gtkradiant/tools/quake3/q3map2/brush.c
TTimo ab3a99dbbe eol style
git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant/branches/ZeroRadiant.ab@184 8a3a26a2-13c4-0310-b231-cf6edde360e5
2007-11-04 03:47:06 +00:00

982 lines
18 KiB
C

/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
----------------------------------------------------------------------------------
This code has been altered significantly from its original form, to support
several games based on the Quake III Arena engine, in the form of "Q3Map2."
------------------------------------------------------------------------------- */
/* marker */
#define BRUSH_C
/* dependencies */
#include "q3map2.h"
/* -------------------------------------------------------------------------------
functions
------------------------------------------------------------------------------- */
/*
AllocSideRef() - ydnar
allocates and assigns a brush side reference
*/
sideRef_t *AllocSideRef( side_t *side, sideRef_t *next )
{
sideRef_t *sideRef;
/* dummy check */
if( side == NULL )
return next;
/* allocate and return */
sideRef = safe_malloc( sizeof( *sideRef ) );
sideRef->side = side;
sideRef->next = next;
return sideRef;
}
/*
CountBrushList()
counts the number of brushes in a brush linked list
*/
int CountBrushList( brush_t *brushes )
{
int c = 0;
/* count brushes */
for( brushes; brushes != NULL; brushes = brushes->next )
c++;
return c;
}
/*
AllocBrush()
allocates a new brush
*/
brush_t *AllocBrush( int numSides )
{
brush_t *bb;
int c;
/* allocate and clear */
if( numSides <= 0 )
Error( "AllocBrush called with numsides = %d", numSides );
c = (int) &(((brush_t*) 0)->sides[ numSides ]);
bb = safe_malloc( c );
memset( bb, 0, c );
if( numthreads == 1 )
numActiveBrushes++;
/* return it */
return bb;
}
/*
FreeBrush()
frees a single brush and all sides/windings
*/
void FreeBrush( brush_t *b )
{
int i;
/* error check */
if( *((int*) b) == 0xFEFEFEFE )
{
Sys_FPrintf( SYS_VRB, "WARNING: Attempt to free an already freed brush!\n" );
return;
}
/* free brush sides */
for( i = 0; i < b->numsides; i++ )
if( b->sides[i].winding != NULL )
FreeWinding( b->sides[ i ].winding );
/* ydnar: overwrite it */
memset( b, 0xFE, (int) &(((brush_t*) 0)->sides[ b->numsides ]) );
*((int*) b) = 0xFEFEFEFE;
/* free it */
free( b );
if( numthreads == 1 )
numActiveBrushes--;
}
/*
FreeBrushList()
frees a linked list of brushes
*/
void FreeBrushList( brush_t *brushes )
{
brush_t *next;
/* walk brush list */
for( brushes; brushes != NULL; brushes = next )
{
next = brushes->next;
FreeBrush( brushes );
}
}
/*
CopyBrush()
duplicates the brush, sides, and windings
*/
brush_t *CopyBrush( brush_t *brush )
{
brush_t *newBrush;
int size;
int i;
/* copy brush */
size = (int) &(((brush_t*) 0)->sides[ brush->numsides ]);
newBrush = AllocBrush( brush->numsides );
memcpy( newBrush, brush, size );
/* ydnar: nuke linked list */
newBrush->next = NULL;
/* copy sides */
for( i = 0; i < brush->numsides; i++ )
{
if( brush->sides[ i ].winding != NULL )
newBrush->sides[ i ].winding = CopyWinding( brush->sides[ i ].winding );
}
/* return it */
return newBrush;
}
/*
BoundBrush()
sets the mins/maxs based on the windings
returns false if the brush doesn't enclose a valid volume
*/
qboolean BoundBrush( brush_t *brush )
{
int i, j;
winding_t *w;
ClearBounds( brush->mins, brush->maxs );
for( i = 0; i < brush->numsides; i++ )
{
w = brush->sides[ i ].winding;
if( w == NULL )
continue;
for( j = 0; j < w->numpoints; j++ )
AddPointToBounds( w->p[ j ], brush->mins, brush->maxs );
}
for( i = 0; i < 3; i++ )
{
if( brush->mins[ i ] < MIN_WORLD_COORD || brush->maxs[ i ] > MAX_WORLD_COORD || brush->mins[i] >= brush->maxs[ i ] )
return qfalse;
}
return qtrue;
}
/*
SnapWeldVector() - ydnar
welds two vec3_t's into a third, taking into account nearest-to-integer
instead of averaging
*/
#define SNAP_EPSILON 0.01
void SnapWeldVector( vec3_t a, vec3_t b, vec3_t out )
{
int i;
vec_t ai, bi, outi;
/* dummy check */
if( a == NULL || b == NULL || out == NULL )
return;
/* do each element */
for( i = 0; i < 3; i++ )
{
/* round to integer */
ai = Q_rint( a[ i ] );
bi = Q_rint( a[ i ] );
/* prefer exact integer */
if( ai == a[ i ] )
out[ i ] = a[ i ];
else if( bi == b[ i ] )
out[ i ] = b[ i ];
/* use nearest */
else if( fabs( ai - a[ i ] ) < fabs( bi < b[ i ] ) )
out[ i ] = a[ i ];
else
out[ i ] = b[ i ];
/* snap */
outi = Q_rint( out[ i ] );
if( fabs( outi - out[ i ] ) <= SNAP_EPSILON )
out[ i ] = outi;
}
}
/*
FixWinding() - ydnar
removes degenerate edges from a winding
returns qtrue if the winding is valid
*/
#define DEGENERATE_EPSILON 0.1
qboolean FixWinding( winding_t *w )
{
qboolean valid = qtrue;
int i, j, k;
vec3_t vec;
float dist;
/* dummy check */
if( !w )
return qfalse;
/* check all verts */
for( i = 0; i < w->numpoints; i++ )
{
/* don't remove points if winding is a triangle */
if( w->numpoints == 3 )
return valid;
/* get second point index */
j = (i + 1) % w->numpoints;
/* degenerate edge? */
VectorSubtract( w->p[ i ], w->p[ j ], vec );
dist = VectorLength( vec );
if( dist < DEGENERATE_EPSILON )
{
valid = qfalse;
//Sys_FPrintf( SYS_VRB, "WARNING: Degenerate winding edge found, fixing...\n" );
/* create an average point (ydnar 2002-01-26: using nearest-integer weld preference) */
SnapWeldVector( w->p[ i ], w->p[ j ], vec );
VectorCopy( vec, w->p[ i ] );
//VectorAdd( w->p[ i ], w->p[ j ], vec );
//VectorScale( vec, 0.5, w->p[ i ] );
/* move the remaining verts */
for( k = i + 2; k < w->numpoints; k++ )
{
VectorCopy( w->p[ k ], w->p[ k - 1 ] );
}
w->numpoints--;
}
}
/* one last check and return */
if( w->numpoints < 3 )
valid = qfalse;
return valid;
}
/*
CreateBrushWindings()
makes basewindigs for sides and mins/maxs for the brush
returns false if the brush doesn't enclose a valid volume
*/
qboolean CreateBrushWindings( brush_t *brush )
{
int i, j;
winding_t *w;
side_t *side;
plane_t *plane;
/* walk the list of brush sides */
for( i = 0; i < brush->numsides; i++ )
{
/* get side and plane */
side = &brush->sides[ i ];
plane = &mapplanes[ side->planenum ];
/* make huge winding */
w = BaseWindingForPlane( plane->normal, plane->dist );
/* walk the list of brush sides */
for( j = 0; j < brush->numsides && w != NULL; j++ )
{
if( i == j )
continue;
if( brush->sides[ j ].planenum == (brush->sides[ i ].planenum ^ 1) )
continue; /* back side clipaway */
if( brush->sides[ j ].bevel )
continue;
if( brush->sides[ j ].backSide )
continue;
plane = &mapplanes[ brush->sides[ j ].planenum ^ 1 ];
ChopWindingInPlace( &w, plane->normal, plane->dist, 0 ); // CLIP_EPSILON );
/* ydnar: fix broken windings that would generate trifans */
FixWinding( w );
}
/* set side winding */
side->winding = w;
}
/* find brush bounds */
return BoundBrush( brush );
}
/*
==================
BrushFromBounds
Creates a new axial brush
==================
*/
brush_t *BrushFromBounds (vec3_t mins, vec3_t maxs)
{
brush_t *b;
int i;
vec3_t normal;
vec_t dist;
b = AllocBrush (6);
b->numsides = 6;
for (i=0 ; i<3 ; i++)
{
VectorClear (normal);
normal[i] = 1;
dist = maxs[i];
b->sides[i].planenum = FindFloatPlane (normal, dist, 1, (vec3_t*) &maxs );
normal[i] = -1;
dist = -mins[i];
b->sides[3+i].planenum = FindFloatPlane (normal, dist, 1, (vec3_t*) &mins );
}
CreateBrushWindings (b);
return b;
}
/*
==================
BrushVolume
==================
*/
vec_t BrushVolume (brush_t *brush)
{
int i;
winding_t *w;
vec3_t corner;
vec_t d, area, volume;
plane_t *plane;
if (!brush)
return 0;
// grab the first valid point as the corner
w = NULL;
for (i=0 ; i<brush->numsides ; i++)
{
w = brush->sides[i].winding;
if (w)
break;
}
if (!w)
return 0;
VectorCopy (w->p[0], corner);
// make tetrahedrons to all other faces
volume = 0;
for ( ; i<brush->numsides ; i++)
{
w = brush->sides[i].winding;
if (!w)
continue;
plane = &mapplanes[brush->sides[i].planenum];
d = -(DotProduct (corner, plane->normal) - plane->dist);
area = WindingArea (w);
volume += d*area;
}
volume /= 3;
return volume;
}
/*
WriteBSPBrushMap()
writes a map with the split bsp brushes
*/
void WriteBSPBrushMap( char *name, brush_t *list )
{
FILE *f;
side_t *s;
int i;
winding_t *w;
/* note it */
Sys_Printf( "Writing %s\n", name );
/* open the map file */
f = fopen( name, "wb" );
if( f == NULL )
Error( "Can't write %s\b", name );
fprintf (f, "{\n\"classname\" \"worldspawn\"\n");
for ( ; list ; list=list->next )
{
fprintf (f, "{\n");
for (i=0,s=list->sides ; i<list->numsides ; i++,s++)
{
w = BaseWindingForPlane (mapplanes[s->planenum].normal, mapplanes[s->planenum].dist);
fprintf (f,"( %i %i %i ) ", (int)w->p[0][0], (int)w->p[0][1], (int)w->p[0][2]);
fprintf (f,"( %i %i %i ) ", (int)w->p[1][0], (int)w->p[1][1], (int)w->p[1][2]);
fprintf (f,"( %i %i %i ) ", (int)w->p[2][0], (int)w->p[2][1], (int)w->p[2][2]);
fprintf (f, "notexture 0 0 0 1 1\n" );
FreeWinding (w);
}
fprintf (f, "}\n");
}
fprintf (f, "}\n");
fclose (f);
}
/*
FilterBrushIntoTree_r()
adds brush reference to any intersecting bsp leafnode
*/
int FilterBrushIntoTree_r( brush_t *b, node_t *node )
{
brush_t *front, *back;
int c;
/* dummy check */
if( b == NULL )
return 0;
/* add it to the leaf list */
if( node->planenum == PLANENUM_LEAF )
{
/* something somewhere is hammering brushlist */
b->next = node->brushlist;
node->brushlist = b;
/* classify the leaf by the structural brush */
if( !b->detail )
{
if( b->opaque )
{
node->opaque = qtrue;
node->areaportal = qfalse;
}
else if( b->compileFlags & C_AREAPORTAL )
{
if( !node->opaque )
node->areaportal = qtrue;
}
}
return 1;
}
/* split it by the node plane */
c = b->numsides;
SplitBrush( b, node->planenum, &front, &back );
FreeBrush( b );
c = 0;
c += FilterBrushIntoTree_r( front, node->children[ 0 ] );
c += FilterBrushIntoTree_r( back, node->children[ 1 ] );
return c;
}
/*
FilterDetailBrushesIntoTree
fragment all the detail brushes into the structural leafs
*/
void FilterDetailBrushesIntoTree( entity_t *e, tree_t *tree )
{
brush_t *b, *newb;
int r;
int c_unique, c_clusters;
int i;
/* note it */
Sys_FPrintf( SYS_VRB, "--- FilterDetailBrushesIntoTree ---\n" );
/* walk the list of brushes */
c_unique = 0;
c_clusters = 0;
for( b = e->brushes; b; b = b->next )
{
if( !b->detail )
continue;
c_unique++;
newb = CopyBrush( b );
r = FilterBrushIntoTree_r( newb, tree->headnode );
c_clusters += r;
/* mark all sides as visible so drawsurfs are created */
if( r )
{
for( i = 0; i < b->numsides; i++ )
{
if( b->sides[ i ].winding )
b->sides[ i ].visible = qtrue;
}
}
}
/* emit some statistics */
Sys_FPrintf( SYS_VRB, "%9d detail brushes\n", c_unique );
Sys_FPrintf( SYS_VRB, "%9d cluster references\n", c_clusters );
}
/*
=====================
FilterStructuralBrushesIntoTree
Mark the leafs as opaque and areaportals
=====================
*/
void FilterStructuralBrushesIntoTree( entity_t *e, tree_t *tree ) {
brush_t *b, *newb;
int r;
int c_unique, c_clusters;
int i;
Sys_FPrintf (SYS_VRB, "--- FilterStructuralBrushesIntoTree ---\n");
c_unique = 0;
c_clusters = 0;
for ( b = e->brushes ; b ; b = b->next ) {
if ( b->detail ) {
continue;
}
c_unique++;
newb = CopyBrush( b );
r = FilterBrushIntoTree_r( newb, tree->headnode );
c_clusters += r;
// mark all sides as visible so drawsurfs are created
if ( r ) {
for ( i = 0 ; i < b->numsides ; i++ ) {
if ( b->sides[i].winding ) {
b->sides[i].visible = qtrue;
}
}
}
}
/* emit some statistics */
Sys_FPrintf( SYS_VRB, "%9d structural brushes\n", c_unique );
Sys_FPrintf( SYS_VRB, "%9d cluster references\n", c_clusters );
}
/*
================
AllocTree
================
*/
tree_t *AllocTree (void)
{
tree_t *tree;
tree = safe_malloc(sizeof(*tree));
memset (tree, 0, sizeof(*tree));
ClearBounds (tree->mins, tree->maxs);
return tree;
}
/*
================
AllocNode
================
*/
node_t *AllocNode (void)
{
node_t *node;
node = safe_malloc(sizeof(*node));
memset (node, 0, sizeof(*node));
return node;
}
/*
================
WindingIsTiny
Returns true if the winding would be crunched out of
existance by the vertex snapping.
================
*/
#define EDGE_LENGTH 0.2
qboolean WindingIsTiny (winding_t *w)
{
/*
if (WindingArea (w) < 1)
return qtrue;
return qfalse;
*/
int i, j;
vec_t len;
vec3_t delta;
int edges;
edges = 0;
for (i=0 ; i<w->numpoints ; i++)
{
j = i == w->numpoints - 1 ? 0 : i+1;
VectorSubtract (w->p[j], w->p[i], delta);
len = VectorLength (delta);
if (len > EDGE_LENGTH)
{
if (++edges == 3)
return qfalse;
}
}
return qtrue;
}
/*
================
WindingIsHuge
Returns true if the winding still has one of the points
from basewinding for plane
================
*/
qboolean WindingIsHuge (winding_t *w)
{
int i, j;
for (i=0 ; i<w->numpoints ; i++)
{
for (j=0 ; j<3 ; j++)
if (w->p[i][j] <= MIN_WORLD_COORD || w->p[i][j] >= MAX_WORLD_COORD)
return qtrue;
}
return qfalse;
}
//============================================================
/*
==================
BrushMostlyOnSide
==================
*/
int BrushMostlyOnSide (brush_t *brush, plane_t *plane)
{
int i, j;
winding_t *w;
vec_t d, max;
int side;
max = 0;
side = PSIDE_FRONT;
for (i=0 ; i<brush->numsides ; i++)
{
w = brush->sides[i].winding;
if (!w)
continue;
for (j=0 ; j<w->numpoints ; j++)
{
d = DotProduct (w->p[j], plane->normal) - plane->dist;
if (d > max)
{
max = d;
side = PSIDE_FRONT;
}
if (-d > max)
{
max = -d;
side = PSIDE_BACK;
}
}
}
return side;
}
/*
SplitBrush()
generates two new brushes, leaving the original unchanged
*/
void SplitBrush( brush_t *brush, int planenum, brush_t **front, brush_t **back )
{
brush_t *b[2];
int i, j;
winding_t *w, *cw[2], *midwinding;
plane_t *plane, *plane2;
side_t *s, *cs;
float d, d_front, d_back;
*front = NULL;
*back = NULL;
plane = &mapplanes[planenum];
// check all points
d_front = d_back = 0;
for (i=0 ; i<brush->numsides ; i++)
{
w = brush->sides[i].winding;
if (!w)
continue;
for (j=0 ; j<w->numpoints ; j++)
{
d = DotProduct (w->p[j], plane->normal) - plane->dist;
if (d > 0 && d > d_front)
d_front = d;
if (d < 0 && d < d_back)
d_back = d;
}
}
if (d_front < 0.1) // PLANESIDE_EPSILON)
{ // only on back
*back = CopyBrush( brush );
return;
}
if (d_back > -0.1) // PLANESIDE_EPSILON)
{ // only on front
*front = CopyBrush( brush );
return;
}
// create a new winding from the split plane
w = BaseWindingForPlane (plane->normal, plane->dist);
for (i=0 ; i<brush->numsides && w ; i++)
{
if ( brush->sides[i].backSide ) {
continue; // fake back-sided polygons never split
}
plane2 = &mapplanes[brush->sides[i].planenum ^ 1];
ChopWindingInPlace (&w, plane2->normal, plane2->dist, 0); // PLANESIDE_EPSILON);
}
if (!w || WindingIsTiny (w) )
{ // the brush isn't really split
int side;
side = BrushMostlyOnSide (brush, plane);
if (side == PSIDE_FRONT)
*front = CopyBrush (brush);
if (side == PSIDE_BACK)
*back = CopyBrush (brush);
return;
}
if( WindingIsHuge( w ) )
Sys_FPrintf( SYS_VRB,"WARNING: huge winding\n" );
midwinding = w;
// split it for real
for (i=0 ; i<2 ; i++)
{
b[i] = AllocBrush (brush->numsides+1);
memcpy( b[i], brush, sizeof( brush_t ) - sizeof( brush->sides ) );
b[i]->numsides = 0;
b[i]->next = NULL;
b[i]->original = brush->original;
}
// split all the current windings
for (i=0 ; i<brush->numsides ; i++)
{
s = &brush->sides[i];
w = s->winding;
if (!w)
continue;
ClipWindingEpsilon (w, plane->normal, plane->dist,
0 /*PLANESIDE_EPSILON*/, &cw[0], &cw[1]);
for (j=0 ; j<2 ; j++)
{
if (!cw[j])
continue;
cs = &b[j]->sides[b[j]->numsides];
b[j]->numsides++;
*cs = *s;
cs->winding = cw[j];
}
}
// see if we have valid polygons on both sides
for (i=0 ; i<2 ; i++)
{
BoundBrush (b[i]);
for (j=0 ; j<3 ; j++)
{
if (b[i]->mins[j] < MIN_WORLD_COORD || b[i]->maxs[j] > MAX_WORLD_COORD)
{
Sys_FPrintf (SYS_VRB,"bogus brush after clip\n");
break;
}
}
if (b[i]->numsides < 3 || j < 3)
{
FreeBrush (b[i]);
b[i] = NULL;
}
}
if ( !(b[0] && b[1]) )
{
if (!b[0] && !b[1])
Sys_FPrintf (SYS_VRB,"split removed brush\n");
else
Sys_FPrintf (SYS_VRB,"split not on both sides\n");
if (b[0])
{
FreeBrush (b[0]);
*front = CopyBrush (brush);
}
if (b[1])
{
FreeBrush (b[1]);
*back = CopyBrush (brush);
}
return;
}
// add the midwinding to both sides
for (i=0 ; i<2 ; i++)
{
cs = &b[i]->sides[b[i]->numsides];
b[i]->numsides++;
cs->planenum = planenum^i^1;
cs->shaderInfo = NULL;
if (i==0)
cs->winding = CopyWinding (midwinding);
else
cs->winding = midwinding;
}
{
vec_t v1;
int i;
for (i=0 ; i<2 ; i++)
{
v1 = BrushVolume (b[i]);
if (v1 < 1.0)
{
FreeBrush (b[i]);
b[i] = NULL;
// Sys_FPrintf (SYS_VRB,"tiny volume after clip\n");
}
}
}
*front = b[0];
*back = b[1];
}