gtkradiant/plugins/entity/light.cpp
TTimo 33efc90892 more eol-style
git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant/branches/ZeroRadiant@185 8a3a26a2-13c4-0310-b231-cf6edde360e5
2007-11-04 03:51:54 +00:00

536 lines
16 KiB
C++

#include "plugin.h"
#include "entity.h"
#include "light.h"
void DrawSphere(vec3_t center, float radius, int sides, int nGLState)
{
int i, j;
float dt = (float) (2 * Q_PI / (float) sides);
float dp = (float) (Q_PI / (float) sides);
float t, p;
vec3_t v;
if (radius <= 0)
return;
g_QglTable.m_pfn_qglBegin(GL_TRIANGLES);
for (i = 0; i <= sides - 1; i++) {
for (j = 0; j <= sides - 2; j++) {
t = i * dt;
p = (float) ((j * dp) - (Q_PI / 2));
VectorPolar(v, radius, t, p);
VectorAdd(v, center, v);
g_QglTable.m_pfn_qglVertex3fv(v);
VectorPolar(v, radius, t, p + dp);
VectorAdd(v, center, v);
g_QglTable.m_pfn_qglVertex3fv(v);
VectorPolar(v, radius, t + dt, p + dp);
VectorAdd(v, center, v);
g_QglTable.m_pfn_qglVertex3fv(v);
VectorPolar(v, radius, t, p);
VectorAdd(v, center, v);
g_QglTable.m_pfn_qglVertex3fv(v);
VectorPolar(v, radius, t + dt, p + dp);
VectorAdd(v, center, v);
g_QglTable.m_pfn_qglVertex3fv(v);
VectorPolar(v, radius, t + dt, p);
VectorAdd(v, center, v);
g_QglTable.m_pfn_qglVertex3fv(v);
}
}
p = (float) ((sides - 1) * dp - (Q_PI / 2));
for (i = 0; i <= sides - 1; i++) {
t = i * dt;
VectorPolar(v, radius, t, p);
VectorAdd(v, center, v);
g_QglTable.m_pfn_qglVertex3fv(v);
VectorPolar(v, radius, t + dt, p + dp);
VectorAdd(v, center, v);
g_QglTable.m_pfn_qglVertex3fv(v);
VectorPolar(v, radius, t + dt, p);
VectorAdd(v, center, v);
g_QglTable.m_pfn_qglVertex3fv(v);
}
g_QglTable.m_pfn_qglEnd();
}
#define LIGHT_ATTEN_LINEAR 1
#define LIGHT_ATTEN_ANGLE 2
#define LIGHT_ATTEN_DISTANCE 4
#define LIGHT_Q3A_DEFAULT (LIGHT_ATTEN_ANGLE | LIGHT_ATTEN_DISTANCE)
#define LIGHT_WOLF_DEFAULT (LIGHT_ATTEN_LINEAR | LIGHT_ATTEN_DISTANCE)
float CalculateEnvelopeForLight(entity_t * e, float fFalloffTolerance)
{
float fEnvelope = 0.f;
int iSpawnFlags = atoi(ValueForKey(e, "spawnflags"));
int iLightFlags = 0;
float fFade = 1.f;
float fIntensity, fPhotons;
float fScale;
const char *gameFile = g_FuncTable.m_pfnGetGameFile();
// These variables are tweakable on the q3map2 console, setting to q3map2
// default here as there is no way to find out what the user actually uses
// right now. Maybe move them to worldspawn?
float fPointScale = 7500.f;
float fLinearScale = 1.f / 8000.f;
//float fFalloffTolerance = 1.f; // Need it as parameter
// Arnout: HACK for per-game radii - really need to move this to a per-game module?
if( !strcmp( gameFile, "wolf.game" ) || !strcmp( gameFile, "et.game" ) ) {
// Spawnflags :
// 1: nonlinear
// 2: angle
// set default flags
iLightFlags = LIGHT_WOLF_DEFAULT;
// inverse distance squared attenuation?
if (iSpawnFlags & 1) {
iLightFlags &= ~LIGHT_ATTEN_LINEAR;
iLightFlags |= LIGHT_ATTEN_ANGLE;
}
// angle attenuate
if (iSpawnFlags & 2)
iLightFlags |= LIGHT_ATTEN_ANGLE;
} else {
// Spawnflags :
// 1: linear
// 2: no angle
// set default flags
iLightFlags = LIGHT_Q3A_DEFAULT;
// linear attenuation?
if (iSpawnFlags & 1) {
iLightFlags |= LIGHT_ATTEN_LINEAR;
iLightFlags &= ~LIGHT_ATTEN_ANGLE;
}
// no angle attenuate?
if (iSpawnFlags & 2)
iLightFlags &= ~LIGHT_ATTEN_ANGLE;
}
// set fade key (from wolf)
if (iLightFlags & LIGHT_ATTEN_LINEAR) {
fFade = FloatForKey(e, "fade");
if (fFade <= 0.f)
fFade = 1.f;
}
// set light intensity
fIntensity = FloatForKey(e, "_light");
if (fIntensity == 0.f)
fIntensity = FloatForKey(e, "light");
if (fIntensity == 0.f)
fIntensity = 300.f;
// set light scale (sof2)
fScale = FloatForKey(e, "scale");
if (fScale <= 0.f)
fScale = 1.f;
fIntensity *= fScale;
// amount of photons
fPhotons = fIntensity * fPointScale;
// calculate envelope
// solve distance for non-distance lights
if (!(iLightFlags & LIGHT_ATTEN_DISTANCE))
//!\todo (spog) can't access global objects in a module - globals are EVIL - solution: API for querying global settings.
fEnvelope = 131072/*g_MaxWorldCoord * 2.f*/;
// solve distance for linear lights
else if (iLightFlags & LIGHT_ATTEN_LINEAR)
fEnvelope = ((fPhotons * fLinearScale) - fFalloffTolerance) / fFade;
// solve for inverse square falloff
else
fEnvelope = sqrt(fPhotons / fFalloffTolerance) /* + fRadius */ ; // Arnout radius is always 0, only for area lights
return fEnvelope;
}
float CalculateLightRadius(entity_t * e, bool outer)
{
float fEnvelope = 0.f;
int iSpawnFlags = atoi(ValueForKey(e, "spawnflags"));
float fIntensity;
float fScale;
const char *gameFile = g_FuncTable.m_pfnGetGameFile();
fIntensity = FloatForKey(e, "light");
if (fIntensity == 0.f)
fIntensity = 300.f;
// Arnout: HACK for per-game radii - really need to move this to a per-game module
if( !strcmp( gameFile, "sof2.game" ) || !strcmp( gameFile, "jk2.game" ) || !strcmp( gameFile, "ja.game" )) {
// Spawnflags :
// 1: linear
// 2: noincidence
if (!outer) {
if (iSpawnFlags & 2)
fIntensity *= .9;
else
fIntensity *= .25f;
}
// set light scale (sof2)
fScale = FloatForKey(e, "scale");
if (fScale <= 0.f)
fScale = 1.f;
fIntensity *= fScale;
fEnvelope = fIntensity;
} else {
float fPointScale = 7500.f;
if (outer)
fEnvelope = sqrt(fIntensity * fPointScale / 48.f);
else
fEnvelope = sqrt(fIntensity * fPointScale / 255.f);
}
return fEnvelope;
}
void Light_OnIntensityChanged(entity_t* e)
{
e->fLightEnvelope1[0] = CalculateEnvelopeForLight(e, 1.f);
e->fLightEnvelope1[1] = CalculateEnvelopeForLight(e, 48.f);
e->fLightEnvelope1[2] = CalculateEnvelopeForLight(e, 255.f);
e->fLightEnvelope2[0] = CalculateLightRadius(e, TRUE);
e->fLightEnvelope2[1] = CalculateLightRadius(e, FALSE);
}
void Light_OnKeyValueChanged(entity_t *e, const char *key, const char* value)
{
if(strcmp(key,"_color") == 0)
{
if (sscanf(ValueForKey(e, "_color"),"%f %f %f",
&e->color[0], &e->color[1], &e->color[2]) != 3)
VectorSet(e->color, 1, 1, 1);
}
else if(strcmp(key,"spawnflags") == 0 ||
strcmp(key,"fade") == 0 ||
strcmp(key,"_light") == 0 ||
strcmp(key,"light") == 0 ||
strcmp(key,"scale") == 0)
{
Light_OnIntensityChanged(e);
}
}
bool Entity_IsLight(entity_t *e)
{
return e->eclass != NULL && e->eclass->nShowFlags & ECLASS_LIGHT;//strncmp(ValueforKey(e, "classname"), "light") == 0
}
static void DrawLightSphere(entity_t * e, int nGLState, int pref)
{
const char *target = ValueForKey(e, "target");
bool bIsSpotLight = !!target[0];
//!\todo Write an API for modules to register preference settings, and make this preference module-specific.
int nPasses = pref == 1 ? 3 : 2;
g_QglTable.m_pfn_qglPushAttrib(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
g_QglTable.m_pfn_qglDepthMask(GL_FALSE);
g_QglTable.m_pfn_qglEnable(GL_BLEND);
g_QglTable.m_pfn_qglBlendFunc(GL_ONE, GL_ONE);
// Arnout: TODO: spotlight rendering
if (!(bIsSpotLight))
{
switch(pref)
{
case 1:
g_QglTable.m_pfn_qglColor3f(e->color[0] * .05f,
e->color[1] * .05f,
e->color[2] * .05f);
DrawSphere(e->origin, e->fLightEnvelope1[0], 16, nGLState);
DrawSphere(e->origin, e->fLightEnvelope1[1], 16, nGLState);
DrawSphere(e->origin, e->fLightEnvelope1[2], 16, nGLState);
break;
case 2:
g_QglTable.m_pfn_qglColor3f(e->color[0] * .15f * .95f,
e->color[1] * .15f * .95f,
e->color[2] * .15f * .95f);
DrawSphere(e->origin, e->fLightEnvelope2[0], 16, nGLState);
DrawSphere(e->origin, e->fLightEnvelope2[1], 16, nGLState);
break;
}
}
g_QglTable.m_pfn_qglPopAttrib();
}
float F = 0.70710678f;
// North, East, South, West
vec3_t normals[8] = { { 0, F, F }, { F, 0, F }, { 0,-F, F }, {-F, 0, F },
{ 0, F,-F }, { F, 0,-F }, { 0,-F,-F }, {-F, 0,-F } };
unsigned short indices[24] = { 0, 2, 3, 0, 3, 4, 0, 4, 5, 0, 5, 2,
1, 2, 5, 1, 5, 4, 1, 4, 3, 1, 3, 2 };
void DrawLight(entity_t* e, int nGLState, int pref, int nViewType)
{
int i;
// top, bottom, tleft, tright, bright, bleft
vec3_t points[6];
vec3_t vMid, vMin, vMax;
VectorAdd(e->origin, e->eclass->mins, vMin);
VectorAdd(e->origin, e->eclass->maxs, vMax);
vMid[0] = (vMin[0] + vMax[0]) * 0.5;
vMid[1] = (vMin[1] + vMax[1]) * 0.5;
vMid[2] = (vMin[2] + vMax[2]) * 0.5;
VectorSet(points[0], vMid[0], vMid[1], vMax[2]);
VectorSet(points[1], vMid[0], vMid[1], vMin[2]);
VectorSet(points[2], vMin[0], vMax[1], vMid[2]);
VectorSet(points[3], vMax[0], vMax[1], vMid[2]);
VectorSet(points[4], vMax[0], vMin[1], vMid[2]);
VectorSet(points[5], vMin[0], vMin[1], vMid[2]);
if (nGLState & DRAW_GL_LIGHTING)// && g_PrefsDlg.m_bGLLighting)
{
g_QglTable.m_pfn_qglBegin(GL_TRIANGLES);// NOTE: comment to use gl_triangle_fan instead
//g_QglTable.m_pfn_qglBegin(GL_TRIANGLE_FAN);
g_QglTable.m_pfn_qglVertex3fv(points[0]);
g_QglTable.m_pfn_qglVertex3fv(points[2]);
g_QglTable.m_pfn_qglNormal3fv(normals[0]);
g_QglTable.m_pfn_qglVertex3fv(points[3]);
g_QglTable.m_pfn_qglVertex3fv(points[0]);//
g_QglTable.m_pfn_qglVertex3fv(points[3]);//
g_QglTable.m_pfn_qglNormal3fv(normals[1]);
g_QglTable.m_pfn_qglVertex3fv(points[4]);
g_QglTable.m_pfn_qglVertex3fv(points[0]);//
g_QglTable.m_pfn_qglVertex3fv(points[4]);//
g_QglTable.m_pfn_qglNormal3fv(normals[2]);
g_QglTable.m_pfn_qglVertex3fv(points[5]);
g_QglTable.m_pfn_qglVertex3fv(points[0]);//
g_QglTable.m_pfn_qglVertex3fv(points[5]);//
g_QglTable.m_pfn_qglNormal3fv(normals[3]);
g_QglTable.m_pfn_qglVertex3fv(points[2]);
//g_QglTable.m_pfn_qglEnd();
//g_QglTable.m_pfn_qglBegin(GL_TRIANGLE_FAN);
g_QglTable.m_pfn_qglVertex3fv(points[1]);
g_QglTable.m_pfn_qglVertex3fv(points[2]);
g_QglTable.m_pfn_qglNormal3fv(normals[7]);
g_QglTable.m_pfn_qglVertex3fv(points[5]);
g_QglTable.m_pfn_qglVertex3fv(points[1]);//
g_QglTable.m_pfn_qglVertex3fv(points[5]);//
g_QglTable.m_pfn_qglNormal3fv(normals[6]);
g_QglTable.m_pfn_qglVertex3fv(points[4]);
g_QglTable.m_pfn_qglVertex3fv(points[1]);//
g_QglTable.m_pfn_qglVertex3fv(points[4]);//
g_QglTable.m_pfn_qglNormal3fv(normals[5]);
g_QglTable.m_pfn_qglVertex3fv(points[3]);
g_QglTable.m_pfn_qglVertex3fv(points[1]);//
g_QglTable.m_pfn_qglVertex3fv(points[3]);//
g_QglTable.m_pfn_qglNormal3fv(normals[4]);
g_QglTable.m_pfn_qglVertex3fv(points[2]);
g_QglTable.m_pfn_qglEnd();
}
else if (nGLState & DRAW_GL_FILL)
{
vec3_t colors[4];
VectorScale(e->color, 0.95, colors[0]);
VectorScale(colors[0], 0.95, colors[1]);
VectorScale(colors[1], 0.95, colors[2]);
VectorScale(colors[2], 0.95, colors[3]);
g_QglTable.m_pfn_qglBegin(GL_TRIANGLES);// NOTE: comment to use gl_triangle_fan instead
//g_QglTable.m_pfn_qglBegin(GL_TRIANGLE_FAN);
g_QglTable.m_pfn_qglColor3fv(colors[0]);
g_QglTable.m_pfn_qglVertex3fv(points[0]);
g_QglTable.m_pfn_qglVertex3fv(points[2]);
g_QglTable.m_pfn_qglVertex3fv(points[3]);
g_QglTable.m_pfn_qglColor3fv(colors[1]);
g_QglTable.m_pfn_qglVertex3fv(points[0]);//
g_QglTable.m_pfn_qglVertex3fv(points[3]);//
g_QglTable.m_pfn_qglVertex3fv(points[4]);
g_QglTable.m_pfn_qglColor3fv(colors[2]);
g_QglTable.m_pfn_qglVertex3fv(points[0]);//
g_QglTable.m_pfn_qglVertex3fv(points[4]);//
g_QglTable.m_pfn_qglVertex3fv(points[5]);
g_QglTable.m_pfn_qglColor3fv(colors[3]);
g_QglTable.m_pfn_qglVertex3fv(points[0]);//
g_QglTable.m_pfn_qglVertex3fv(points[5]);//
g_QglTable.m_pfn_qglVertex3fv(points[2]);
//g_QglTable.m_pfn_qglEnd();
//g_QglTable.m_pfn_qglBegin(GL_TRIANGLE_FAN);
g_QglTable.m_pfn_qglColor3fv(colors[0]);
g_QglTable.m_pfn_qglVertex3fv(points[1]);
g_QglTable.m_pfn_qglVertex3fv(points[2]);
g_QglTable.m_pfn_qglVertex3fv(points[5]);
g_QglTable.m_pfn_qglColor3fv(colors[1]);
g_QglTable.m_pfn_qglVertex3fv(points[1]);//
g_QglTable.m_pfn_qglVertex3fv(points[5]);//
g_QglTable.m_pfn_qglVertex3fv(points[4]);
g_QglTable.m_pfn_qglColor3fv(colors[2]);
g_QglTable.m_pfn_qglVertex3fv(points[1]);//
g_QglTable.m_pfn_qglVertex3fv(points[4]);//
g_QglTable.m_pfn_qglVertex3fv(points[3]);
g_QglTable.m_pfn_qglColor3fv(colors[3]);
g_QglTable.m_pfn_qglVertex3fv(points[1]);//
g_QglTable.m_pfn_qglVertex3fv(points[3]);//
g_QglTable.m_pfn_qglVertex3fv(points[2]);
g_QglTable.m_pfn_qglEnd();
}
else
{
g_QglTable.m_pfn_qglVertexPointer(3, GL_FLOAT, 0, points);
g_QglTable.m_pfn_qglDrawElements(GL_TRIANGLES, 24, GL_UNSIGNED_SHORT, indices);
}
// NOTE: prolly not relevant until some time..
// check for DOOM lights
if (strlen(ValueForKey(e, "light_right")) > 0) {
vec3_t vRight, vUp, vTarget, vTemp;
GetVectorForKey (e, "light_right", vRight);
GetVectorForKey (e, "light_up", vUp);
GetVectorForKey (e, "light_target", vTarget);
g_QglTable.m_pfn_qglColor3f(0, 1, 0);
g_QglTable.m_pfn_qglBegin(GL_LINE_LOOP);
VectorAdd(vTarget, e->origin, vTemp);
VectorAdd(vTemp, vRight, vTemp);
VectorAdd(vTemp, vUp, vTemp);
g_QglTable.m_pfn_qglVertex3fv(e->origin);
g_QglTable.m_pfn_qglVertex3fv(vTemp);
VectorAdd(vTarget, e->origin, vTemp);
VectorAdd(vTemp, vUp, vTemp);
VectorSubtract(vTemp, vRight, vTemp);
g_QglTable.m_pfn_qglVertex3fv(e->origin);
g_QglTable.m_pfn_qglVertex3fv(vTemp);
VectorAdd(vTarget, e->origin, vTemp);
VectorAdd(vTemp, vRight, vTemp);
VectorSubtract(vTemp, vUp, vTemp);
g_QglTable.m_pfn_qglVertex3fv(e->origin);
g_QglTable.m_pfn_qglVertex3fv(vTemp);
VectorAdd(vTarget, e->origin, vTemp);
VectorSubtract(vTemp, vUp, vTemp);
VectorSubtract(vTemp, vRight, vTemp);
g_QglTable.m_pfn_qglVertex3fv(e->origin);
g_QglTable.m_pfn_qglVertex3fv(vTemp);
g_QglTable.m_pfn_qglEnd();
}
if(nGLState & DRAW_GL_FILL)
{
DrawLightSphere(e, nGLState, pref);
}
else
{
// Arnout: FIXME: clean this up a bit
// now draw lighting radius stuff...
if (pref)
{
bool bDrawSpotlightArc = false;
int nPasses = pref == 1 ? 3 : 2;
const char *target = ValueForKey(e, "target");
bool bIsSpotLight = !!target[0];
/*!\todo Spotlight..
if (bIsSpotLight)
{
// find the origin of the target...
entity_t *e = FindEntity("targetname", target);
if (e)
bDrawSpotlightArc = true;
}
*/
g_QglTable.m_pfn_qglPushAttrib(GL_LINE_BIT);
g_QglTable.m_pfn_qglLineStipple(8, 0xAAAA);
g_QglTable.m_pfn_qglEnable(GL_LINE_STIPPLE);
float* envelope = (pref == 1) ? e->fLightEnvelope1 : e->fLightEnvelope2;
for (int iPass = 0; iPass < nPasses; iPass++)
{
float fRadius = envelope[iPass];
g_QglTable.m_pfn_qglBegin(GL_LINE_LOOP);
if (bIsSpotLight)
{
if (bDrawSpotlightArc)
{
// I give up on this, it's beyond me
}
}
else
{
if (fRadius > 0)
{
int i;
float ds, dc;
for (i = 0; i <= 24; i++)
{
ds = sin((i * 2 * Q_PI) / 24);
dc = cos((i * 2 * Q_PI) / 24);
switch (nViewType)
{
case 2:
g_QglTable.m_pfn_qglVertex3f(e->origin[0] + fRadius * dc,
e->origin[1] + fRadius * ds,
e->origin[2]);
break;
case 1:
g_QglTable.m_pfn_qglVertex3f(e->origin[0] + fRadius * dc,
e->origin[1],
e->origin[2] + fRadius * ds);
break;
case 0:
g_QglTable.m_pfn_qglVertex3f(e->origin[0],
e->origin[1] + fRadius * dc,
e->origin[2] + fRadius * ds);
break;
}
}
}
}
g_QglTable.m_pfn_qglEnd();
}
g_QglTable.m_pfn_qglPopAttrib();
}
}
}