_t originVecs[ 2 ]; //% , normalVecs[ 2 ];
/* calulate x vector */
if( (x < (lm->sw - 1) && bx >= 0.0f) || (x == 0 && bx <= 0.0f) )
{
cluster = SUPER_CLUSTER( x, y );
origin = SUPER_ORIGIN( x, y );
//% normal = SUPER_NORMAL( x, y );
cluster2 = SUPER_CLUSTER( x + 1, y );
origin2 = *cluster2 < 0 ? SUPER_ORIGIN( x, y ) : SUPER_ORIGIN( x + 1, y );
//% normal2 = *cluster2 < 0 ? SUPER_NORMAL( x, y ) : SUPER_NORMAL( x + 1, y );
}
else if( (x > 0 && bx <= 0.0f) || (x == (lm->sw - 1) && bx >= 0.0f) )
{
cluster = SUPER_CLUSTER( x - 1, y );
origin = *cluster < 0 ? SUPER_ORIGIN( x, y ) : SUPER_ORIGIN( x - 1, y );
//% normal = *cluster < 0 ? SUPER_NORMAL( x, y ) : SUPER_NORMAL( x - 1, y );
cluster2 = SUPER_CLUSTER( x, y );
origin2 = SUPER_ORIGIN( x, y );
//% normal2 = SUPER_NORMAL( x, y );
}
else
Sys_Printf( "WARNING: Spurious lightmap S vector\n" );
VectorSubtract( origin2, origin, originVecs[ 0 ] );
//% VectorSubtract( normal2, normal, normalVecs[ 0 ] );
/* calulate y vector */
if( (y < (lm->sh - 1) && bx >= 0.0f) || (y == 0 && bx <= 0.0f) )
{
cluster = SUPER_CLUSTER( x, y );
origin = SUPER_ORIGIN( x, y );
//% normal = SUPER_NORMAL( x, y );
cluster2 = SUPER_CLUSTER( x, y + 1 );
origin2 = *cluster2 < 0 ? SUPER_ORIGIN( x, y ) : SUPER_ORIGIN( x, y + 1 );
//% normal2 = *cluster2 < 0 ? SUPER_NORMAL( x, y ) : SUPER_NORMAL( x, y + 1 );
}
else if( (y > 0 && bx <= 0.0f) || (y == (lm->sh - 1) && bx >= 0.0f) )
{
cluster = SUPER_CLUSTER( x, y - 1 );
origin = *cluster < 0 ? SUPER_ORIGIN( x, y ) : SUPER_ORIGIN( x, y - 1 );
//% normal = *cluster < 0 ? SUPER_NORMAL( x, y ) : SUPER_NORMAL( x, y - 1 );
cluster2 = SUPER_CLUSTER( x, y );
origin2 = SUPER_ORIGIN( x, y );
//% normal2 = SUPER_NORMAL( x, y );
}
else
Sys_Printf( "WARNING: Spurious lightmap T vector\n" );
VectorSubtract( origin2, origin, originVecs[ 1 ] );
//% VectorSubtract( normal2, normal, normalVecs[ 1 ] );
/* calculate new origin */
//% VectorMA( origin, bx, originVecs[ 0 ], sampleOrigin );
//% VectorMA( sampleOrigin, by, originVecs[ 1 ], sampleOrigin );
for( i = 0; i < 3; i++ )
sampleOrigin[ i ] = sampleOrigin[ i ] + (bx * originVecs[ 0 ][ i ]) + (by * originVecs[ 1 ][ i ]);
/* get cluster */
*sampleCluster = ClusterForPointExtFilter( sampleOrigin, (LUXEL_EPSILON * 2), lm->numLightClusters, lm->lightClusters );
if( *sampleCluster < 0 )
return qfalse;
/* calculate new normal */
//% VectorMA( normal, bx, normalVecs[ 0 ], sampleNormal );
//% VectorMA( sampleNormal, by, normalVecs[ 1 ], sampleNormal );
//% if( VectorNormalize( sampleNormal, sampleNormal ) <= 0.0f )
//% return qfalse;
normal = SUPER_NORMAL( x, y );
VectorCopy( normal, sampleNormal );
/* return ok */
return qtrue;
}
/*
SubsampleRawLuxel_r()
recursively subsamples a luxel until its color gradient is low enough or subsampling limit is reached
*/
static void SubsampleRawLuxel_r( rawLightmap_t *lm, trace_t *trace, vec3_t sampleOrigin, int x, int y, float bias, float *lightLuxel )
{
int b, samples, mapped, lighted;
int cluster[ 4 ];
vec4_t luxel[ 4 ];
vec3_t origin[ 4 ], normal[ 4 ];
float biasDirs[ 4 ][ 2 ] = { { -1.0f, -1.0f }, { 1.0f, -1.0f }, { -1.0f, 1.0f }, { 1.0f, 1.0f } };
vec3_t color, total;
/* limit check */
if( lightLuxel[ 3 ] >= lightSamples )
return;
/* setup */
VectorClear( total );
mapped = 0;
lighted = 0;
/* make 2x2 subsample stamp */
for( b = 0; b < 4; b++ )
{
/* set origin */
VectorCopy( sampleOrigin, origin[ b ] );
/* calculate position */
if( !SubmapRawLuxel( lm, x, y, (bias * biasDirs[ b ][ 0 ]), (bias * biasDirs[ b ][ 1 ]), &cluster[ b ], origin[ b ], normal[ b ] ) )
{
cluster[ b ] = -1;
continue;
}
mapped++;
/* increment sample count */
luxel[ b ][ 3 ] = lightLuxel[ 3 ] + 1.0f;
/* setup trace */
trace->cluster = *cluster;
VectorCopy( origin[ b ], trace->origin );
VectorCopy( normal[ b ], trace->normal );
/* sample light */
LightContributionToSample( trace );
/* add to totals (fixme: make contrast function) */
VectorCopy( trace->color, luxel[ b ] );
VectorAdd( total, trace->color, total );
if( (luxel[ b ][ 0 ] + luxel[ b ][ 1 ] + luxel[ b ][ 2 ]) > 0.0f )
lighted++;
}
/* subsample further? */
if( (lightLuxel[ 3 ] + 1.0f) < lightSamples &&
(total[ 0 ] > 4.0f || total[ 1 ] > 4.0f || total[ 2 ] > 4.0f) &&
lighted != 0 && lighted != mapped )
{
for( b = 0; b < 4; b++ )
{
if( cluster[ b ] < 0 )
continue;
SubsampleRawLuxel_r( lm, trace, origin[ b ], x, y, (bias * 0.25f), luxel[ b ] );
}
}
/* average */
//% VectorClear( color );
//% samples = 0;
VectorCopy( lightLuxel, color );
samples = 1;
for( b = 0; b < 4; b++ )
{
if( cluster[ b ] < 0 )
continue;
VectorAdd( color, luxel[ b ], color );
samples++;
}
/* add to luxel */
if( samples > 0 )
{
/* average */
color[ 0 ] /= samples;
color[ 1 ] /= samples;
color[ 2 ] /= samples;
/* add to color */
VectorCopy( color, lightLuxel );
lightLuxel[ 3 ] += 1.0f;
}
}
/*
IlluminateRawLightmap()
illuminates the luxels
*/
#define STACK_LL_SIZE (SUPER_LUXEL_SIZE * 64 * 64)
#define LIGHT_LUXEL( x, y ) (lightLuxels + ((((y) * lm->sw) + (x)) * SUPER_LUXEL_SIZE))
void IlluminateRawLightmap( int rawLightmapNum )
{
int i, t, x, y, sx, sy, size, llSize, luxelFilterRadius, lightmapNum;
int *cluster, *cluster2, mapped, lighted, totalLighted;
rawLightmap_t *lm;
surfaceInfo_t *info;
qboolean filterColor, filterDir;
float brightness;
float *origin, *normal, *dirt, *luxel, *luxel2, *deluxel, *deluxel2;
float *lightLuxels, *lightLuxel, samples, filterRadius, weight;
vec3_t color, averageColor, averageDir, total, temp, temp2;
float tests[ 4 ][ 2 ] = { { 0.0f, 0 }, { 1, 0 }, { 0, 1 }, { 1, 1 } };
trace_t trace;
float stackLightLuxels[ STACK_LL_SIZE ];
/* bail if this number exceeds the number of raw lightmaps */
if( rawLightmapNum >= numRawLightmaps )
return;
/* get lightmap */
lm = &rawLightmaps[ rawLightmapNum ];
/* setup trace */
trace.testOcclusion = !noTrace;
trace.forceSunlight = qfalse;
trace.recvShadows = lm->recvShadows;
trace.numSurfaces = lm->numLightSurfaces;
trace.surfaces = &lightSurfaces[ lm->firstLightSurface ];
trace.inhibitRadius = DEFAULT_INHIBIT_RADIUS;
/* twosided lighting (may or may not be a good idea for lightmapped stuff) */
trace.twoSided = qfalse;
for( i = 0; i < trace.numSurfaces; i++ )
{
/* get surface */
info = &surfaceInfos[ trace.surfaces[ i ] ];
/* check twosidedness */
if( info->si->twoSided )
{
trace.twoSided = qtrue;
break;
}
}
/* create a culled light list for this raw lightmap */
CreateTraceLightsForBounds( lm->mins, lm->maxs, lm->plane, lm->numLightClusters, lm->lightClusters, LIGHT_SURFACES, &trace );
/* -----------------------------------------------------------------
fill pass
----------------------------------------------------------------- */
/* set counts */
numLuxelsIlluminated += (lm->sw * lm->sh);
/* test debugging state */
if( debugSurfaces || debugAxis || debugCluster || debugOrigin || dirtDebug || normalmap )
{
/* debug fill the luxels */
for( y = 0; y < lm->sh; y++ )
{
for( x = 0; x < lm->sw; x++ )
{
/* get cluster */
cluster = SUPER_CLUSTER( x, y );
/* only fill mapped luxels */
if( *cluster < 0 )
continue;
/* get particulars */
luxel = SUPER_LUXEL( 0, x, y );
origin = SUPER_ORIGIN( x, y );
normal = SUPER_NORMAL( x, y );
/* color the luxel with raw lightmap num? */
if( debugSurfaces )
VectorCopy( debugColors[ rawLightmapNum % 12 ], luxel );
/* color the luxel with lightmap axis? */
else if( debugAxis )
{
luxel[ 0 ] = (lm->axis[ 0 ] + 1.0f) * 127.5f;
luxel[ 1 ] = (lm->axis[ 1 ] + 1.0f) * 127.5f;
luxel[ 2 ] = (lm->axis[ 2 ] + 1.0f) * 127.5f;
}
/* color the luxel with luxel cluster? */
else if( debugCluster )
VectorCopy( debugColors[ *cluster % 12 ], luxel );
/* color the luxel with luxel origin? */
else if( debugOrigin )
{
VectorSubtract( lm->maxs, lm->mins, temp );
VectorScale( temp, (1.0f / 255.0f), temp );
VectorSubtract( origin, lm->mins, temp2 );
luxel[ 0 ] = lm->mins[ 0 ] + (temp[ 0 ] * temp2[ 0 ]);
luxel[ 1 ] = lm->mins[ 1 ] + (temp[ 1 ] * temp2[ 1 ]);
luxel[ 2 ] = lm->mins[ 2 ] + (temp[ 2 ] * temp2[ 2 ]);
}
/* color the luxel with the normal */
else if( normalmap )
{
luxel[ 0 ] = (normal[ 0 ] + 1.0f) * 127.5f;
luxel[ 1 ] = (normal[ 1 ] + 1.0f) * 127.5f;
luxel[ 2 ] = (normal[ 2 ] + 1.0f) * 127.5f;
}
/* otherwise clear it */
else
VectorClear( luxel );
/* add to counts */
luxel[ 3 ] = 1.0f;
}
}
}
else
{
/* allocate temporary per-light luxel storage */
llSize = lm->sw * lm->sh * SUPER_LUXEL_SIZE * sizeof( float );
if( llSize <= (STACK_LL_SIZE * sizeof( float )) )
lightLuxels = stackLightLuxels;
else
lightLuxels = safe_malloc( llSize );
/* clear luxels */
//% memset( lm->superLuxels[ 0 ], 0, llSize );
/* set ambient color */
for( y = 0; y < lm->sh; y++ )
{
for( x = 0; x < lm->sw; x++ )
{
/* get cluster */
cluster = SUPER_CLUSTER( x, y );
luxel = SUPER_LUXEL( 0, x, y );
normal = SUPER_NORMAL( x, y );
deluxel = SUPER_DELUXEL( x, y );
/* blacken unmapped clusters */
if( *cluster < 0 )
VectorClear( luxel );
/* set ambient */
else
{
VectorCopy( ambientColor, luxel );
if( deluxemap )
VectorScale( normal, 0.00390625f, deluxel );
luxel[ 3 ] = 1.0f;
}
}
}
/* clear styled lightmaps */
size = lm->sw * lm->sh * SUPER_LUXEL_SIZE * sizeof( float );
for( lightmapNum = 1; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
if( lm->superLuxels[ lightmapNum ] != NULL )
memset( lm->superLuxels[ lightmapNum ], 0, size );
}
/* debugging code */
//% if( trace.numLights <= 0 )
//% Sys_Printf( "Lightmap %9d: 0 lights, axis: %.2f, %.2f, %.2f\n", rawLightmapNum, lm->axis[ 0 ], lm->axis[ 1 ], lm->axis[ 2 ] );
/* walk light list */
for( i = 0; i < trace.numLights; i++ )
{
/* setup trace */
trace.light = trace.lights[ i ];
/* style check */
for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
if( lm->styles[ lightmapNum ] == trace.light->style ||
lm->styles[ lightmapNum ] == LS_NONE )
break;
}
/* max of MAX_LIGHTMAPS (4) styles allowed to hit a surface/lightmap */
if( lightmapNum >= MAX_LIGHTMAPS )
{
Sys_Printf( "WARNING: Hit per-surface style limit (%d)\n", MAX_LIGHTMAPS );
continue;
}
/* setup */
memset( lightLuxels, 0, llSize );
totalLighted = 0;
/* initial pass, one sample per luxel */
for( y = 0; y < lm->sh; y++ )
{
for( x = 0; x < lm->sw; x++ )
{
/* get cluster */
cluster = SUPER_CLUSTER( x, y );
if( *cluster < 0 )
continue;
/* get particulars */
lightLuxel = LIGHT_LUXEL( x, y );
deluxel = SUPER_DELUXEL( x, y );
origin = SUPER_ORIGIN( x, y );
normal = SUPER_NORMAL( x, y );
/* set contribution count */
lightLuxel[ 3 ] = 1.0f;
/* setup trace */
trace.cluster = *cluster;
VectorCopy( origin, trace.origin );
VectorCopy( normal, trace.normal );
/* get light for this sample */
LightContributionToSample( &trace );
VectorCopy( trace.color, lightLuxel );
/* add to count */
if( trace.color[ 0 ] || trace.color[ 1 ] || trace.color[ 2 ] )
totalLighted++;
/* add to light direction map (fixme: use luxel normal as starting point for deluxel?) */
if( deluxemap )
{
/* color to grayscale (photoshop rgb weighting) */
brightness = trace.color[ 0 ] * 0.3f + trace.color[ 1 ] * 0.59f + trace.color[ 2 ] * 0.11f;
brightness *= (1.0 / 255.0);
VectorScale( trace.direction, brightness, trace.direction );
VectorAdd( deluxel, trace.direction, deluxel );
}
}
}
/* don't even bother with everything else if nothing was lit */
if( totalLighted == 0 )
continue;
/* determine filter radius */
filterRadius = lm->filterRadius > trace.light->filterRadius
? lm->filterRadius
: trace.light->filterRadius;
if( filterRadius < 0.0f )
filterRadius = 0.0f;
/* set luxel filter radius */
luxelFilterRadius = superSample * filterRadius / lm->sampleSize;
if( luxelFilterRadius == 0 && (filterRadius > 0.0f || filter) )
luxelFilterRadius = 1;
/* secondary pass, adaptive supersampling (fixme: use a contrast function to determine if subsampling is necessary) */
/* 2003-09-27: changed it so filtering disamples supersampling, as it would waste time */
if( lightSamples > 1 && luxelFilterRadius == 0 )
{
/* walk luxels */
for( y = 0; y < (lm->sh - 1); y++ )
{
for( x = 0; x < (lm->sw - 1); x++ )
{
/* setup */
mapped = 0;
lighted = 0;
VectorClear( total );
/* test 2x2 stamp */
for( t = 0; t < 4; t++ )
{
/* set sample coords */
sx = x + tests[ t ][ 0 ];
sy = y + tests[ t ][ 1 ];
/* get cluster */
cluster = SUPER_CLUSTER( sx, sy );
if( *cluster < 0 )
continue;
mapped++;
/* get luxel */
lightLuxel = LIGHT_LUXEL( sx, sy );
VectorAdd( total, lightLuxel, total );
if( (lightLuxel[ 0 ] + lightLuxel[ 1 ] + lightLuxel[ 2 ]) > 0.0f )
lighted++;
}
/* if total color is under a certain amount, then don't bother subsampling */
if( total[ 0 ] <= 4.0f && total[ 1 ] <= 4.0f && total[ 2 ] <= 4.0f )
continue;
/* if all 4 pixels are either in shadow or light, then don't subsample */
if( lighted != 0 && lighted != mapped )
{
for( t = 0; t < 4; t++ )
{
/* set sample coords */
sx = x + tests[ t ][ 0 ];
sy = y + tests[ t ][ 1 ];
/* get luxel */
cluster = SUPER_CLUSTER( sx, sy );
if( *cluster < 0 )
continue;
lightLuxel = LIGHT_LUXEL( sx, sy );
origin = SUPER_ORIGIN( sx, sy );
/* only subsample shadowed luxels */
//% if( (lightLuxel[ 0 ] + lightLuxel[ 1 ] + lightLuxel[ 2 ]) <= 0.0f )
//% continue;
/* subsample it */
SubsampleRawLuxel_r( lm, &trace, origin, sx, sy, 0.25f, lightLuxel );
/* debug code to colorize subsampled areas to yellow */
//% luxel = SUPER_LUXEL( lightmapNum, sx, sy );
//% VectorSet( luxel, 255, 204, 0 );
}
}
}
}
}
/* tertiary pass, apply dirt map (ambient occlusion) */
if( 0 && dirty )
{
/* walk luxels */
for( y = 0; y < lm->sh; y++ )
{
for( x = 0; x < lm->sw; x++ )
{
/* get cluster */
cluster = SUPER_CLUSTER( x, y );
if( *cluster < 0 )
continue;
/* get particulars */
lightLuxel = LIGHT_LUXEL( x, y );
dirt = SUPER_DIRT( x, y );
/* scale light value */
VectorScale( lightLuxel, *dirt, lightLuxel );
}
}
}
/* allocate sampling lightmap storage */
if( lm->superLuxels[ lightmapNum ] == NULL )
{
/* allocate sampling lightmap storage */
size = lm->sw * lm->sh * SUPER_LUXEL_SIZE * sizeof( float );
lm->superLuxels[ lightmapNum ] = safe_malloc( size );
memset( lm->superLuxels[ lightmapNum ], 0, size );
}
/* set style */
if( lightmapNum > 0 )
{
lm->styles[ lightmapNum ] = trace.light->style;
//% Sys_Printf( "Surface %6d has lightstyle %d\n", rawLightmapNum, trace.light->style );
}
/* copy to permanent luxels */
for( y = 0; y < lm->sh; y++ )
{
for( x = 0; x < lm->sw; x++ )
{
/* get cluster and origin */
cluster = SUPER_CLUSTER( x, y );
if( *cluster < 0 )
continue;
origin = SUPER_ORIGIN( x, y );
/* filter? */
if( luxelFilterRadius )
{
/* setup */
VectorClear( averageColor );
samples = 0.0f;
/* cheaper distance-based filtering */
for( sy = (y - luxelFilterRadius); sy <= (y + luxelFilterRadius); sy++ )
{
if( sy < 0 || sy >= lm->sh )
continue;
for( sx = (x - luxelFilterRadius); sx <= (x + luxelFilterRadius); sx++ )
{
if( sx < 0 || sx >= lm->sw )
continue;
/* get particulars */
cluster = SUPER_CLUSTER( sx, sy );
if( *cluster < 0 )
continue;
lightLuxel = LIGHT_LUXEL( sx, sy );
/* create weight */
weight = (abs( sx - x ) == luxelFilterRadius ? 0.5f : 1.0f);
weight *= (abs( sy - y ) == luxelFilterRadius ? 0.5f : 1.0f);
/* scale luxel by filter weight */
VectorScale( lightLuxel, weight, color );
VectorAdd( averageColor, color, averageColor );
samples += weight;
}
}
/* any samples? */
if( samples <= 0.0f )
continue;
/* scale into luxel */
luxel = SUPER_LUXEL( lightmapNum, x, y );
luxel[ 3 ] = 1.0f;
/* handle negative light */
if( trace.light->flags & LIGHT_NEGATIVE )
{
luxel[ 0 ] -= averageColor[ 0 ] / samples;
luxel[ 1 ] -= averageColor[ 1 ] / samples;
luxel[ 2 ] -= averageColor[ 2 ] / samples;
}
/* handle normal light */
else
{
luxel[ 0 ] += averageColor[ 0 ] / samples;
luxel[ 1 ] += averageColor[ 1 ] / samples;
luxel[ 2 ] += averageColor[ 2 ] / samples;
}
}
/* single sample */
else
{
/* get particulars */
lightLuxel = LIGHT_LUXEL( x, y );
luxel = SUPER_LUXEL( lightmapNum, x, y );
/* handle negative light */
if( trace.light->flags & LIGHT_NEGATIVE )
VectorScale( averageColor, -1.0f, averageColor );
/* add color */
luxel[ 3 ] = 1.0f;
/* handle negative light */
if( trace.light->flags & LIGHT_NEGATIVE )
VectorSubtract( luxel, lightLuxel, luxel );
/* handle normal light */
else
VectorAdd( luxel, lightLuxel, luxel );
}
}
}
}
/* free temporary luxels */
if( lightLuxels != stackLightLuxels )
free( lightLuxels );
}
/* free light list */
FreeTraceLights( &trace );
/* -----------------------------------------------------------------
dirt pass
----------------------------------------------------------------- */
if( dirty )
{
/* walk lightmaps */
for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* early out */
if( lm->superLuxels[ lightmapNum ] == NULL )
continue;
/* apply dirt to each luxel */
for( y = 0; y < lm->sh; y++ )
{
for( x = 0; x < lm->sw; x++ )
{
/* get cluster */
cluster = SUPER_CLUSTER( x, y );
//% if( *cluster < 0 )
//% continue;
/* get particulars */
luxel = SUPER_LUXEL( lightmapNum, x, y );
dirt = SUPER_DIRT( x, y );
/* apply dirt */
VectorScale( luxel, *dirt, luxel );
/* debugging */
if( dirtDebug )
VectorSet( luxel, *dirt * 255.0f, *dirt * 255.0f, *dirt * 255.0f );
}
}
}
}
/* -----------------------------------------------------------------
filter pass
----------------------------------------------------------------- */
/* walk lightmaps */
for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* early out */
if( lm->superLuxels[ lightmapNum ] == NULL )
continue;
/* average occluded luxels from neighbors */
for( y = 0; y < lm->sh; y++ )
{
for( x = 0; x < lm->sw; x++ )
{
/* get particulars */
cluster = SUPER_CLUSTER( x, y );
luxel = SUPER_LUXEL( lightmapNum, x, y );
deluxel = SUPER_DELUXEL( x, y );
normal = SUPER_NORMAL( x, y );
/* determine if filtering is necessary */
filterColor = qfalse;
filterDir = qfalse;
if( *cluster < 0 ||
(lm->splotchFix && (luxel[ 0 ] <= ambientColor[ 0 ] || luxel[ 1 ] <= ambientColor[ 1 ] || luxel[ 2 ] <= ambientColor[ 2 ])) )
filterColor = qtrue;
if( deluxemap && lightmapNum == 0 && (*cluster < 0 || filter) )
filterDir = qtrue;
if( !filterColor && !filterDir )
continue;
/* choose seed amount */
VectorClear( averageColor );
VectorClear( averageDir );
samples = 0.0f;
/* walk 3x3 matrix */
for( sy = (y - 1); sy <= (y + 1); sy++ )
{
if( sy < 0 || sy >= lm->sh )
continue;
for( sx = (x - 1); sx <= (x + 1); sx++ )
{
if( sx < 0 || sx >= lm->sw || (sx == x && sy == y) )
continue;
/* get neighbor's particulars */
cluster2 = SUPER_CLUSTER( sx, sy );
luxel2 = SUPER_LUXEL( lightmapNum, sx, sy );
deluxel2 = SUPER_DELUXEL( sx, sy );
/* ignore unmapped/unlit luxels */
if( *cluster2 < 0 || luxel2[ 3 ] == 0.0f ||
(lm->splotchFix && VectorCompare( luxel2, ambientColor )) )
continue;
/* add its distinctiveness to our own */
VectorAdd( averageColor, luxel2, averageColor );
samples += luxel2[ 3 ];
if( filterDir )
VectorAdd( averageDir, deluxel2, averageDir );
}
}
/* fall through */
if( samples <= 0.0f )
continue;
/* dark lightmap seams */
if( dark )
{
if( lightmapNum == 0 )
VectorMA( averageColor, 2.0f, ambientColor, averageColor );
samples += 2.0f;
}
/* average it */
if( filterColor )
{
VectorDivide( averageColor, samples, luxel );
luxel[ 3 ] = 1.0f;
}
if( filterDir )
VectorDivide( averageDir, samples, deluxel );
/* set cluster to -3 */
if( *cluster < 0 )
*cluster = CLUSTER_FLOODED;
}
}
}
}
/*
IlluminateVertexes()
light the surface vertexes
*/
#define VERTEX_NUDGE 4.0f
void IlluminateVertexes( int num )
{
int i, x, y, z, x1, y1, z1, sx, sy, radius, maxRadius, *cluster;
int lightmapNum, numAvg;
float samples, *vertLuxel, *radVertLuxel, *luxel, dirt;
vec3_t origin, temp, temp2, colors[ MAX_LIGHTMAPS ], avgColors[ MAX_LIGHTMAPS ];
bspDrawSurface_t *ds;
surfaceInfo_t *info;
rawLightmap_t *lm;
bspDrawVert_t *verts;
trace_t trace;
/* get surface, info, and raw lightmap */
ds = &bspDrawSurfaces[ num ];
info = &surfaceInfos[ num ];
lm = info->lm;
/* -----------------------------------------------------------------
illuminate the vertexes
----------------------------------------------------------------- */
/* calculate vertex lighting for surfaces without lightmaps */
if( lm == NULL || cpmaHack )
{
/* setup trace */
trace.testOcclusion = (cpmaHack && lm != NULL) ? qfalse : !noTrace;
trace.forceSunlight = info->si->forceSunlight;
trace.recvShadows = info->recvShadows;
trace.numSurfaces = 1;
trace.surfaces = &num;
trace.inhibitRadius = DEFAULT_INHIBIT_RADIUS;
/* twosided lighting */
trace.twoSided = info->si->twoSided;
/* make light list for this surface */
CreateTraceLightsForSurface( num, &trace );
/* setup */
verts = yDrawVerts + ds->firstVert;
numAvg = 0;
memset( avgColors, 0, sizeof( avgColors ) );
/* walk the surface verts */
for( i = 0; i < ds->numVerts; i++ )
{
/* get vertex luxel */
radVertLuxel = RAD_VERTEX_LUXEL( 0, ds->firstVert + i );
/* color the luxel with raw lightmap num? */
if( debugSurfaces )
VectorCopy( debugColors[ num % 12 ], radVertLuxel );
/* color the luxel with luxel origin? */
else if( debugOrigin )
{
VectorSubtract( info->maxs, info->mins, temp );
VectorScale( temp, (1.0f / 255.0f), temp );
VectorSubtract( origin, lm->mins, temp2 );
radVertLuxel[ 0 ] = info->mins[ 0 ] + (temp[ 0 ] * temp2[ 0 ]);
radVertLuxel[ 1 ] = info->mins[ 1 ] + (temp[ 1 ] * temp2[ 1 ]);
radVertLuxel[ 2 ] = info->mins[ 2 ] + (temp[ 2 ] * temp2[ 2 ]);
}
/* color the luxel with the normal */
else if( normalmap )
{
radVertLuxel[ 0 ] = (verts[ i ].normal[ 0 ] + 1.0f) * 127.5f;
radVertLuxel[ 1 ] = (verts[ i ].normal[ 1 ] + 1.0f) * 127.5f;
radVertLuxel[ 2 ] = (verts[ i ].normal[ 2 ] + 1.0f) * 127.5f;
}
/* illuminate the vertex */
else
{
/* clear vertex luxel */
VectorSet( radVertLuxel, -1.0f, -1.0f, -1.0f );
/* try at initial origin */
trace.cluster = ClusterForPointExtFilter( verts[ i ].xyz, VERTEX_EPSILON, info->numSurfaceClusters, &surfaceClusters[ info->firstSurfaceCluster ] );
if( trace.cluster >= 0 )
{
/* setup trace */
VectorCopy( verts[ i ].xyz, trace.origin );
VectorCopy( verts[ i ].normal, trace.normal );
/* r7 dirt */
if( dirty )
dirt = DirtForSample( &trace );
else
dirt = 1.0f;
/* trace */
LightingAtSample( &trace, ds->vertexStyles, colors );
/* store */
for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* r7 dirt */
VectorScale( colors[ lightmapNum ], dirt, colors[ lightmapNum ] );
/* store */
radVertLuxel = RAD_VERTEX_LUXEL( lightmapNum, ds->firstVert + i );
VectorCopy( colors[ lightmapNum ], radVertLuxel );
VectorAdd( avgColors[ lightmapNum ], colors[ lightmapNum ], colors[ lightmapNum ] );
}
}
/* is this sample bright enough? */
radVertLuxel = RAD_VERTEX_LUXEL( 0, ds->firstVert + i );
if( radVertLuxel[ 0 ] <= ambientColor[ 0 ] &&
radVertLuxel[ 1 ] <= ambientColor[ 1 ] &&
radVertLuxel[ 2 ] <= ambientColor[ 2 ] )
{
/* nudge the sample point around a bit */
for( x = 0; x < 4; x++ )
{
/* two's complement 0, 1, -1, 2, -2, etc */
x1 = ((x >> 1) ^ (x & 1 ? -1 : 0)) + (x & 1);
for( y = 0; y < 4; y++ )
{
y1 = ((y >> 1) ^ (y & 1 ? -1 : 0)) + (y & 1);
for( z = 0; z < 4; z++ )
{
z1 = ((z >> 1) ^ (z & 1 ? -1 : 0)) + (z & 1);
/* nudge origin */
trace.origin[ 0 ] = verts[ i ].xyz[ 0 ] + (VERTEX_NUDGE * x1);
trace.origin[ 1 ] = verts[ i ].xyz[ 1 ] + (VERTEX_NUDGE * y1);
trace.origin[ 2 ] = verts[ i ].xyz[ 2 ] + (VERTEX_NUDGE * z1);
/* try at nudged origin */
trace.cluster = ClusterForPointExtFilter( origin, VERTEX_EPSILON, info->numSurfaceClusters, &surfaceClusters[ info->firstSurfaceCluster ] );
if( trace.cluster < 0 )
continue;
/* trace */
LightingAtSample( &trace, ds->vertexStyles, colors );
/* store */
for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* r7 dirt */
VectorScale( colors[ lightmapNum ], dirt, colors[ lightmapNum ] );
/* store */
radVertLuxel = RAD_VERTEX_LUXEL( lightmapNum, ds->firstVert + i );
VectorCopy( colors[ lightmapNum ], radVertLuxel );
}
/* bright enough? */
radVertLuxel = RAD_VERTEX_LUXEL( 0, ds->firstVert + i );
if( radVertLuxel[ 0 ] > ambientColor[ 0 ] ||
radVertLuxel[ 1 ] > ambientColor[ 1 ] ||
radVertLuxel[ 2 ] > ambientColor[ 2 ] )
x = y = z = 1000;
}
}
}
}
/* add to average? */
radVertLuxel = RAD_VERTEX_LUXEL( 0, ds->firstVert + i );
if( radVertLuxel[ 0 ] > ambientColor[ 0 ] ||
radVertLuxel[ 1 ] > ambientColor[ 1 ] ||
radVertLuxel[ 2 ] > ambientColor[ 2 ] )
{
numAvg++;
for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
radVertLuxel = RAD_VERTEX_LUXEL( lightmapNum, ds->firstVert + i );
VectorAdd( avgColors[ lightmapNum ], radVertLuxel, avgColors[ lightmapNum ] );
}
}
}
/* another happy customer */
numVertsIlluminated++;
}
/* set average color */
if( numAvg > 0 )
{
for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
VectorScale( avgColors[ lightmapNum ], (1.0f / numAvg), avgColors[ lightmapNum ] );
}
else
{
VectorCopy( ambientColor, avgColors[ 0 ] );
}
/* clean up and store vertex color */
for( i = 0; i < ds->numVerts; i++ )
{
/* get vertex luxel */
radVertLuxel = RAD_VERTEX_LUXEL( 0, ds->firstVert + i );
/* store average in occluded vertexes */
if( radVertLuxel[ 0 ] < 0.0f )
{
for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
radVertLuxel = RAD_VERTEX_LUXEL( lightmapNum, ds->firstVert + i );
VectorCopy( avgColors[ lightmapNum ], radVertLuxel );
/* debug code */
//% VectorSet( radVertLuxel, 255.0f, 0.0f, 0.0f );
}
}
/* store it */
for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* get luxels */
vertLuxel = VERTEX_LUXEL( lightmapNum, ds->firstVert + i );
radVertLuxel = RAD_VERTEX_LUXEL( lightmapNum, ds->firstVert + i );
/* store */
if( bouncing || bounce == 0 || !bounceOnly )
VectorAdd( vertLuxel, radVertLuxel, vertLuxel );
if( !info->si->noVertexLight )
ColorToBytes( vertLuxel, verts[ i ].color[ lightmapNum ], info->si->vertexScale );
}
}
/* free light list */
FreeTraceLights( &trace );
/* return to sender */
return;
}
/* -----------------------------------------------------------------
reconstitute vertex lighting from the luxels
----------------------------------------------------------------- */
/* set styles from lightmap */
for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
ds->vertexStyles[ lightmapNum ] = lm->styles[ lightmapNum ];
/* get max search radius */
maxRadius = lm->sw;
maxRadius = maxRadius > lm->sh ? maxRadius : lm->sh;
/* walk the surface verts */
verts = yDrawVerts + ds->firstVert;
for( i = 0; i < ds->numVerts; i++ )
{
/* do each lightmap */
for( lightmapNum = 0; lightmapNum < MAX_LIGHTMAPS; lightmapNum++ )
{
/* early out */
if( lm->superLuxels[ lightmapNum ] == NULL )
continue;
/* get luxel coords */
x = verts[ i ].lightmap[ lightmapNum ][ 0 ];
y = verts[ i ].lightmap[ lightmapNum ][ 1 ];
if( x < 0 )
x = 0;
else if( x >= lm->sw )
x = lm->sw - 1;
if( y < 0 )
y = 0;
else if( y >= lm->sh )
y = lm->sh - 1;
/* get vertex luxels */
vertLuxel = VERTEX_LUXEL( lightmapNum, ds->firstVert + i );
radVertLuxel = RAD_VERTEX_LUXEL( lightmapNum, ds->firstVert + i );
/* color the luxel with the normal? */
if( normalmap )
{
radVertLuxel[ 0 ] = (verts[ i ].normal[ 0 ] + 1.0f) * 127.5f;
radVertLuxel[ 1 ] = (verts[ i ].normal[ 1 ] + 1.0f) * 127.5f;
radVertLuxel[ 2 ] = (verts[ i ].normal[ 2 ] + 1.0f) * 127.5f;
}
/* color the luxel with surface num? */
else if( debugSurfaces )
VectorCopy( debugColors[ num % 12 ], radVertLuxel );
/* divine color from the superluxels */
else
{
/* increasing radius */
VectorClear( radVertLuxel );
samples = 0.0f;
for( radius = 0; radius < maxRadius && samples <= 0.0f; radius++ )
{
/* sample within radius */
for( sy = (y - radius); sy <= (y + radius); sy++ )
{
if( sy < 0 || sy >= lm->sh )
continue;
for( sx = (x - radius); sx <= (x + radius); sx++ )
{
if( sx < 0 || sx >= lm->sw )
continue;
/* get luxel particulars */
luxel = SUPER_LUXEL( lightmapNum, sx, sy );
cluster = SUPER_CLUSTER( sx, sy );
if( *cluster < 0 )
continue;
/* testing: must be brigher than ambient color */
//% if( luxel[ 0 ] <= ambientColor[ 0 ] || luxel[ 1 ] <= ambientColor[ 1 ] || luxel[ 2 ] <= ambientColor[ 2 ] )
//% continue;
/* add its distinctiveness to our own */
VectorAdd( radVertLuxel, luxel, radVertLuxel );
samples += luxel[ 3 ];
}
}
}
/* any color? */
if( samples > 0.0f )
VectorDivide( radVertLuxel, samples, radVertLuxel );
else
VectorCopy( ambientColor, radVertLuxel );
}
/* store into floating point storage */
VectorAdd( vertLuxel, radVertLuxel, vertLuxel );
numVertsIlluminated++;
/* store into bytes (for vertex approximation) */
if( !info->si->noVertexLight )
ColorToBytes( vertLuxel, verts[ i ].color[ lightmapNum ], 1.0f );
}
}
}
/* -------------------------------------------------------------------------------
light optimization (-fast)
creates a list of lights that will affect a surface and stores it in tw
this is to optimize surface lighting by culling out as many of the
lights in the world as possible from further calculation
------------------------------------------------------------------------------- */
/*
SetupBrushes()
determines opaque brushes in the world and find sky shaders for sunlight calculations
*/
void SetupBrushes( void )
{
int i, j, b, compileFlags;
qboolean inside;
bspBrush_t *brush;
bspBrushSide_t *side;
bspShader_t *shader;
shaderInfo_t *si;
/* note it */
Sys_FPrintf( SYS_VRB, "--- SetupBrushes ---\n" );
/* allocate */
if( opaqueBrushes == NULL )
opaqueBrushes = safe_malloc( numBSPBrushes / 8 + 1 );
/* clear */
memset( opaqueBrushes, 0, numBSPBrushes / 8 + 1 );
numOpaqueBrushes = 0;
/* walk the list of worldspawn brushes */
for( i = 0; i < bspModels[ 0 ].numBSPBrushes; i++ )
{
/* get brush */
b = bspModels[ 0 ].firstBSPBrush + i;
brush = &bspBrushes[ b ];
/* check all sides */
inside = qtrue;
compileFlags = 0;
for( j = 0; j < brush->numSides && inside; j++ )
{
/* do bsp shader calculations */
side = &bspBrushSides[ brush->firstSide + j ];
shader = &bspShaders[ side->shaderNum ];
/* get shader info */
si = ShaderInfoForShader( shader->shader );
if( si == NULL )
continue;
/* or together compile flags */
compileFlags |= si->compileFlags;
}
/* determine if this brush is opaque to light */
if( !(compileFlags & C_TRANSLUCENT) )
{
opaqueBrushes[ b >> 3 ] |= (1 << (b & 7));
numOpaqueBrushes++;
maxOpaqueBrush = i;
}
}
/* emit some statistics */
Sys_FPrintf( SYS_VRB, "%9d opaque brushes\n", numOpaqueBrushes );
}
/*
ClusterVisible()
determines if two clusters are visible to each other using the PVS
*/
qboolean ClusterVisible( int a, int b )
{
int portalClusters, leafBytes;
byte *pvs;
/* dummy check */
if( a < 0 || b < 0 )
return qfalse;
/* early out */
if( a == b )
return qtrue;
/* not vised? */
if( numBSPVisBytes <=8 )
return qtrue;
/* get pvs data */
portalClusters = ((int *) bspVisBytes)[ 0 ];
leafBytes = ((int*) bspVisBytes)[ 1 ];
pvs = bspVisBytes + VIS_HEADER_SIZE + (a * leafBytes);
/* check */
if( (pvs[ b >> 3 ] & (1 << (b & 7))) )
return qtrue;
return qfalse;
}
/*
PointInLeafNum_r()
borrowed from vlight.c
*/
int PointInLeafNum_r( vec3_t point, int nodenum )
{
int leafnum;
vec_t dist;
bspNode_t *node;
bspPlane_t *plane;
while( nodenum >= 0 )
{
node = &bspNodes[ nodenum ];
plane = &bspPlanes[ node->planeNum ];
dist = DotProduct( point, plane->normal ) - plane->dist;
if( dist > 0.1 )
nodenum = node->children[ 0 ];
else if( dist < -0.1 )
nodenum = node->children[ 1 ];
else
{
leafnum = PointInLeafNum_r( point, node->children[ 0 ] );
if( bspLeafs[ leafnum ].cluster != -1 )
return leafnum;
nodenum = node->children[ 1 ];
}
}
leafnum = -nodenum - 1;
return leafnum;
}
/*
PointInLeafnum()
borrowed from vlight.c
*/
int PointInLeafNum( vec3_t point )
{
return PointInLeafNum_r( point, 0 );
}
/*
ClusterVisibleToPoint() - ydnar
returns qtrue if point can "see" cluster
*/
qboolean ClusterVisibleToPoint( vec3_t point, int cluster )
{
int pointCluster;
/* get leafNum for point */
pointCluster = ClusterForPoint( point );
if( pointCluster < 0 )
return qfalse;
/* check pvs */
return ClusterVisible( pointCluster, cluster );
}
/*
ClusterForPoint() - ydnar
returns the pvs cluster for point
*/
int ClusterForPoint( vec3_t point )
{
int leafNum;
/* get leafNum for point */
leafNum = PointInLeafNum( point );
if( leafNum < 0 )
return -1;
/* return the cluster */
return bspLeafs[ leafNum ].cluster;
}
/*
ClusterForPointExt() - ydnar
also takes brushes into account for occlusion testing
*/
int ClusterForPointExt( vec3_t point, float epsilon )
{
int i, j, b, leafNum, cluster;
float dot;
qboolean inside;
int *brushes, numBSPBrushes;
bspLeaf_t *leaf;
bspBrush_t *brush;
bspPlane_t *plane;
/* get leaf for point */
leafNum = PointInLeafNum( point );
if( leafNum < 0 )
return -1;
leaf = &bspLeafs[ leafNum ];
/* get the cluster */
cluster = leaf->cluster;
if( cluster < 0 )
return -1;
/* transparent leaf, so check point against all brushes in the leaf */
brushes = &bspLeafBrushes[ leaf->firstBSPLeafBrush ];
numBSPBrushes = leaf->numBSPLeafBrushes;
for( i = 0; i < numBSPBrushes; i++ )
{
/* get parts */
b = brushes[ i ];
if( b > maxOpaqueBrush )
continue;
brush = &bspBrushes[ b ];
if( !(opaqueBrushes[ b >> 3 ] & (1 << (b & 7))) )
continue;
/* check point against all planes */
inside = qtrue;
for( j = 0; j < brush->numSides && inside; j++ )
{
plane = &bspPlanes[ bspBrushSides[ brush->firstSide + j ].planeNum ];
dot = DotProduct( point, plane->normal );
dot -= plane->dist;
if( dot > epsilon )
inside = qfalse;
}
/* if inside, return bogus cluster */
if( inside )
return -1 - b;
}
/* if the point made it this far, it's not inside any opaque brushes */
return cluster;
}
/*
ClusterForPointExtFilter() - ydnar
adds cluster checking against a list of known valid clusters
*/
int ClusterForPointExtFilter( vec3_t point, float epsilon, int numClusters, int *clusters )
{
int i, cluster;
/* get cluster for point */
cluster = ClusterForPointExt( point, epsilon );
/* check if filtering is necessary */
if( cluster < 0 || numClusters <= 0 || clusters == NULL )
return cluster;
/* filter */
for( i = 0; i < numClusters; i++ )
{
if( cluster == clusters[ i ] || ClusterVisible( cluster, clusters[ i ] ) )
return cluster;
}
/* failed */
return -1;
}
/*
ShaderForPointInLeaf() - ydnar
checks a point against all brushes in a leaf, returning the shader of the brush
also sets the cumulative surface and content flags for the brush hit
*/
int ShaderForPointInLeaf( vec3_t point, int leafNum, float epsilon, int wantContentFlags, int wantSurfaceFlags, int *contentFlags, int *surfaceFlags )
{
int i, j;
float dot;
qboolean inside;
int *brushes, numBSPBrushes;
bspLeaf_t *leaf;
bspBrush_t *brush;
bspBrushSide_t *side;
bspPlane_t *plane;
bspShader_t *shader;
int allSurfaceFlags, allContentFlags;
/* clear things out first */
*surfaceFlags = 0;
*contentFlags = 0;
/* get leaf */
if( leafNum < 0 )
return -1;
leaf = &bspLeafs[ leafNum ];
/* transparent leaf, so check point against all brushes in the leaf */
brushes = &bspLeafBrushes[ leaf->firstBSPLeafBrush ];
numBSPBrushes = leaf->numBSPLeafBrushes;
for( i = 0; i < numBSPBrushes; i++ )
{
/* get parts */
brush = &bspBrushes[ brushes[ i ] ];
/* check point against all planes */
inside = qtrue;
allSurfaceFlags = 0;
allContentFlags = 0;
for( j = 0; j < brush->numSides && inside; j++ )
{
side = &bspBrushSides[ brush->firstSide + j ];
plane = &bspPlanes[ side->planeNum ];
dot = DotProduct( point, plane->normal );
dot -= plane->dist;
if( dot > epsilon )
inside = qfalse;
else
{
shader = &bspShaders[ side->shaderNum ];
allSurfaceFlags |= shader->surfaceFlags;
allContentFlags |= shader->contentFlags;
}
}
/* handle if inside */
if( inside )
{
/* if there are desired flags, check for same and continue if they aren't matched */
if( wantContentFlags && !(wantContentFlags & allContentFlags) )
continue;
if( wantSurfaceFlags && !(wantSurfaceFlags & allSurfaceFlags) )
continue;
/* store the cumulative flags and return the brush shader (which is mostly useless) */
*surfaceFlags = allSurfaceFlags;
*contentFlags = allContentFlags;
return brush->shaderNum;
}
}
/* if the point made it this far, it's not inside any brushes */
return -1;
}
/*
ChopBounds()
chops a bounding box by the plane defined by origin and normal
returns qfalse if the bounds is entirely clipped away
this is not exactly the fastest way to do this...
*/
qboolean ChopBounds( vec3_t mins, vec3_t maxs, vec3_t origin, vec3_t normal )
{
/* FIXME: rewrite this so it doesn't use bloody brushes */
return qtrue;
}
/*
SetupEnvelopes()
calculates each light's effective envelope,
taking into account brightness, type, and pvs.
*/
#define LIGHT_EPSILON 0.125f
#define LIGHT_NUDGE 2.0f
void SetupEnvelopes( qboolean forGrid, qboolean fastFlag )
{
int i, x, y, z, x1, y1, z1;
light_t *light, *light2, **owner;
bspLeaf_t *leaf;
vec3_t origin, dir, mins, maxs, nullVector = { 0, 0, 0 };
float radius, intensity;
light_t *buckets[ 256 ];
/* early out for weird cases where there are no lights */
if( lights == NULL )
return;
/* note it */
Sys_FPrintf( SYS_VRB, "--- SetupEnvelopes%s ---\n", fastFlag ? " (fast)" : "" );
/* count lights */
numLights = 0;
numCulledLights = 0;
owner = &lights;
while( *owner != NULL )
{
/* get light */
light = *owner;
/* handle negative lights */
if( light->photons < 0.0f || light->add < 0.0f )
{
light->photons *= -1.0f;
light->add *= -1.0f;
light->flags |= LIGHT_NEGATIVE;
}
/* sunlight? */
if( light->type == EMIT_SUN )
{
/* special cased */
light->cluster = 0;
light->envelope = MAX_WORLD_COORD * 8.0f;
VectorSet( light->mins, MIN_WORLD_COORD * 8.0f, MIN_WORLD_COORD * 8.0f, MIN_WORLD_COORD * 8.0f );
VectorSet( light->maxs, MAX_WORLD_COORD * 8.0f, MAX_WORLD_COORD * 8.0f, MAX_WORLD_COORD * 8.0f );
}
/* everything else */
else
{
/* get pvs cluster for light */
light->cluster = ClusterForPointExt( light->origin, LIGHT_EPSILON );
/* invalid cluster? */
if( light->cluster < 0 )
{
/* nudge the sample point around a bit */
for( x = 0; x < 4; x++ )
{
/* two's complement 0, 1, -1, 2, -2, etc */
x1 = ((x >> 1) ^ (x & 1 ? -1 : 0)) + (x & 1);
for( y = 0; y < 4; y++ )
{
y1 = ((y >> 1) ^ (y & 1 ? -1 : 0)) + (y & 1);
for( z = 0; z < 4; z++ )
{
z1 = ((z >> 1) ^ (z & 1 ? -1 : 0)) + (z & 1);
/* nudge origin */
origin[ 0 ] = light->origin[ 0 ] + (LIGHT_NUDGE * x1);
origin[ 1 ] = light->origin[ 1 ] + (LIGHT_NUDGE * y1);
origin[ 2 ] = light->origin[ 2 ] + (LIGHT_NUDGE * z1);
/* try at nudged origin */
light->cluster = ClusterForPointExt( origin, LIGHT_EPSILON );
if( light->cluster < 0 )
continue;
/* set origin */
VectorCopy( origin, light->origin );
}
}
}
}
/* only calculate for lights in pvs and outside of opaque brushes */
if( light->cluster >= 0 )
{
/* set light fast flag */
if( fastFlag )
light->flags |= LIGHT_FAST_TEMP;
else
light->flags &= ~LIGHT_FAST_TEMP;
if( light->si && light->si->noFast )
light->flags &= ~(LIGHT_FAST | LIGHT_FAST_TEMP);
/* clear light envelope */
light->envelope = 0;
/* handle area lights */
if( exactPointToPolygon && light->type == EMIT_AREA && light->w != NULL )
{
/* ugly hack to calculate extent for area lights, but only done once */
VectorScale( light->normal, -1.0f, dir );
for( radius = 100.0f; radius < 130000.0f && light->envelope == 0; radius += 10.0f )
{
float factor;
VectorMA( light->origin, radius, light->normal, origin );
factor = PointToPolygonFormFactor( origin, dir, light->w );
if( factor < 0.0f )
factor *= -1.0f;
if( (factor * light->add) <= light->falloffTolerance )
light->envelope = radius;
}
/* check for fast mode */
if( !(light->flags & LIGHT_FAST) && !(light->flags & LIGHT_FAST_TEMP) )
light->envelope = MAX_WORLD_COORD * 8.0f;
}
else
{
radius = 0.0f;
intensity = light->photons;
}
/* other calcs */
if( light->envelope <= 0.0f )
{
/* solve distance for non-distance lights */
if( !(light->flags & LIGHT_ATTEN_DISTANCE) )
light->envelope = MAX_WORLD_COORD * 8.0f;
/* solve distance for linear lights */
else if( (light->flags & LIGHT_ATTEN_LINEAR ) )
//% light->envelope = ((intensity / light->falloffTolerance) * linearScale - 1 + radius) / light->fade;
light->envelope = ((intensity * linearScale) - light->falloffTolerance) / light->fade;
/*
add = angle * light->photons * linearScale - (dist * light->fade);
T = (light->photons * linearScale) - (dist * light->fade);
T + (dist * light->fade) = (light->photons * linearScale);
dist * light->fade = (light->photons * linearScale) - T;
dist = ((light->photons * linearScale) - T) / light->fade;
*/
/* solve for inverse square falloff */
else
light->envelope = sqrt( intensity / light->falloffTolerance ) + radius;
/*
add = light->photons / (dist * dist);
T = light->photons / (dist * dist);
T * (dist * dist) = light->photons;
dist = sqrt( light->photons / T );
*/
}
/* chop radius against pvs */
{
/* clear bounds */
ClearBounds( mins, maxs );
/* check all leaves */
for( i = 0; i < numBSPLeafs; i++ )
{
/* get test leaf */
leaf = &bspLeafs[ i ];
/* in pvs? */
if( leaf->cluster < 0 )
continue;
if( ClusterVisible( light->cluster, leaf->cluster ) == qfalse ) /* ydnar: thanks Arnout for exposing my stupid error (this never failed before) */
continue;
/* add this leafs bbox to the bounds */
VectorCopy( leaf->mins, origin );
AddPointToBounds( origin, mins, maxs );
VectorCopy( leaf->maxs, origin );
AddPointToBounds( origin, mins, maxs );
}
/* test to see if bounds encompass light */
for( i = 0; i < 3; i++ )
{
if( mins[ i ] > light->origin[ i ] || maxs[ i ] < light->origin[ i ] )
{
//% Sys_Printf( "WARNING: Light PVS bounds (%.0f, %.0f, %.0f) -> (%.0f, %.0f, %.0f)\ndo not encompass light %d (%f, %f, %f)\n",
//% mins[ 0 ], mins[ 1 ], mins[ 2 ],
//% maxs[ 0 ], maxs[ 1 ], maxs[ 2 ],
//% numLights, light->origin[ 0 ], light->origin[ 1 ], light->origin[ 2 ] );
AddPointToBounds( light->origin, mins, maxs );
}
}
/* chop the bounds by a plane for area lights and spotlights */
if( light->type == EMIT_AREA || light->type == EMIT_SPOT )
ChopBounds( mins, maxs, light->origin, light->normal );
/* copy bounds */
VectorCopy( mins, light->mins );
VectorCopy( maxs, light->maxs );
/* reflect bounds around light origin */
//% VectorMA( light->origin, -1.0f, origin, origin );
VectorScale( light->origin, 2, origin );
VectorSubtract( origin, maxs, origin );
AddPointToBounds( origin, mins, maxs );
//% VectorMA( light->origin, -1.0f, mins, origin );
VectorScale( light->origin, 2, origin );
VectorSubtract( origin, mins, origin );
AddPointToBounds( origin, mins, maxs );
/* calculate spherical bounds */
VectorSubtract( maxs, light->origin, dir );
radius = (float) VectorLength( dir );
/* if this radius is smaller than the envelope, then set the envelope to it */
if( radius < light->envelope )
{
light->envelope = radius;
//% Sys_FPrintf( SYS_VRB, "PVS Cull (%d): culled\n", numLights );
}
//% else
//% Sys_FPrintf( SYS_VRB, "PVS Cull (%d): failed (%8.0f > %8.0f)\n", numLights, radius, light->envelope );
}
/* add grid/surface only check */
if( forGrid )
{
if( !(light->flags & LIGHT_GRID) )
light->envelope = 0.0f;
}
else
{
if( !(light->flags & LIGHT_SURFACES) )
light->envelope = 0.0f;
}
}
/* culled? */
if( light->cluster < 0 || light->envelope <= 0.0f )
{
/* debug code */
//% Sys_Printf( "Culling light: Cluster: %d Envelope: %f\n", light->cluster, light->envelope );
/* delete the light */
numCulledLights++;
*owner = light->next;
if( light->w != NULL )
free( light->w );
free( light );
continue;
}
}
/* square envelope */
light->envelope2 = (light->envelope * light->envelope);
/* increment light count */
numLights++;
/* set next light */
owner = &((**owner).next);
}
/* bucket sort lights by style */
memset( buckets, 0, sizeof( buckets ) );
light2 = NULL;
for( light = lights; light != NULL; light = light2 )
{
/* get next light */
light2 = light->next;
/* filter into correct bucket */
light->next = buckets[ light->style ];
buckets[ light->style ] = light;
/* if any styled light is present, automatically set nocollapse */
if( light->style != LS_NORMAL )
noCollapse = qtrue;
}
/* filter back into light list */
lights = NULL;
for( i = 255; i >= 0; i-- )
{
light2 = NULL;
for( light = buckets[ i ]; light != NULL; light = light2 )
{
light2 = light->next;
light->next = lights;
lights = light;
}
}
/* emit some statistics */
Sys_Printf( "%9d total lights\n", numLights );
Sys_Printf( "%9d culled lights\n", numCulledLights );
}
/*
CreateTraceLightsForBounds()
creates a list of lights that affect the given bounding box and pvs clusters (bsp leaves)
*/
void CreateTraceLightsForBounds( vec3_t mins, vec3_t maxs, vec3_t normal, int numClusters, int *clusters, int flags, trace_t *trace )
{
int i;
light_t *light;
vec3_t origin, dir, nullVector = { 0.0f, 0.0f, 0.0f };
float radius, dist, length;
/* potential pre-setup */
if( numLights == 0 )
SetupEnvelopes( qfalse, fast );
/* debug code */
//% Sys_Printf( "CTWLFB: (%4.1f %4.1f %4.1f) (%4.1f %4.1f %4.1f)\n", mins[ 0 ], mins[ 1 ], mins[ 2 ], maxs[ 0 ], maxs[ 1 ], maxs[ 2 ] );
/* allocate the light list */
trace->lights = safe_malloc( sizeof( light_t* ) * (numLights + 1) );
trace->numLights = 0;
/* calculate spherical bounds */
VectorAdd( mins, maxs, origin );
VectorScale( origin, 0.5f, origin );
VectorSubtract( maxs, origin, dir );
radius = (float) VectorLength( dir );
/* get length of normal vector */
if( normal != NULL )
length = VectorLength( normal );
else
{
normal = nullVector;
length = 0;
}
/* test each light and see if it reaches the sphere */
/* note: the attenuation code MUST match LightingAtSample() */
for( light = lights; light; light = light->next )
{
/* check zero sized envelope */
if( light->envelope <= 0 )
{
lightsEnvelopeCulled++;
continue;
}
/* check flags */
if( !(light->flags & flags) )
continue;
/* sunlight skips all this nonsense */
if( light->type != EMIT_SUN )
{
/* sun only? */
if( sunOnly )
continue;
/* check against pvs cluster */
if( numClusters > 0 && clusters != NULL )
{
for( i = 0; i < numClusters; i++ )
{
if( ClusterVisible( light->cluster, clusters[ i ] ) )
break;
}
/* fixme! */
if( i == numClusters )
{
lightsClusterCulled++;
continue;
}
}
/* if the light's bounding sphere intersects with the bounding sphere then this light needs to be tested */
VectorSubtract( light->origin, origin, dir );
dist = VectorLength( dir );
dist -= light->envelope;
dist -= radius;
if( dist > 0 )
{
lightsEnvelopeCulled++;
continue;
}
/* check bounding box against light's pvs envelope (note: this code never eliminated any lights, so disabling it) */
#if 0
skip = qfalse;
for( i = 0; i < 3; i++ )
{
if( mins[ i ] > light->maxs[ i ] || maxs[ i ] < light->mins[ i ] )
skip = qtrue;
}
if( skip )
{
lightsBoundsCulled++;
continue;
}
#endif
}
/* planar surfaces (except twosided surfaces) have a couple more checks */
if( length > 0.0f && trace->twoSided == qfalse )
{
/* lights coplanar with a surface won't light it */
if( !(light->flags & LIGHT_TWOSIDED) && DotProduct( light->normal, normal ) > 0.999f )
{
lightsPlaneCulled++;
continue;
}
/* check to see if light is behind the plane */
if( DotProduct( light->origin, normal ) - DotProduct( origin, normal ) < -1.0f )
{
lightsPlaneCulled++;
continue;
}
}
/* add this light */
trace->lights[ trace->numLights++ ] = light;
}
/* make last night null */
trace->lights[ trace->numLights ] = NULL;
}
void FreeTraceLights( trace_t *trace )
{
if( trace->lights != NULL )
free( trace->lights );
}
/*
CreateTraceLightsForSurface()
creates a list of lights that can potentially affect a drawsurface
*/
void CreateTraceLightsForSurface( int num, trace_t *trace )
{
int i;
vec3_t mins, maxs, normal;
bspDrawVert_t *dv;
bspDrawSurface_t *ds;
surfaceInfo_t *info;
/* dummy check */
if( num < 0 )
return;
/* get drawsurface and info */
ds = &bspDrawSurfaces[ num ];
info = &surfaceInfos[ num ];
/* get the mins/maxs for the dsurf */
ClearBounds( mins, maxs );
VectorCopy( bspDrawVerts[ ds->firstVert ].normal, normal );
for( i = 0; i < ds->numVerts; i++ )
{
dv = &yDrawVerts[ ds->firstVert + i ];
AddPointToBounds( dv->xyz, mins, maxs );
if( !VectorCompare( dv->normal, normal ) )
VectorClear( normal );
}
/* create the lights for the bounding box */
CreateTraceLightsForBounds( mins, maxs, normal, info->numSurfaceClusters, &surfaceClusters[ info->firstSurfaceCluster ], LIGHT_SURFACES, trace );
}