gtkradiant/tools/quake2/qdata/video.c
Forest Hale 88cea027e6 ported over the 1.5 branch version of q3map2 which is newer
made Visual Studio files work in VS2005 Express
fixed a ton of warnings in VS2005 Express
fixed some compile problems on OpenSUSE 11.0


git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant/trunk@302 8a3a26a2-13c4-0310-b231-cf6edde360e5
2008-07-25 07:31:37 +00:00

1259 lines
22 KiB
C

/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "qdata.h"
#include "inout.h"
byte *soundtrack;
char base[32];
/*
===============================================================================
WAV loading
===============================================================================
*/
typedef struct
{
int rate;
int width;
int channels;
int loopstart;
int samples;
int dataofs; // chunk starts this many bytes from file start
} wavinfo_t;
byte *data_p;
byte *iff_end;
byte *last_chunk;
byte *iff_data;
int iff_chunk_len;
int samplecounts[0x10000];
wavinfo_t wavinfo;
short GetLittleShort(void)
{
short val = 0;
val = *data_p;
val = val + (*(data_p+1)<<8);
data_p += 2;
return val;
}
int GetLittleLong(void)
{
int val = 0;
val = *data_p;
val = val + (*(data_p+1)<<8);
val = val + (*(data_p+2)<<16);
val = val + (*(data_p+3)<<24);
data_p += 4;
return val;
}
void FindNextChunk(char *name)
{
while (1)
{
data_p=last_chunk;
if (data_p >= iff_end)
{ // didn't find the chunk
data_p = NULL;
return;
}
data_p += 4;
iff_chunk_len = GetLittleLong();
if (iff_chunk_len < 0)
{
data_p = NULL;
return;
}
// if (iff_chunk_len > 1024*1024)
// Sys_Error ("FindNextChunk: %i length is past the 1 meg sanity limit", iff_chunk_len);
data_p -= 8;
last_chunk = data_p + 8 + ( (iff_chunk_len + 1) & ~1 );
if (!strncmp(data_p, name, 4))
return;
}
}
void FindChunk(char *name)
{
last_chunk = iff_data;
FindNextChunk (name);
}
void DumpChunks(void)
{
char str[5];
str[4] = 0;
data_p=iff_data;
do
{
memcpy (str, data_p, 4);
data_p += 4;
iff_chunk_len = GetLittleLong();
printf ("0x%x : %s (%d)\n", (int)(data_p - 4), str, iff_chunk_len);
data_p += (iff_chunk_len + 1) & ~1;
} while (data_p < iff_end);
}
/*
============
GetWavinfo
============
*/
wavinfo_t GetWavinfo (char *name, byte *wav, int wavlength)
{
wavinfo_t info;
int i;
int format;
int samples;
memset (&info, 0, sizeof(info));
if (!wav)
return info;
iff_data = wav;
iff_end = wav + wavlength;
// find "RIFF" chunk
FindChunk("RIFF");
if (!(data_p && !strncmp(data_p+8, "WAVE", 4)))
{
printf("Missing RIFF/WAVE chunks\n");
return info;
}
// get "fmt " chunk
iff_data = data_p + 12;
// DumpChunks ();
FindChunk("fmt ");
if (!data_p)
{
printf("Missing fmt chunk\n");
return info;
}
data_p += 8;
format = GetLittleShort();
if (format != 1)
{
printf("Microsoft PCM format only\n");
return info;
}
info.channels = GetLittleShort();
info.rate = GetLittleLong();
data_p += 4+2;
info.width = GetLittleShort() / 8;
// get cue chunk
FindChunk("cue ");
if (data_p)
{
data_p += 32;
info.loopstart = GetLittleLong();
// Com_Printf("loopstart=%d\n", sfx->loopstart);
// if the next chunk is a LIST chunk, look for a cue length marker
FindNextChunk ("LIST");
if (data_p)
{
if (!strncmp (data_p + 28, "mark", 4))
{ // this is not a proper parse, but it works with cooledit...
data_p += 24;
i = GetLittleLong (); // samples in loop
info.samples = info.loopstart + i;
}
}
}
else
info.loopstart = -1;
// find data chunk
FindChunk("data");
if (!data_p)
{
printf("Missing data chunk\n");
return info;
}
data_p += 4;
samples = GetLittleLong ();
if (info.samples)
{
if (samples < info.samples)
Error ("Sound %s has a bad loop length", name);
}
else
info.samples = samples;
info.dataofs = data_p - wav;
return info;
}
//=====================================================================
/*
==============
LoadSoundtrack
==============
*/
void LoadSoundtrack (void)
{
char name[1024];
FILE *f;
int len;
int i, val, j;
soundtrack = NULL;
sprintf (name, "%svideo/%s/%s.wav", gamedir, base, base);
printf ("%s\n", name);
f = fopen (name, "rb");
if (!f)
{
printf ("no soundtrack for %s\n", base);
return;
}
len = Q_filelength(f);
soundtrack = malloc(len);
fread (soundtrack, 1, len, f);
fclose (f);
wavinfo = GetWavinfo (name, soundtrack, len);
// count samples for compression
memset (samplecounts, 0, sizeof(samplecounts));
j = wavinfo.samples/2;
for (i=0 ; i<j ; i++)
{
val = ((unsigned short *)( soundtrack + wavinfo.dataofs))[i];
samplecounts[val]++;
}
val = 0;
for (i=0 ; i<0x10000 ; i++)
if (samplecounts[i])
val++;
printf ("%i unique sample values\n", val);
}
/*
==================
WriteSound
==================
*/
void WriteSound (FILE *output, int frame)
{
int start, end;
int count;
int empty = 0;
int i;
int sample;
int width;
width = wavinfo.width * wavinfo.channels;
start = frame*wavinfo.rate/14;
end = (frame+1)*wavinfo.rate/14;
count = end - start;
for (i=0 ; i<count ; i++)
{
sample = start+i;
if (sample > wavinfo.samples || !soundtrack)
fwrite (&empty, 1, width, output);
else
fwrite (soundtrack + wavinfo.dataofs + sample*width, 1, width,output);
}
}
//==========================================================================
/*
==================
MTF
==================
*/
cblock_t MTF (cblock_t in)
{
int i, j, b, code;
byte *out_p;
int index[256];
cblock_t out;
out_p = out.data = malloc(in.count + 4);
// write count
*out_p++ = in.count&255;
*out_p++ = (in.count>>8)&255;
*out_p++ = (in.count>>16)&255;
*out_p++ = (in.count>>24)&255;
for (i=0 ; i<256 ; i++)
index[i] = i;
for (i=0 ; i<in.count ; i++)
{
b = in.data[i];
code = index[b];
*out_p++ = code;
// shuffle b indexes to 0
for (j=0 ; j<256 ; j++)
if (index[j] < code)
index[j]++;
index[b] = 0;
}
out.count = out_p - out.data;
return out;
}
//==========================================================================
int bwt_size;
byte *bwt_data;
int bwtCompare (const void *elem1, const void *elem2)
{
int i;
int i1, i2;
int b1, b2;
i1 = *(int *)elem1;
i2 = *(int *)elem2;
for (i=0 ; i<bwt_size ; i++)
{
b1 = bwt_data[i1];
b2 = bwt_data[i2];
if (b1 < b2)
return -1;
if (b1 > b2)
return 1;
if (++i1 == bwt_size)
i1 = 0;
if (++i2 == bwt_size)
i2 = 0;
}
return 0;
}
/*
==================
BWT
==================
*/
cblock_t BWT (cblock_t in)
{
int *sorted;
int i;
byte *out_p;
cblock_t out;
bwt_size = in.count;
bwt_data = in.data;
sorted = malloc(in.count*sizeof(*sorted));
for (i=0 ; i<in.count ; i++)
sorted[i] = i;
qsort (sorted, in.count, sizeof(*sorted), bwtCompare);
out_p = out.data = malloc(in.count + 8);
// write count
*out_p++ = in.count&255;
*out_p++ = (in.count>>8)&255;
*out_p++ = (in.count>>16)&255;
*out_p++ = (in.count>>24)&255;
// write head index
for (i=0 ; i<in.count ; i++)
if (sorted[i] == 0)
break;
*out_p++ = i&255;
*out_p++ = (i>>8)&255;
*out_p++ = (i>>16)&255;
*out_p++ = (i>>24)&255;
// write the L column
for (i=0 ; i<in.count ; i++)
*out_p++ = in.data[(sorted[i]+in.count-1)%in.count];
free (sorted);
out.count = out_p - out.data;
return out;
}
//==========================================================================
typedef struct hnode_s
{
int count;
qboolean used;
int children[2];
} hnode_t;
int numhnodes;
hnode_t hnodes[512];
unsigned charbits[256];
int charbitscount[256];
int SmallestNode (void)
{
int i;
int best, bestnode;
best = 99999999;
bestnode = -1;
for (i=0 ; i<numhnodes ; i++)
{
if (hnodes[i].used)
continue;
if (!hnodes[i].count)
continue;
if (hnodes[i].count < best)
{
best = hnodes[i].count;
bestnode = i;
}
}
if (bestnode == -1)
return -1;
hnodes[bestnode].used = true;
return bestnode;
}
void BuildChars (int nodenum, unsigned bits, int bitcount)
{
hnode_t *node;
if (nodenum < 256)
{
if (bitcount > 32)
Error ("bitcount > 32");
charbits[nodenum] = bits;
charbitscount[nodenum] = bitcount;
return;
}
node = &hnodes[nodenum];
bits <<= 1;
BuildChars (node->children[0], bits, bitcount+1);
bits |= 1;
BuildChars (node->children[1], bits, bitcount+1);
}
/*
==================
Huffman
==================
*/
cblock_t Huffman (cblock_t in)
{
int i;
hnode_t *node;
int outbits, c;
unsigned bits;
byte *out_p;
cblock_t out;
int max, maxchar;
// count
memset (hnodes, 0, sizeof(hnodes));
for (i=0 ; i<in.count ; i++)
hnodes[in.data[i]].count++;
// normalize counts
max = 0;
maxchar = 0;
for (i=0 ; i<256 ; i++)
{
if (hnodes[i].count > max)
{
max = hnodes[i].count;
maxchar = i;
}
}
if (max == 0)
Error ("Huffman: max == 0");
for (i=0 ; i<256 ; i++)
{
hnodes[i].count = (hnodes[i].count*255+max-1) / max;
}
// build the nodes
numhnodes = 256;
while (numhnodes != 511)
{
node = &hnodes[numhnodes];
// pick two lowest counts
node->children[0] = SmallestNode ();
if (node->children[0] == -1)
break; // no more
node->children[1] = SmallestNode ();
if (node->children[1] == -1)
{
if (node->children[0] != numhnodes-1)
Error ("Bad smallestnode");
break;
}
node->count = hnodes[node->children[0]].count +
hnodes[node->children[1]].count;
numhnodes++;
}
BuildChars (numhnodes-1, 0, 0);
out_p = out.data = malloc(in.count*2 + 1024);
memset (out_p, 0, in.count*2+1024);
// write count
*out_p++ = in.count&255;
*out_p++ = (in.count>>8)&255;
*out_p++ = (in.count>>16)&255;
*out_p++ = (in.count>>24)&255;
// save out the 256 normalized counts so the tree can be recreated
for (i=0 ; i<256 ; i++)
*out_p++ = hnodes[i].count;
// write bits
outbits = 0;
for (i=0 ; i<in.count ; i++)
{
c = charbitscount[in.data[i]];
bits = charbits[in.data[i]];
while (c)
{
c--;
if (bits & (1<<c))
out_p[outbits>>3] |= 1<<(outbits&7);
outbits++;
}
}
out_p += (outbits+7)>>3;
out.count = out_p - out.data;
return out;
}
//==========================================================================
/*
==================
RLE
==================
*/
#define RLE_CODE 0xe8
#define RLE_TRIPPLE 0xe9
int rle_counts[256];
int rle_bytes[256];
cblock_t RLE (cblock_t in)
{
int i;
byte *out_p;
int val;
int repeat;
cblock_t out;
out_p = out.data = malloc (in.count*2);
// write count
*out_p++ = in.count&255;
*out_p++ = (in.count>>8)&255;
*out_p++ = (in.count>>16)&255;
*out_p++ = (in.count>>24)&255;
for (i=0 ; i<in.count ; )
{
val = in.data[i];
rle_bytes[val]++;
repeat = 1;
i++;
while (i<in.count && repeat < 255 && in.data[i] == val)
{
repeat++;
i++;
}
if (repeat < 256)
rle_counts[repeat]++;
if (repeat > 3 || val == RLE_CODE)
{
*out_p++ = RLE_CODE;
*out_p++ = val;
*out_p++ = repeat;
}
else
{
while (repeat--)
*out_p++ = val;
}
}
out.count = out_p - out.data;
return out;
}
//==========================================================================
unsigned lzss_head[256];
unsigned lzss_next[0x20000];
/*
==================
LZSS
==================
*/
#define BACK_WINDOW 0x10000
#define BACK_BITS 16
#define FRONT_WINDOW 16
#define FRONT_BITS 4
cblock_t LZSS (cblock_t in)
{
int i;
byte *out_p;
cblock_t out;
int val;
int j, start, max;
int bestlength, beststart;
int outbits;
if (in.count >= sizeof(lzss_next)/4)
Error ("LZSS: too big");
memset (lzss_head, -1, sizeof(lzss_head));
out_p = out.data = malloc (in.count*2);
memset (out.data, 0, in.count*2);
// write count
*out_p++ = in.count&255;
*out_p++ = (in.count>>8)&255;
*out_p++ = (in.count>>16)&255;
*out_p++ = (in.count>>24)&255;
outbits = 0;
for (i=0 ; i<in.count ; )
{
val = in.data[i];
#if 1
// chained search
bestlength = 0;
beststart = 0;
max = FRONT_WINDOW;
if (i + max > in.count)
max = in.count - i;
start = lzss_head[val];
while (start != -1 && start >= i-BACK_WINDOW)
{
// count match length
for (j=0 ; j<max ; j++)
if (in.data[start+j] != in.data[i+j])
break;
if (j > bestlength)
{
bestlength = j;
beststart = start;
}
start = lzss_next[start];
}
#else
// slow simple search
// search for a match
max = FRONT_WINDOW;
if (i + max > in.count)
max = in.count - i;
start = i - BACK_WINDOW;
if (start < 0)
start = 0;
bestlength = 0;
beststart = 0;
for ( ; start < i ; start++)
{
if (in.data[start] != val)
continue;
// count match length
for (j=0 ; j<max ; j++)
if (in.data[start+j] != in.data[i+j])
break;
if (j > bestlength)
{
bestlength = j;
beststart = start;
}
}
#endif
beststart = BACK_WINDOW - (i-beststart);
if (bestlength < 3)
{ // output a single char
bestlength = 1;
out_p[outbits>>3] |= 1<<(outbits&7); // set bit to mark char
outbits++;
for (j=0 ; j<8 ; j++, outbits++)
if (val & (1<<j) )
out_p[outbits>>3] |= 1<<(outbits&7);
}
else
{ // output a phrase
outbits++; // leave a 0 bit to mark phrase
for (j=0 ; j<BACK_BITS ; j++, outbits++)
if (beststart & (1<<j) )
out_p[outbits>>3] |= 1<<(outbits&7);
for (j=0 ; j<FRONT_BITS ; j++, outbits++)
if (bestlength & (1<<j) )
out_p[outbits>>3] |= 1<<(outbits&7);
}
while (bestlength--)
{
val = in.data[i];
lzss_next[i] = lzss_head[val];
lzss_head[val] = i;
i++;
}
}
out_p += (outbits+7)>>3;
out.count = out_p - out.data;
return out;
}
//==========================================================================
#define MIN_REPT 15
#define MAX_REPT 0
#define HUF_TOKENS (256+MAX_REPT)
unsigned charbits1[256][HUF_TOKENS];
int charbitscount1[256][HUF_TOKENS];
hnode_t hnodes1[256][HUF_TOKENS*2];
int numhnodes1[256];
int order0counts[256];
/*
==================
SmallestNode1
==================
*/
int SmallestNode1 (hnode_t *hnodes, int numhnodes)
{
int i;
int best, bestnode;
best = 99999999;
bestnode = -1;
for (i=0 ; i<numhnodes ; i++)
{
if (hnodes[i].used)
continue;
if (!hnodes[i].count)
continue;
if (hnodes[i].count < best)
{
best = hnodes[i].count;
bestnode = i;
}
}
if (bestnode == -1)
return -1;
hnodes[bestnode].used = true;
return bestnode;
}
/*
==================
BuildChars1
==================
*/
void BuildChars1 (int prev, int nodenum, unsigned bits, int bitcount)
{
hnode_t *node;
if (nodenum < HUF_TOKENS)
{
if (bitcount > 32)
Error ("bitcount > 32");
charbits1[prev][nodenum] = bits;
charbitscount1[prev][nodenum] = bitcount;
return;
}
node = &hnodes1[prev][nodenum];
bits <<= 1;
BuildChars1 (prev, node->children[0], bits, bitcount+1);
bits |= 1;
BuildChars1 (prev, node->children[1], bits, bitcount+1);
}
/*
==================
BuildTree1
==================
*/
void BuildTree1 (int prev)
{
hnode_t *node, *nodebase;
int numhnodes;
// build the nodes
numhnodes = HUF_TOKENS;
nodebase = hnodes1[prev];
while (1)
{
node = &nodebase[numhnodes];
// pick two lowest counts
node->children[0] = SmallestNode1 (nodebase, numhnodes);
if (node->children[0] == -1)
break; // no more
node->children[1] = SmallestNode1 (nodebase, numhnodes);
if (node->children[1] == -1)
break;
node->count = nodebase[node->children[0]].count +
nodebase[node->children[1]].count;
numhnodes++;
}
numhnodes1[prev] = numhnodes-1;
BuildChars1 (prev, numhnodes-1, 0, 0);
}
/*
==================
Huffman1_Count
==================
*/
void Huffman1_Count (cblock_t in)
{
int i;
int prev;
int v;
int rept;
prev = 0;
for (i=0 ; i<in.count ; i++)
{
v = in.data[i];
order0counts[v]++;
hnodes1[prev][v].count++;
prev = v;
#if 1
for (rept=1 ; i+rept < in.count && rept < MAX_REPT ; rept++)
if (in.data[i+rept] != v)
break;
if (rept > MIN_REPT)
{
hnodes1[prev][255+rept].count++;
i += rept-1;
}
#endif
}
}
/*
==================
Huffman1_Build
==================
*/
byte scaled[256][HUF_TOKENS];
void Huffman1_Build (FILE *f)
{
int i, j, v;
int max;
int total;
for (i=0 ; i<256 ; i++)
{
// normalize and save the counts
max = 0;
for (j=0 ; j<HUF_TOKENS ; j++)
{
if (hnodes1[i][j].count > max)
max = hnodes1[i][j].count;
}
if (max == 0)
max = 1;
total = 0;
for (j=0 ; j<HUF_TOKENS ; j++)
{ // easy to overflow 32 bits here!
v = (hnodes1[i][j].count*(double)255+max-1)/max;
if (v > 255)
Error ("v > 255");
scaled[i][j] = hnodes1[i][j].count = v;
if (v)
total++;
}
if (total == 1)
{ // must have two tokens
if (!scaled[i][0])
scaled[i][0] = hnodes1[i][0].count = 1;
else
scaled[i][1] = hnodes1[i][1].count = 1;
}
BuildTree1 (i);
}
#if 0
// count up the total bits
total = 0;
for (i=0 ; i<256 ; i++)
for (j=0 ; j<256 ; j++)
total += charbitscount1[i][j] * hnodes1[i][j].count;
total = (total+7)/8;
printf ("%i bytes huffman1 compressed\n", total);
#endif
fwrite (scaled, 1, sizeof(scaled), f);
}
/*
==================
Huffman1
Order 1 compression with pre-built table
==================
*/
cblock_t Huffman1 (cblock_t in)
{
int i;
int outbits, c;
unsigned bits;
byte *out_p;
cblock_t out;
int prev;
int v;
int rept;
out_p = out.data = malloc(in.count*2 + 1024);
memset (out_p, 0, in.count*2+1024);
// write count
*out_p++ = in.count&255;
*out_p++ = (in.count>>8)&255;
*out_p++ = (in.count>>16)&255;
*out_p++ = (in.count>>24)&255;
// write bits
outbits = 0;
prev = 0;
for (i=0 ; i<in.count ; i++)
{
v = in.data[i];
c = charbitscount1[prev][v];
bits = charbits1[prev][v];
if (!c)
Error ("!bits");
while (c)
{
c--;
if (bits & (1<<c))
out_p[outbits>>3] |= 1<<(outbits&7);
outbits++;
}
prev = v;
#if 1
// check for repeat encodes
for (rept=1 ; i+rept < in.count && rept < MAX_REPT ; rept++)
if (in.data[i+rept] != v)
break;
if (rept > MIN_REPT)
{
c = charbitscount1[prev][255+rept];
bits = charbits1[prev][255+rept];
if (!c)
Error ("!bits");
while (c)
{
c--;
if (bits & (1<<c))
out_p[outbits>>3] |= 1<<(outbits&7);
outbits++;
}
i += rept-1;
}
#endif
}
out_p += (outbits+7)>>3;
out.count = out_p - out.data;
return out;
}
//==========================================================================
/*
===================
LoadFrame
===================
*/
cblock_t LoadFrame (char *base, int frame, int digits, byte **palette)
{
int ten3, ten2, ten1, ten0;
cblock_t in;
int width, height;
char name[1024];
FILE *f;
in.data = NULL;
in.count = -1;
ten3 = frame/1000;
ten2 = (frame-ten3*1000)/100;
ten1 = (frame-ten3*1000-ten2*100)/10;
ten0 = frame%10;
if (digits == 4)
sprintf (name, "%svideo/%s/%s%i%i%i%i.pcx", gamedir, base, base, ten3, ten2, ten1, ten0);
else
sprintf (name, "%svideo/%s/%s%i%i%i.pcx", gamedir, base, base, ten2, ten1, ten0);
f = fopen(name, "rb");
if (!f)
{
in.data = NULL;
return in;
}
fclose (f);
printf ("%s\n", name);
Load256Image (name, &in.data, palette, &width, &height);
in.count = width*height;
// FIXME: map 0 and 255!
#if 0
// rle compress
rle = RLE(in);
free (in.data);
return rle;
#endif
return in;
}
/*
===============
Cmd_Video
video <directory> <framedigits>
===============
*/
void Cmd_Video (void)
{
char savename[1024];
char name[1024];
FILE *output;
int startframe, frame;
byte *palette;
int width, height;
byte current_palette[768];
int command;
int i;
int digits;
cblock_t in, huffman;
int swap;
GetToken (false);
strcpy (base, token);
if (g_release)
{
// sprintf (savename, "video/%s.cin", token);
// ReleaseFile (savename);
return;
}
GetToken (false);
digits = atoi(token);
// optionally skip frames
if (TokenAvailable ())
{
GetToken (false);
startframe = atoi(token);
}
else
startframe=0;
sprintf (savename, "%svideo/%s.cin", gamedir, base);
// clear stuff
memset (charbits1, 0, sizeof(charbits1));
memset (charbitscount1, 0, sizeof(charbitscount1));
memset (hnodes1, 0, sizeof(hnodes1));
memset (numhnodes1, 0, sizeof(numhnodes1));
memset (order0counts, 0, sizeof(order0counts));
// load the entire sound wav file if present
LoadSoundtrack ();
if (digits == 4)
sprintf (name, "%svideo/%s/%s0000.pcx", gamedir, base, base);
else
sprintf (name, "%svideo/%s/%s000.pcx", gamedir, base, base);
printf ("%s\n", name);
Load256Image (name, NULL, &palette, &width, &height);
output = fopen (savename, "wb");
if (!output)
Error ("Can't open %s", savename);
// write header info
i = LittleLong (width);
fwrite (&i, 4, 1, output);
i = LittleLong (height);
fwrite (&i, 4, 1, output);
i = LittleLong (wavinfo.rate);
fwrite (&i, 4, 1, output);
i = LittleLong (wavinfo.width);
fwrite (&i, 4, 1, output);
i = LittleLong (wavinfo.channels);
fwrite (&i, 4, 1, output);
// build the dictionary
for ( frame=startframe ; ; frame++)
{
printf ("counting ", frame);
in = LoadFrame (base, frame, digits, &palette);
if (!in.data)
break;
Huffman1_Count (in);
free (in.data);
}
printf ("\n");
// build nodes and write counts
Huffman1_Build (output);
memset (current_palette, 0, sizeof(current_palette));
// compress it with the dictionary
for (frame=startframe ; ; frame++)
{
printf ("packing ", frame);
in = LoadFrame (base, frame, digits, &palette);
if (!in.data)
break;
// see if the palette has changed
for (i=0 ; i<768 ; i++)
if (palette[i] != current_palette[i])
{
// write a palette change
memcpy (current_palette, palette, sizeof(current_palette));
command = LittleLong(1);
fwrite (&command, 1, 4, output);
fwrite (current_palette, 1, sizeof(current_palette), output);
break;
}
if (i == 768)
{
command = 0; // no palette change
fwrite (&command, 1, 4, output);
}
// save the image
huffman = Huffman1 (in);
printf ("%5i bytes after huffman1\n", huffman.count);
swap = LittleLong (huffman.count);
fwrite (&swap, 1, sizeof(swap), output);
fwrite (huffman.data, 1, huffman.count, output);
// save some sound samples
WriteSound (output, frame);
free (palette);
free (in.data);
free (huffman.data);
}
printf ("\n");
// write end-of-file command
command = 2;
fwrite (&command, 1, 4, output);
printf ("Total size: %i\n", ftell (output));
fclose (output);
if (soundtrack)
free (soundtrack);
}