mirror of
https://github.com/UberGames/GtkRadiant.git
synced 2025-01-22 09:21:50 +00:00
1125 lines
23 KiB
C
1125 lines
23 KiB
C
/* -------------------------------------------------------------------------------
|
|
|
|
Copyright (C) 1999-2007 id Software, Inc. and contributors.
|
|
For a list of contributors, see the accompanying CONTRIBUTORS file.
|
|
|
|
This file is part of GtkRadiant.
|
|
|
|
GtkRadiant is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
GtkRadiant is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GtkRadiant; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
----------------------------------------------------------------------------------
|
|
|
|
This code has been altered significantly from its original form, to support
|
|
several games based on the Quake III Arena engine, in the form of "Q3Map2."
|
|
|
|
------------------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/* marker */
|
|
#define BRUSH_C
|
|
|
|
|
|
|
|
/* dependencies */
|
|
#include "q3map2.h"
|
|
|
|
|
|
|
|
/* -------------------------------------------------------------------------------
|
|
|
|
functions
|
|
|
|
------------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
AllocSideRef() - ydnar
|
|
allocates and assigns a brush side reference
|
|
*/
|
|
|
|
sideRef_t *AllocSideRef( side_t *side, sideRef_t *next ){
|
|
sideRef_t *sideRef;
|
|
|
|
|
|
/* dummy check */
|
|
if ( side == NULL ) {
|
|
return next;
|
|
}
|
|
|
|
/* allocate and return */
|
|
sideRef = safe_malloc( sizeof( *sideRef ) );
|
|
sideRef->side = side;
|
|
sideRef->next = next;
|
|
return sideRef;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
CountBrushList()
|
|
counts the number of brushes in a brush linked list
|
|
*/
|
|
|
|
int CountBrushList( brush_t *brushes ){
|
|
int c = 0;
|
|
|
|
|
|
/* count brushes */
|
|
for ( ; brushes != NULL; brushes = brushes->next )
|
|
c++;
|
|
return c;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
AllocBrush()
|
|
allocates a new brush
|
|
*/
|
|
|
|
brush_t *AllocBrush( int numSides ){
|
|
brush_t *bb;
|
|
size_t c;
|
|
|
|
|
|
/* allocate and clear */
|
|
if ( numSides <= 0 ) {
|
|
Error( "AllocBrush called with numsides = %d", numSides );
|
|
}
|
|
c = (size_t)&( ( (brush_t*) 0 )->sides[ numSides ] );
|
|
bb = safe_malloc( c );
|
|
memset( bb, 0, c );
|
|
if ( numthreads == 1 ) {
|
|
numActiveBrushes++;
|
|
}
|
|
|
|
/* return it */
|
|
return bb;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
FreeBrush()
|
|
frees a single brush and all sides/windings
|
|
*/
|
|
|
|
void FreeBrush( brush_t *b ){
|
|
int i;
|
|
|
|
|
|
/* error check */
|
|
if ( *( (unsigned int*) b ) == 0xFEFEFEFE ) {
|
|
Sys_FPrintf( SYS_VRB, "WARNING: Attempt to free an already freed brush!\n" );
|
|
return;
|
|
}
|
|
|
|
/* free brush sides */
|
|
for ( i = 0; i < b->numsides; i++ )
|
|
if ( b->sides[i].winding != NULL ) {
|
|
FreeWinding( b->sides[ i ].winding );
|
|
}
|
|
|
|
/* ydnar: overwrite it */
|
|
memset( b, 0xFE, (size_t)&( ( (brush_t*) 0 )->sides[ b->numsides ] ) );
|
|
*( (unsigned int*) b ) = 0xFEFEFEFE;
|
|
|
|
/* free it */
|
|
free( b );
|
|
if ( numthreads == 1 ) {
|
|
numActiveBrushes--;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
FreeBrushList()
|
|
frees a linked list of brushes
|
|
*/
|
|
|
|
void FreeBrushList( brush_t *brushes ){
|
|
brush_t *next;
|
|
|
|
|
|
/* walk brush list */
|
|
for ( ; brushes != NULL; brushes = next )
|
|
{
|
|
next = brushes->next;
|
|
FreeBrush( brushes );
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
CopyBrush()
|
|
duplicates the brush, sides, and windings
|
|
*/
|
|
|
|
brush_t *CopyBrush( brush_t *brush ){
|
|
brush_t *newBrush;
|
|
size_t size;
|
|
int i;
|
|
|
|
|
|
/* copy brush */
|
|
size = (size_t)&( ( (brush_t*) 0 )->sides[ brush->numsides ] );
|
|
newBrush = AllocBrush( brush->numsides );
|
|
memcpy( newBrush, brush, size );
|
|
|
|
/* ydnar: nuke linked list */
|
|
newBrush->next = NULL;
|
|
|
|
/* copy sides */
|
|
for ( i = 0; i < brush->numsides; i++ )
|
|
{
|
|
if ( brush->sides[ i ].winding != NULL ) {
|
|
newBrush->sides[ i ].winding = CopyWinding( brush->sides[ i ].winding );
|
|
}
|
|
}
|
|
|
|
/* return it */
|
|
return newBrush;
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
BoundBrush()
|
|
sets the mins/maxs based on the windings
|
|
returns false if the brush doesn't enclose a valid volume
|
|
*/
|
|
|
|
qboolean BoundBrush( brush_t *brush ){
|
|
int i, j;
|
|
winding_t *w;
|
|
|
|
|
|
ClearBounds( brush->mins, brush->maxs );
|
|
for ( i = 0; i < brush->numsides; i++ )
|
|
{
|
|
w = brush->sides[ i ].winding;
|
|
if ( w == NULL ) {
|
|
continue;
|
|
}
|
|
for ( j = 0; j < w->numpoints; j++ )
|
|
AddPointToBounds( w->p[ j ], brush->mins, brush->maxs );
|
|
}
|
|
|
|
for ( i = 0; i < 3; i++ )
|
|
{
|
|
if ( brush->mins[ i ] < MIN_WORLD_COORD || brush->maxs[ i ] > MAX_WORLD_COORD || brush->mins[i] >= brush->maxs[ i ] ) {
|
|
return qfalse;
|
|
}
|
|
}
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
SnapWeldVector() - ydnar
|
|
welds two vec3_t's into a third, taking into account nearest-to-integer
|
|
instead of averaging
|
|
*/
|
|
|
|
#define SNAP_EPSILON 0.01
|
|
|
|
void SnapWeldVector( vec3_t a, vec3_t b, vec3_t out ){
|
|
int i;
|
|
vec_t ai, bi, outi;
|
|
|
|
|
|
/* dummy check */
|
|
if ( a == NULL || b == NULL || out == NULL ) {
|
|
return;
|
|
}
|
|
|
|
/* do each element */
|
|
for ( i = 0; i < 3; i++ )
|
|
{
|
|
/* round to integer */
|
|
ai = Q_rint( a[ i ] );
|
|
bi = Q_rint( a[ i ] );
|
|
|
|
/* prefer exact integer */
|
|
if ( ai == a[ i ] ) {
|
|
out[ i ] = a[ i ];
|
|
}
|
|
else if ( bi == b[ i ] ) {
|
|
out[ i ] = b[ i ];
|
|
}
|
|
|
|
/* use nearest */
|
|
else if ( fabs( ai - a[ i ] ) < fabs( bi < b[ i ] ) ) {
|
|
out[ i ] = a[ i ];
|
|
}
|
|
else{
|
|
out[ i ] = b[ i ];
|
|
}
|
|
|
|
/* snap */
|
|
outi = Q_rint( out[ i ] );
|
|
if ( fabs( outi - out[ i ] ) <= SNAP_EPSILON ) {
|
|
out[ i ] = outi;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
==================
|
|
SnapWeldVectorAccu
|
|
|
|
Welds two vectors into a third, taking into account nearest-to-integer
|
|
instead of averaging.
|
|
==================
|
|
*/
|
|
void SnapWeldVectorAccu( vec3_accu_t a, vec3_accu_t b, vec3_accu_t out ){
|
|
// I'm just preserving what I think was the intended logic of the original
|
|
// SnapWeldVector(). I'm not actually sure where this function should even
|
|
// be used. I'd like to know which kinds of problems this function addresses.
|
|
|
|
// TODO: I thought we're snapping all coordinates to nearest 1/8 unit?
|
|
// So what is natural about snapping to the nearest integer? Maybe we should
|
|
// be snapping to the nearest 1/8 unit instead?
|
|
|
|
int i;
|
|
vec_accu_t ai, bi, ad, bd;
|
|
|
|
if ( a == NULL || b == NULL || out == NULL ) {
|
|
Error( "SnapWeldVectorAccu: NULL argument" );
|
|
}
|
|
|
|
for ( i = 0; i < 3; i++ )
|
|
{
|
|
ai = Q_rintAccu( a[i] );
|
|
bi = Q_rintAccu( b[i] );
|
|
ad = fabs( ai - a[i] );
|
|
bd = fabs( bi - b[i] );
|
|
|
|
if ( ad < bd ) {
|
|
if ( ad < SNAP_EPSILON ) {
|
|
out[i] = ai;
|
|
}
|
|
else{out[i] = a[i]; }
|
|
}
|
|
else
|
|
{
|
|
if ( bd < SNAP_EPSILON ) {
|
|
out[i] = bi;
|
|
}
|
|
else{out[i] = b[i]; }
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
FixWinding() - ydnar
|
|
removes degenerate edges from a winding
|
|
returns qtrue if the winding is valid
|
|
*/
|
|
|
|
#define DEGENERATE_EPSILON 0.1
|
|
|
|
qboolean FixWinding( winding_t *w ){
|
|
qboolean valid = qtrue;
|
|
int i, j, k;
|
|
vec3_t vec;
|
|
float dist;
|
|
|
|
|
|
/* dummy check */
|
|
if ( !w ) {
|
|
return qfalse;
|
|
}
|
|
|
|
/* check all verts */
|
|
for ( i = 0; i < w->numpoints; i++ )
|
|
{
|
|
/* don't remove points if winding is a triangle */
|
|
if ( w->numpoints == 3 ) {
|
|
return valid;
|
|
}
|
|
|
|
/* get second point index */
|
|
j = ( i + 1 ) % w->numpoints;
|
|
|
|
/* degenerate edge? */
|
|
VectorSubtract( w->p[ i ], w->p[ j ], vec );
|
|
dist = VectorLength( vec );
|
|
if ( dist < DEGENERATE_EPSILON ) {
|
|
valid = qfalse;
|
|
//Sys_FPrintf( SYS_VRB, "WARNING: Degenerate winding edge found, fixing...\n" );
|
|
|
|
/* create an average point (ydnar 2002-01-26: using nearest-integer weld preference) */
|
|
SnapWeldVector( w->p[ i ], w->p[ j ], vec );
|
|
VectorCopy( vec, w->p[ i ] );
|
|
//VectorAdd( w->p[ i ], w->p[ j ], vec );
|
|
//VectorScale( vec, 0.5, w->p[ i ] );
|
|
|
|
/* move the remaining verts */
|
|
for ( k = i + 2; k < w->numpoints; k++ )
|
|
{
|
|
VectorCopy( w->p[ k ], w->p[ k - 1 ] );
|
|
}
|
|
w->numpoints--;
|
|
}
|
|
}
|
|
|
|
/* one last check and return */
|
|
if ( w->numpoints < 3 ) {
|
|
valid = qfalse;
|
|
}
|
|
return valid;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
FixWindingAccu
|
|
|
|
Removes degenerate edges (edges that are too short) from a winding.
|
|
Returns qtrue if the winding has been altered by this function.
|
|
Returns qfalse if the winding is untouched by this function.
|
|
|
|
It's advised that you check the winding after this function exits to make
|
|
sure it still has at least 3 points. If that is not the case, the winding
|
|
cannot be considered valid. The winding may degenerate to one or two points
|
|
if the some of the winding's points are close together.
|
|
==================
|
|
*/
|
|
qboolean FixWindingAccu( winding_accu_t *w ){
|
|
int i, j, k;
|
|
vec3_accu_t vec;
|
|
vec_accu_t dist;
|
|
qboolean done, altered;
|
|
|
|
if ( w == NULL ) {
|
|
Error( "FixWindingAccu: NULL argument" );
|
|
}
|
|
|
|
altered = qfalse;
|
|
|
|
while ( qtrue )
|
|
{
|
|
if ( w->numpoints < 2 ) {
|
|
break; // Don't remove the only remaining point.
|
|
}
|
|
done = qtrue;
|
|
for ( i = 0; i < w->numpoints; i++ )
|
|
{
|
|
j = ( ( ( i + 1 ) == w->numpoints ) ? 0 : ( i + 1 ) );
|
|
|
|
VectorSubtractAccu( w->p[i], w->p[j], vec );
|
|
dist = VectorLengthAccu( vec );
|
|
if ( dist < DEGENERATE_EPSILON ) {
|
|
// TODO: I think the "snap weld vector" was written before
|
|
// some of the math precision fixes, and its purpose was
|
|
// probably to address math accuracy issues. We can think
|
|
// about changing the logic here. Maybe once plane distance
|
|
// gets 64 bits, we can look at it then.
|
|
SnapWeldVectorAccu( w->p[i], w->p[j], vec );
|
|
VectorCopyAccu( vec, w->p[i] );
|
|
for ( k = j + 1; k < w->numpoints; k++ )
|
|
{
|
|
VectorCopyAccu( w->p[k], w->p[k - 1] );
|
|
}
|
|
w->numpoints--;
|
|
altered = qtrue;
|
|
// The only way to finish off fixing the winding consistently and
|
|
// accurately is by fixing the winding all over again. For example,
|
|
// the point at index i and the point at index i-1 could now be
|
|
// less than the epsilon distance apart. There are too many special
|
|
// case problems we'd need to handle if we didn't start from the
|
|
// beginning.
|
|
done = qfalse;
|
|
break; // This will cause us to return to the "while" loop.
|
|
}
|
|
}
|
|
if ( done ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return altered;
|
|
}
|
|
|
|
|
|
/*
|
|
CreateBrushWindings()
|
|
makes basewindigs for sides and mins/maxs for the brush
|
|
returns false if the brush doesn't enclose a valid volume
|
|
*/
|
|
|
|
qboolean CreateBrushWindings( brush_t *brush ){
|
|
int i, j;
|
|
#if Q3MAP2_EXPERIMENTAL_HIGH_PRECISION_MATH_FIXES
|
|
winding_accu_t *w;
|
|
#else
|
|
winding_t *w;
|
|
#endif
|
|
side_t *side;
|
|
plane_t *plane;
|
|
|
|
|
|
/* walk the list of brush sides */
|
|
for ( i = 0; i < brush->numsides; i++ )
|
|
{
|
|
/* get side and plane */
|
|
side = &brush->sides[ i ];
|
|
plane = &mapplanes[ side->planenum ];
|
|
|
|
/* make huge winding */
|
|
#if Q3MAP2_EXPERIMENTAL_HIGH_PRECISION_MATH_FIXES
|
|
w = BaseWindingForPlaneAccu( plane->normal, plane->dist );
|
|
#else
|
|
w = BaseWindingForPlane( plane->normal, plane->dist );
|
|
#endif
|
|
|
|
/* walk the list of brush sides */
|
|
for ( j = 0; j < brush->numsides && w != NULL; j++ )
|
|
{
|
|
if ( i == j ) {
|
|
continue;
|
|
}
|
|
if ( brush->sides[ j ].planenum == ( brush->sides[ i ].planenum ^ 1 ) ) {
|
|
continue; /* back side clipaway */
|
|
}
|
|
if ( brush->sides[ j ].bevel ) {
|
|
continue;
|
|
}
|
|
plane = &mapplanes[ brush->sides[ j ].planenum ^ 1 ];
|
|
#if Q3MAP2_EXPERIMENTAL_HIGH_PRECISION_MATH_FIXES
|
|
ChopWindingInPlaceAccu( &w, plane->normal, plane->dist, 0 );
|
|
#else
|
|
ChopWindingInPlace( &w, plane->normal, plane->dist, 0 ); // CLIP_EPSILON );
|
|
#endif
|
|
|
|
/* ydnar: fix broken windings that would generate trifans */
|
|
#if Q3MAP2_EXPERIMENTAL_HIGH_PRECISION_MATH_FIXES
|
|
// I think it's better to FixWindingAccu() once after we chop with all planes
|
|
// so that error isn't multiplied. There is nothing natural about welding
|
|
// the points unless they are the final endpoints. ChopWindingInPlaceAccu()
|
|
// is able to handle all kinds of degenerate windings.
|
|
#else
|
|
FixWinding( w );
|
|
#endif
|
|
}
|
|
|
|
/* set side winding */
|
|
#if Q3MAP2_EXPERIMENTAL_HIGH_PRECISION_MATH_FIXES
|
|
if ( w != NULL ) {
|
|
FixWindingAccu( w );
|
|
if ( w->numpoints < 3 ) {
|
|
FreeWindingAccu( w );
|
|
w = NULL;
|
|
}
|
|
}
|
|
side->winding = ( w ? CopyWindingAccuToRegular( w ) : NULL );
|
|
if ( w ) {
|
|
FreeWindingAccu( w );
|
|
}
|
|
#else
|
|
side->winding = w;
|
|
#endif
|
|
}
|
|
|
|
/* find brush bounds */
|
|
return BoundBrush( brush );
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
==================
|
|
BrushFromBounds
|
|
|
|
Creates a new axial brush
|
|
==================
|
|
*/
|
|
brush_t *BrushFromBounds( vec3_t mins, vec3_t maxs ){
|
|
brush_t *b;
|
|
int i;
|
|
vec3_t normal;
|
|
vec_t dist;
|
|
|
|
b = AllocBrush( 6 );
|
|
b->numsides = 6;
|
|
for ( i = 0 ; i < 3 ; i++ )
|
|
{
|
|
VectorClear( normal );
|
|
normal[i] = 1;
|
|
dist = maxs[i];
|
|
b->sides[i].planenum = FindFloatPlane( normal, dist, 1, (vec3_t*) &maxs );
|
|
|
|
normal[i] = -1;
|
|
dist = -mins[i];
|
|
b->sides[3 + i].planenum = FindFloatPlane( normal, dist, 1, (vec3_t*) &mins );
|
|
}
|
|
|
|
CreateBrushWindings( b );
|
|
|
|
return b;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
BrushVolume
|
|
|
|
==================
|
|
*/
|
|
vec_t BrushVolume( brush_t *brush ){
|
|
int i;
|
|
winding_t *w;
|
|
vec3_t corner;
|
|
vec_t d, area, volume;
|
|
plane_t *plane;
|
|
|
|
if ( !brush ) {
|
|
return 0;
|
|
}
|
|
|
|
// grab the first valid point as the corner
|
|
|
|
w = NULL;
|
|
for ( i = 0 ; i < brush->numsides ; i++ )
|
|
{
|
|
w = brush->sides[i].winding;
|
|
if ( w ) {
|
|
break;
|
|
}
|
|
}
|
|
if ( !w ) {
|
|
return 0;
|
|
}
|
|
VectorCopy( w->p[0], corner );
|
|
|
|
// make tetrahedrons to all other faces
|
|
|
|
volume = 0;
|
|
for ( ; i < brush->numsides ; i++ )
|
|
{
|
|
w = brush->sides[i].winding;
|
|
if ( !w ) {
|
|
continue;
|
|
}
|
|
plane = &mapplanes[brush->sides[i].planenum];
|
|
d = -( DotProduct( corner, plane->normal ) - plane->dist );
|
|
area = WindingArea( w );
|
|
volume += d * area;
|
|
}
|
|
|
|
volume /= 3;
|
|
return volume;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
WriteBSPBrushMap()
|
|
writes a map with the split bsp brushes
|
|
*/
|
|
|
|
void WriteBSPBrushMap( char *name, brush_t *list ){
|
|
FILE *f;
|
|
side_t *s;
|
|
int i;
|
|
winding_t *w;
|
|
|
|
|
|
/* note it */
|
|
Sys_Printf( "Writing %s\n", name );
|
|
|
|
/* open the map file */
|
|
f = fopen( name, "wb" );
|
|
if ( f == NULL ) {
|
|
Error( "Can't write %s\b", name );
|
|
}
|
|
|
|
fprintf( f, "{\n\"classname\" \"worldspawn\"\n" );
|
|
|
|
for ( ; list ; list = list->next )
|
|
{
|
|
fprintf( f, "{\n" );
|
|
for ( i = 0,s = list->sides ; i < list->numsides ; i++,s++ )
|
|
{
|
|
// TODO: See if we can use a smaller winding to prevent resolution loss.
|
|
// Is WriteBSPBrushMap() used only to decompile maps?
|
|
w = BaseWindingForPlane( mapplanes[s->planenum].normal, mapplanes[s->planenum].dist );
|
|
|
|
fprintf( f,"( %i %i %i ) ", (int)w->p[0][0], (int)w->p[0][1], (int)w->p[0][2] );
|
|
fprintf( f,"( %i %i %i ) ", (int)w->p[1][0], (int)w->p[1][1], (int)w->p[1][2] );
|
|
fprintf( f,"( %i %i %i ) ", (int)w->p[2][0], (int)w->p[2][1], (int)w->p[2][2] );
|
|
|
|
fprintf( f, "notexture 0 0 0 1 1\n" );
|
|
FreeWinding( w );
|
|
}
|
|
fprintf( f, "}\n" );
|
|
}
|
|
fprintf( f, "}\n" );
|
|
|
|
fclose( f );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
FilterBrushIntoTree_r()
|
|
adds brush reference to any intersecting bsp leafnode
|
|
*/
|
|
|
|
int FilterBrushIntoTree_r( brush_t *b, node_t *node ){
|
|
brush_t *front, *back;
|
|
int c;
|
|
|
|
|
|
/* dummy check */
|
|
if ( b == NULL ) {
|
|
return 0;
|
|
}
|
|
|
|
/* add it to the leaf list */
|
|
if ( node->planenum == PLANENUM_LEAF ) {
|
|
/* something somewhere is hammering brushlist */
|
|
b->next = node->brushlist;
|
|
node->brushlist = b;
|
|
|
|
/* classify the leaf by the structural brush */
|
|
if ( !b->detail ) {
|
|
if ( b->opaque ) {
|
|
node->opaque = qtrue;
|
|
node->areaportal = qfalse;
|
|
}
|
|
else if ( b->compileFlags & C_AREAPORTAL ) {
|
|
if ( !node->opaque ) {
|
|
node->areaportal = qtrue;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* split it by the node plane */
|
|
c = b->numsides;
|
|
SplitBrush( b, node->planenum, &front, &back );
|
|
FreeBrush( b );
|
|
|
|
c = 0;
|
|
c += FilterBrushIntoTree_r( front, node->children[ 0 ] );
|
|
c += FilterBrushIntoTree_r( back, node->children[ 1 ] );
|
|
|
|
return c;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
FilterDetailBrushesIntoTree
|
|
fragment all the detail brushes into the structural leafs
|
|
*/
|
|
|
|
void FilterDetailBrushesIntoTree( entity_t *e, tree_t *tree ){
|
|
brush_t *b, *newb;
|
|
int r;
|
|
int c_unique, c_clusters;
|
|
int i;
|
|
|
|
|
|
/* note it */
|
|
Sys_FPrintf( SYS_VRB, "--- FilterDetailBrushesIntoTree ---\n" );
|
|
|
|
/* walk the list of brushes */
|
|
c_unique = 0;
|
|
c_clusters = 0;
|
|
for ( b = e->brushes; b; b = b->next )
|
|
{
|
|
if ( !b->detail ) {
|
|
continue;
|
|
}
|
|
c_unique++;
|
|
newb = CopyBrush( b );
|
|
r = FilterBrushIntoTree_r( newb, tree->headnode );
|
|
c_clusters += r;
|
|
|
|
/* mark all sides as visible so drawsurfs are created */
|
|
if ( r ) {
|
|
for ( i = 0; i < b->numsides; i++ )
|
|
{
|
|
if ( b->sides[ i ].winding ) {
|
|
b->sides[ i ].visible = qtrue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* emit some statistics */
|
|
Sys_FPrintf( SYS_VRB, "%9d detail brushes\n", c_unique );
|
|
Sys_FPrintf( SYS_VRB, "%9d cluster references\n", c_clusters );
|
|
}
|
|
|
|
/*
|
|
=====================
|
|
FilterStructuralBrushesIntoTree
|
|
|
|
Mark the leafs as opaque and areaportals
|
|
=====================
|
|
*/
|
|
void FilterStructuralBrushesIntoTree( entity_t *e, tree_t *tree ) {
|
|
brush_t *b, *newb;
|
|
int r;
|
|
int c_unique, c_clusters;
|
|
int i;
|
|
|
|
Sys_FPrintf( SYS_VRB, "--- FilterStructuralBrushesIntoTree ---\n" );
|
|
|
|
c_unique = 0;
|
|
c_clusters = 0;
|
|
for ( b = e->brushes ; b ; b = b->next ) {
|
|
if ( b->detail ) {
|
|
continue;
|
|
}
|
|
c_unique++;
|
|
newb = CopyBrush( b );
|
|
r = FilterBrushIntoTree_r( newb, tree->headnode );
|
|
c_clusters += r;
|
|
|
|
// mark all sides as visible so drawsurfs are created
|
|
if ( r ) {
|
|
for ( i = 0 ; i < b->numsides ; i++ ) {
|
|
if ( b->sides[i].winding ) {
|
|
b->sides[i].visible = qtrue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* emit some statistics */
|
|
Sys_FPrintf( SYS_VRB, "%9d structural brushes\n", c_unique );
|
|
Sys_FPrintf( SYS_VRB, "%9d cluster references\n", c_clusters );
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
================
|
|
AllocTree
|
|
================
|
|
*/
|
|
tree_t *AllocTree( void ){
|
|
tree_t *tree;
|
|
|
|
tree = safe_malloc( sizeof( *tree ) );
|
|
memset( tree, 0, sizeof( *tree ) );
|
|
ClearBounds( tree->mins, tree->maxs );
|
|
|
|
return tree;
|
|
}
|
|
|
|
/*
|
|
================
|
|
AllocNode
|
|
================
|
|
*/
|
|
node_t *AllocNode( void ){
|
|
node_t *node;
|
|
|
|
node = safe_malloc( sizeof( *node ) );
|
|
memset( node, 0, sizeof( *node ) );
|
|
|
|
return node;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
WindingIsTiny
|
|
|
|
Returns true if the winding would be crunched out of
|
|
existance by the vertex snapping.
|
|
================
|
|
*/
|
|
#define EDGE_LENGTH 0.2
|
|
qboolean WindingIsTiny( winding_t *w ){
|
|
/*
|
|
if (WindingArea (w) < 1)
|
|
return qtrue;
|
|
return qfalse;
|
|
*/
|
|
int i, j;
|
|
vec_t len;
|
|
vec3_t delta;
|
|
int edges;
|
|
|
|
edges = 0;
|
|
for ( i = 0 ; i < w->numpoints ; i++ )
|
|
{
|
|
j = i == w->numpoints - 1 ? 0 : i + 1;
|
|
VectorSubtract( w->p[j], w->p[i], delta );
|
|
len = VectorLength( delta );
|
|
if ( len > EDGE_LENGTH ) {
|
|
if ( ++edges == 3 ) {
|
|
return qfalse;
|
|
}
|
|
}
|
|
}
|
|
return qtrue;
|
|
}
|
|
|
|
/*
|
|
================
|
|
WindingIsHuge
|
|
|
|
Returns true if the winding still has one of the points
|
|
from basewinding for plane
|
|
================
|
|
*/
|
|
qboolean WindingIsHuge( winding_t *w ){
|
|
int i, j;
|
|
|
|
for ( i = 0 ; i < w->numpoints ; i++ )
|
|
{
|
|
for ( j = 0 ; j < 3 ; j++ )
|
|
if ( w->p[i][j] <= MIN_WORLD_COORD || w->p[i][j] >= MAX_WORLD_COORD ) {
|
|
return qtrue;
|
|
}
|
|
}
|
|
return qfalse;
|
|
}
|
|
|
|
//============================================================
|
|
|
|
/*
|
|
==================
|
|
BrushMostlyOnSide
|
|
|
|
==================
|
|
*/
|
|
int BrushMostlyOnSide( brush_t *brush, plane_t *plane ){
|
|
int i, j;
|
|
winding_t *w;
|
|
vec_t d, max;
|
|
int side;
|
|
|
|
max = 0;
|
|
side = PSIDE_FRONT;
|
|
for ( i = 0 ; i < brush->numsides ; i++ )
|
|
{
|
|
w = brush->sides[i].winding;
|
|
if ( !w ) {
|
|
continue;
|
|
}
|
|
for ( j = 0 ; j < w->numpoints ; j++ )
|
|
{
|
|
d = DotProduct( w->p[j], plane->normal ) - plane->dist;
|
|
if ( d > max ) {
|
|
max = d;
|
|
side = PSIDE_FRONT;
|
|
}
|
|
if ( -d > max ) {
|
|
max = -d;
|
|
side = PSIDE_BACK;
|
|
}
|
|
}
|
|
}
|
|
return side;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
SplitBrush()
|
|
generates two new brushes, leaving the original unchanged
|
|
*/
|
|
|
|
void SplitBrush( brush_t *brush, int planenum, brush_t **front, brush_t **back ){
|
|
brush_t *b[2];
|
|
int i, j;
|
|
winding_t *w, *cw[2], *midwinding;
|
|
plane_t *plane, *plane2;
|
|
side_t *s, *cs;
|
|
float d, d_front, d_back;
|
|
|
|
|
|
*front = NULL;
|
|
*back = NULL;
|
|
plane = &mapplanes[planenum];
|
|
|
|
// check all points
|
|
d_front = d_back = 0;
|
|
for ( i = 0 ; i < brush->numsides ; i++ )
|
|
{
|
|
w = brush->sides[i].winding;
|
|
if ( !w ) {
|
|
continue;
|
|
}
|
|
for ( j = 0 ; j < w->numpoints ; j++ )
|
|
{
|
|
d = DotProduct( w->p[j], plane->normal ) - plane->dist;
|
|
if ( d > 0 && d > d_front ) {
|
|
d_front = d;
|
|
}
|
|
if ( d < 0 && d < d_back ) {
|
|
d_back = d;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( d_front < 0.1 ) { // PLANESIDE_EPSILON)
|
|
// only on back
|
|
*back = CopyBrush( brush );
|
|
return;
|
|
}
|
|
|
|
if ( d_back > -0.1 ) { // PLANESIDE_EPSILON)
|
|
// only on front
|
|
*front = CopyBrush( brush );
|
|
return;
|
|
}
|
|
|
|
// create a new winding from the split plane
|
|
w = BaseWindingForPlane( plane->normal, plane->dist );
|
|
for ( i = 0 ; i < brush->numsides && w ; i++ )
|
|
{
|
|
plane2 = &mapplanes[brush->sides[i].planenum ^ 1];
|
|
ChopWindingInPlace( &w, plane2->normal, plane2->dist, 0 ); // PLANESIDE_EPSILON);
|
|
}
|
|
|
|
if ( !w || WindingIsTiny( w ) ) { // the brush isn't really split
|
|
int side;
|
|
|
|
side = BrushMostlyOnSide( brush, plane );
|
|
if ( side == PSIDE_FRONT ) {
|
|
*front = CopyBrush( brush );
|
|
}
|
|
if ( side == PSIDE_BACK ) {
|
|
*back = CopyBrush( brush );
|
|
}
|
|
return;
|
|
}
|
|
|
|
if ( WindingIsHuge( w ) ) {
|
|
Sys_FPrintf( SYS_VRB,"WARNING: huge winding\n" );
|
|
}
|
|
|
|
midwinding = w;
|
|
|
|
// split it for real
|
|
|
|
for ( i = 0 ; i < 2 ; i++ )
|
|
{
|
|
b[i] = AllocBrush( brush->numsides + 1 );
|
|
memcpy( b[i], brush, sizeof( brush_t ) - sizeof( brush->sides ) );
|
|
b[i]->numsides = 0;
|
|
b[i]->next = NULL;
|
|
b[i]->original = brush->original;
|
|
}
|
|
|
|
// split all the current windings
|
|
|
|
for ( i = 0 ; i < brush->numsides ; i++ )
|
|
{
|
|
s = &brush->sides[i];
|
|
w = s->winding;
|
|
if ( !w ) {
|
|
continue;
|
|
}
|
|
ClipWindingEpsilon( w, plane->normal, plane->dist,
|
|
0 /*PLANESIDE_EPSILON*/, &cw[0], &cw[1] );
|
|
for ( j = 0 ; j < 2 ; j++ )
|
|
{
|
|
if ( !cw[j] ) {
|
|
continue;
|
|
}
|
|
cs = &b[j]->sides[b[j]->numsides];
|
|
b[j]->numsides++;
|
|
*cs = *s;
|
|
cs->winding = cw[j];
|
|
}
|
|
}
|
|
|
|
|
|
// see if we have valid polygons on both sides
|
|
for ( i = 0 ; i < 2 ; i++ )
|
|
{
|
|
if ( b[i]->numsides < 3 || !BoundBrush( b[i] ) ) {
|
|
if ( b[i]->numsides >= 3 ) {
|
|
Sys_FPrintf( SYS_VRB,"bogus brush after clip\n" );
|
|
}
|
|
FreeBrush( b[i] );
|
|
b[i] = NULL;
|
|
}
|
|
}
|
|
|
|
if ( !( b[0] && b[1] ) ) {
|
|
if ( !b[0] && !b[1] ) {
|
|
Sys_FPrintf( SYS_VRB,"split removed brush\n" );
|
|
}
|
|
else{
|
|
Sys_FPrintf( SYS_VRB,"split not on both sides\n" );
|
|
}
|
|
if ( b[0] ) {
|
|
FreeBrush( b[0] );
|
|
*front = CopyBrush( brush );
|
|
}
|
|
if ( b[1] ) {
|
|
FreeBrush( b[1] );
|
|
*back = CopyBrush( brush );
|
|
}
|
|
return;
|
|
}
|
|
|
|
// add the midwinding to both sides
|
|
for ( i = 0 ; i < 2 ; i++ )
|
|
{
|
|
cs = &b[i]->sides[b[i]->numsides];
|
|
b[i]->numsides++;
|
|
|
|
cs->planenum = planenum ^ i ^ 1;
|
|
cs->shaderInfo = NULL;
|
|
if ( i == 0 ) {
|
|
cs->winding = CopyWinding( midwinding );
|
|
}
|
|
else{
|
|
cs->winding = midwinding;
|
|
}
|
|
}
|
|
|
|
{
|
|
vec_t v1;
|
|
int i;
|
|
|
|
|
|
for ( i = 0 ; i < 2 ; i++ )
|
|
{
|
|
v1 = BrushVolume( b[i] );
|
|
if ( v1 < 1.0 ) {
|
|
FreeBrush( b[i] );
|
|
b[i] = NULL;
|
|
// Sys_FPrintf (SYS_VRB,"tiny volume after clip\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
*front = b[0];
|
|
*back = b[1];
|
|
}
|