mirror of
https://github.com/UberGames/GtkRadiant.git
synced 2024-11-14 16:31:36 +00:00
12b372f89c
git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant@1 8a3a26a2-13c4-0310-b231-cf6edde360e5
1315 lines
27 KiB
C
1315 lines
27 KiB
C
/*
|
|
Copyright (C) 1999-2006 Id Software, Inc. and contributors.
|
|
For a list of contributors, see the accompanying CONTRIBUTORS file.
|
|
|
|
This file is part of GtkRadiant.
|
|
|
|
GtkRadiant is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
GtkRadiant is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GtkRadiant; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "qrad.h"
|
|
|
|
#define MAX_LSTYLES 256
|
|
|
|
typedef struct
|
|
{
|
|
dface_t *faces[2];
|
|
qboolean coplanar;
|
|
} edgeshare_t;
|
|
|
|
edgeshare_t edgeshare[MAX_MAP_EDGES];
|
|
|
|
int facelinks[MAX_MAP_FACES];
|
|
int planelinks[2][MAX_MAP_PLANES];
|
|
|
|
/*
|
|
============
|
|
LinkPlaneFaces
|
|
============
|
|
*/
|
|
void LinkPlaneFaces (void)
|
|
{
|
|
int i;
|
|
dface_t *f;
|
|
|
|
f = dfaces;
|
|
for (i=0 ; i<numfaces ; i++, f++)
|
|
{
|
|
facelinks[i] = planelinks[f->side][f->planenum];
|
|
planelinks[f->side][f->planenum] = i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
============
|
|
PairEdges
|
|
============
|
|
*/
|
|
void PairEdges (void)
|
|
{
|
|
int i, j, k;
|
|
dface_t *f;
|
|
edgeshare_t *e;
|
|
|
|
f = dfaces;
|
|
for (i=0 ; i<numfaces ; i++, f++)
|
|
{
|
|
for (j=0 ; j<f->numedges ; j++)
|
|
{
|
|
k = dsurfedges[f->firstedge + j];
|
|
if (k < 0)
|
|
{
|
|
e = &edgeshare[-k];
|
|
e->faces[1] = f;
|
|
}
|
|
else
|
|
{
|
|
e = &edgeshare[k];
|
|
e->faces[0] = f;
|
|
}
|
|
|
|
if (e->faces[0] && e->faces[1])
|
|
{
|
|
// determine if coplanar
|
|
if (e->faces[0]->planenum == e->faces[1]->planenum)
|
|
e->coplanar = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
=================================================================
|
|
|
|
POINT TRIANGULATION
|
|
|
|
=================================================================
|
|
*/
|
|
|
|
typedef struct triedge_s
|
|
{
|
|
int p0, p1;
|
|
vec3_t normal;
|
|
vec_t dist;
|
|
struct triangle_s *tri;
|
|
} triedge_t;
|
|
|
|
typedef struct triangle_s
|
|
{
|
|
triedge_t *edges[3];
|
|
} triangle_t;
|
|
|
|
#define MAX_TRI_POINTS 1024
|
|
#define MAX_TRI_EDGES (MAX_TRI_POINTS*6)
|
|
#define MAX_TRI_TRIS (MAX_TRI_POINTS*2)
|
|
|
|
typedef struct
|
|
{
|
|
int numpoints;
|
|
int numedges;
|
|
int numtris;
|
|
dplane_t *plane;
|
|
triedge_t *edgematrix[MAX_TRI_POINTS][MAX_TRI_POINTS];
|
|
patch_t *points[MAX_TRI_POINTS];
|
|
triedge_t edges[MAX_TRI_EDGES];
|
|
triangle_t tris[MAX_TRI_TRIS];
|
|
} triangulation_t;
|
|
|
|
/*
|
|
===============
|
|
AllocTriangulation
|
|
===============
|
|
*/
|
|
triangulation_t *AllocTriangulation (dplane_t *plane)
|
|
{
|
|
triangulation_t *t;
|
|
|
|
t = malloc(sizeof(triangulation_t));
|
|
t->numpoints = 0;
|
|
t->numedges = 0;
|
|
t->numtris = 0;
|
|
|
|
t->plane = plane;
|
|
|
|
// memset (t->edgematrix, 0, sizeof(t->edgematrix));
|
|
|
|
return t;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
FreeTriangulation
|
|
===============
|
|
*/
|
|
void FreeTriangulation (triangulation_t *tr)
|
|
{
|
|
free (tr);
|
|
}
|
|
|
|
|
|
triedge_t *FindEdge (triangulation_t *trian, int p0, int p1)
|
|
{
|
|
triedge_t *e, *be;
|
|
vec3_t v1;
|
|
vec3_t normal;
|
|
vec_t dist;
|
|
|
|
if (trian->edgematrix[p0][p1])
|
|
return trian->edgematrix[p0][p1];
|
|
|
|
if (trian->numedges > MAX_TRI_EDGES-2)
|
|
Error ("trian->numedges > MAX_TRI_EDGES-2");
|
|
|
|
VectorSubtract (trian->points[p1]->origin, trian->points[p0]->origin, v1);
|
|
VectorNormalize (v1, v1);
|
|
CrossProduct (v1, trian->plane->normal, normal);
|
|
dist = DotProduct (trian->points[p0]->origin, normal);
|
|
|
|
e = &trian->edges[trian->numedges];
|
|
e->p0 = p0;
|
|
e->p1 = p1;
|
|
e->tri = NULL;
|
|
VectorCopy (normal, e->normal);
|
|
e->dist = dist;
|
|
trian->numedges++;
|
|
trian->edgematrix[p0][p1] = e;
|
|
|
|
be = &trian->edges[trian->numedges];
|
|
be->p0 = p1;
|
|
be->p1 = p0;
|
|
be->tri = NULL;
|
|
VectorSubtract (vec3_origin, normal, be->normal);
|
|
be->dist = -dist;
|
|
trian->numedges++;
|
|
trian->edgematrix[p1][p0] = be;
|
|
|
|
return e;
|
|
}
|
|
|
|
triangle_t *AllocTriangle (triangulation_t *trian)
|
|
{
|
|
triangle_t *t;
|
|
|
|
if (trian->numtris >= MAX_TRI_TRIS)
|
|
Error ("trian->numtris >= MAX_TRI_TRIS");
|
|
|
|
t = &trian->tris[trian->numtris];
|
|
trian->numtris++;
|
|
|
|
return t;
|
|
}
|
|
|
|
/*
|
|
============
|
|
TriEdge_r
|
|
============
|
|
*/
|
|
void TriEdge_r (triangulation_t *trian, triedge_t *e)
|
|
{
|
|
int i, bestp;
|
|
vec3_t v1, v2;
|
|
vec_t *p0, *p1, *p;
|
|
vec_t best, ang;
|
|
triangle_t *nt;
|
|
|
|
if (e->tri)
|
|
return; // allready connected by someone
|
|
|
|
// find the point with the best angle
|
|
p0 = trian->points[e->p0]->origin;
|
|
p1 = trian->points[e->p1]->origin;
|
|
best = 1.1;
|
|
for (i=0 ; i< trian->numpoints ; i++)
|
|
{
|
|
p = trian->points[i]->origin;
|
|
// a 0 dist will form a degenerate triangle
|
|
if (DotProduct(p, e->normal) - e->dist < 0)
|
|
continue; // behind edge
|
|
VectorSubtract (p0, p, v1);
|
|
VectorSubtract (p1, p, v2);
|
|
if (!VectorNormalize (v1,v1))
|
|
continue;
|
|
if (!VectorNormalize (v2,v2))
|
|
continue;
|
|
ang = DotProduct (v1, v2);
|
|
if (ang < best)
|
|
{
|
|
best = ang;
|
|
bestp = i;
|
|
}
|
|
}
|
|
if (best >= 1)
|
|
return; // edge doesn't match anything
|
|
|
|
// make a new triangle
|
|
nt = AllocTriangle (trian);
|
|
nt->edges[0] = e;
|
|
nt->edges[1] = FindEdge (trian, e->p1, bestp);
|
|
nt->edges[2] = FindEdge (trian, bestp, e->p0);
|
|
for (i=0 ; i<3 ; i++)
|
|
nt->edges[i]->tri = nt;
|
|
TriEdge_r (trian, FindEdge (trian, bestp, e->p1));
|
|
TriEdge_r (trian, FindEdge (trian, e->p0, bestp));
|
|
}
|
|
|
|
/*
|
|
============
|
|
TriangulatePoints
|
|
============
|
|
*/
|
|
void TriangulatePoints (triangulation_t *trian)
|
|
{
|
|
vec_t d, bestd;
|
|
vec3_t v1;
|
|
int bp1, bp2, i, j;
|
|
vec_t *p1, *p2;
|
|
triedge_t *e, *e2;
|
|
|
|
if (trian->numpoints < 2)
|
|
return;
|
|
|
|
// find the two closest points
|
|
bestd = 9999;
|
|
for (i=0 ; i<trian->numpoints ; i++)
|
|
{
|
|
p1 = trian->points[i]->origin;
|
|
for (j=i+1 ; j<trian->numpoints ; j++)
|
|
{
|
|
p2 = trian->points[j]->origin;
|
|
VectorSubtract (p2, p1, v1);
|
|
d = VectorLength (v1);
|
|
if (d < bestd)
|
|
{
|
|
bestd = d;
|
|
bp1 = i;
|
|
bp2 = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
e = FindEdge (trian, bp1, bp2);
|
|
e2 = FindEdge (trian, bp2, bp1);
|
|
TriEdge_r (trian, e);
|
|
TriEdge_r (trian, e2);
|
|
}
|
|
|
|
/*
|
|
===============
|
|
AddPointToTriangulation
|
|
===============
|
|
*/
|
|
void AddPointToTriangulation (patch_t *patch, triangulation_t *trian)
|
|
{
|
|
int pnum;
|
|
|
|
pnum = trian->numpoints;
|
|
if (pnum == MAX_TRI_POINTS)
|
|
Error ("trian->numpoints == MAX_TRI_POINTS");
|
|
trian->points[pnum] = patch;
|
|
trian->numpoints++;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
LerpTriangle
|
|
===============
|
|
*/
|
|
void LerpTriangle (triangulation_t *trian, triangle_t *t, vec3_t point, vec3_t color)
|
|
{
|
|
patch_t *p1, *p2, *p3;
|
|
vec3_t base, d1, d2;
|
|
float x, y, x1, y1, x2, y2;
|
|
|
|
p1 = trian->points[t->edges[0]->p0];
|
|
p2 = trian->points[t->edges[1]->p0];
|
|
p3 = trian->points[t->edges[2]->p0];
|
|
|
|
VectorCopy (p1->totallight, base);
|
|
VectorSubtract (p2->totallight, base, d1);
|
|
VectorSubtract (p3->totallight, base, d2);
|
|
|
|
x = DotProduct (point, t->edges[0]->normal) - t->edges[0]->dist;
|
|
y = DotProduct (point, t->edges[2]->normal) - t->edges[2]->dist;
|
|
|
|
x1 = 0;
|
|
y1 = DotProduct (p2->origin, t->edges[2]->normal) - t->edges[2]->dist;
|
|
|
|
x2 = DotProduct (p3->origin, t->edges[0]->normal) - t->edges[0]->dist;
|
|
y2 = 0;
|
|
|
|
if (fabs(y1)<ON_EPSILON || fabs(x2)<ON_EPSILON)
|
|
{
|
|
VectorCopy (base, color);
|
|
return;
|
|
}
|
|
|
|
VectorMA (base, x/x2, d2, color);
|
|
VectorMA (color, y/y1, d1, color);
|
|
}
|
|
|
|
qboolean PointInTriangle (vec3_t point, triangle_t *t)
|
|
{
|
|
int i;
|
|
triedge_t *e;
|
|
vec_t d;
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
{
|
|
e = t->edges[i];
|
|
d = DotProduct (e->normal, point) - e->dist;
|
|
if (d < 0)
|
|
return false; // not inside
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
SampleTriangulation
|
|
===============
|
|
*/
|
|
void SampleTriangulation (vec3_t point, triangulation_t *trian, vec3_t color)
|
|
{
|
|
triangle_t *t;
|
|
triedge_t *e;
|
|
vec_t d, best;
|
|
patch_t *p0, *p1;
|
|
vec3_t v1, v2;
|
|
int i, j;
|
|
|
|
if (trian->numpoints == 0)
|
|
{
|
|
VectorClear (color);
|
|
return;
|
|
}
|
|
if (trian->numpoints == 1)
|
|
{
|
|
VectorCopy (trian->points[0]->totallight, color);
|
|
return;
|
|
}
|
|
|
|
// search for triangles
|
|
for (t = trian->tris, j=0 ; j < trian->numtris ; t++, j++)
|
|
{
|
|
if (!PointInTriangle (point, t))
|
|
continue;
|
|
|
|
// this is it
|
|
LerpTriangle (trian, t, point, color);
|
|
return;
|
|
}
|
|
|
|
// search for exterior edge
|
|
for (e=trian->edges, j=0 ; j< trian->numedges ; e++, j++)
|
|
{
|
|
if (e->tri)
|
|
continue; // not an exterior edge
|
|
|
|
d = DotProduct (point, e->normal) - e->dist;
|
|
if (d < 0)
|
|
continue; // not in front of edge
|
|
|
|
p0 = trian->points[e->p0];
|
|
p1 = trian->points[e->p1];
|
|
|
|
VectorSubtract (p1->origin, p0->origin, v1);
|
|
VectorNormalize (v1, v1);
|
|
VectorSubtract (point, p0->origin, v2);
|
|
d = DotProduct (v2, v1);
|
|
if (d < 0)
|
|
continue;
|
|
if (d > 1)
|
|
continue;
|
|
for (i=0 ; i<3 ; i++)
|
|
color[i] = p0->totallight[i] + d * (p1->totallight[i] - p0->totallight[i]);
|
|
return;
|
|
}
|
|
|
|
// search for nearest point
|
|
best = 99999;
|
|
p1 = NULL;
|
|
for (j=0 ; j<trian->numpoints ; j++)
|
|
{
|
|
p0 = trian->points[j];
|
|
VectorSubtract (point, p0->origin, v1);
|
|
d = VectorLength (v1);
|
|
if (d < best)
|
|
{
|
|
best = d;
|
|
p1 = p0;
|
|
}
|
|
}
|
|
|
|
if (!p1)
|
|
Error ("SampleTriangulation: no points");
|
|
|
|
VectorCopy (p1->totallight, color);
|
|
}
|
|
|
|
/*
|
|
=================================================================
|
|
|
|
LIGHTMAP SAMPLE GENERATION
|
|
|
|
=================================================================
|
|
*/
|
|
|
|
|
|
#define SINGLEMAP (64*64*4)
|
|
|
|
typedef struct
|
|
{
|
|
vec_t facedist;
|
|
vec3_t facenormal;
|
|
|
|
int numsurfpt;
|
|
vec3_t surfpt[SINGLEMAP];
|
|
|
|
vec3_t modelorg; // for origined bmodels
|
|
|
|
vec3_t texorg;
|
|
vec3_t worldtotex[2]; // s = (world - texorg) . worldtotex[0]
|
|
vec3_t textoworld[2]; // world = texorg + s * textoworld[0]
|
|
|
|
vec_t exactmins[2], exactmaxs[2];
|
|
|
|
int texmins[2], texsize[2];
|
|
int surfnum;
|
|
dface_t *face;
|
|
} lightinfo_t;
|
|
|
|
|
|
/*
|
|
================
|
|
CalcFaceExtents
|
|
|
|
Fills in s->texmins[] and s->texsize[]
|
|
also sets exactmins[] and exactmaxs[]
|
|
================
|
|
*/
|
|
void CalcFaceExtents (lightinfo_t *l)
|
|
{
|
|
dface_t *s;
|
|
vec_t mins[2], maxs[2], val;
|
|
int i,j, e;
|
|
dvertex_t *v;
|
|
texinfo_t *tex;
|
|
vec3_t vt;
|
|
|
|
s = l->face;
|
|
|
|
mins[0] = mins[1] = 999999;
|
|
maxs[0] = maxs[1] = -99999;
|
|
|
|
tex = &texinfo[s->texinfo];
|
|
|
|
for (i=0 ; i<s->numedges ; i++)
|
|
{
|
|
e = dsurfedges[s->firstedge+i];
|
|
if (e >= 0)
|
|
v = dvertexes + dedges[e].v[0];
|
|
else
|
|
v = dvertexes + dedges[-e].v[1];
|
|
|
|
// VectorAdd (v->point, l->modelorg, vt);
|
|
VectorCopy (v->point, vt);
|
|
|
|
for (j=0 ; j<2 ; j++)
|
|
{
|
|
val = DotProduct (vt, tex->vecs[j]) + tex->vecs[j][3];
|
|
if (val < mins[j])
|
|
mins[j] = val;
|
|
if (val > maxs[j])
|
|
maxs[j] = val;
|
|
}
|
|
}
|
|
|
|
for (i=0 ; i<2 ; i++)
|
|
{
|
|
l->exactmins[i] = mins[i];
|
|
l->exactmaxs[i] = maxs[i];
|
|
|
|
mins[i] = floor(mins[i]/16);
|
|
maxs[i] = ceil(maxs[i]/16);
|
|
|
|
l->texmins[i] = mins[i];
|
|
l->texsize[i] = maxs[i] - mins[i];
|
|
if (l->texsize[0] * l->texsize[1] > SINGLEMAP/4) // div 4 for extrasamples
|
|
Error ("Surface to large to map");
|
|
}
|
|
}
|
|
|
|
/*
|
|
================
|
|
CalcFaceVectors
|
|
|
|
Fills in texorg, worldtotex. and textoworld
|
|
================
|
|
*/
|
|
void CalcFaceVectors (lightinfo_t *l)
|
|
{
|
|
texinfo_t *tex;
|
|
int i, j;
|
|
vec3_t texnormal;
|
|
vec_t distscale;
|
|
vec_t dist, len;
|
|
int w, h;
|
|
|
|
tex = &texinfo[l->face->texinfo];
|
|
|
|
// convert from float to double
|
|
for (i=0 ; i<2 ; i++)
|
|
for (j=0 ; j<3 ; j++)
|
|
l->worldtotex[i][j] = tex->vecs[i][j];
|
|
|
|
// calculate a normal to the texture axis. points can be moved along this
|
|
// without changing their S/T
|
|
texnormal[0] = tex->vecs[1][1]*tex->vecs[0][2]
|
|
- tex->vecs[1][2]*tex->vecs[0][1];
|
|
texnormal[1] = tex->vecs[1][2]*tex->vecs[0][0]
|
|
- tex->vecs[1][0]*tex->vecs[0][2];
|
|
texnormal[2] = tex->vecs[1][0]*tex->vecs[0][1]
|
|
- tex->vecs[1][1]*tex->vecs[0][0];
|
|
VectorNormalize (texnormal, texnormal);
|
|
|
|
// flip it towards plane normal
|
|
distscale = DotProduct (texnormal, l->facenormal);
|
|
if (!distscale)
|
|
{
|
|
Sys_FPrintf( SYS_VRB, "WARNING: Texture axis perpendicular to face\n");
|
|
distscale = 1;
|
|
}
|
|
if (distscale < 0)
|
|
{
|
|
distscale = -distscale;
|
|
VectorSubtract (vec3_origin, texnormal, texnormal);
|
|
}
|
|
|
|
// distscale is the ratio of the distance along the texture normal to
|
|
// the distance along the plane normal
|
|
distscale = 1/distscale;
|
|
|
|
for (i=0 ; i<2 ; i++)
|
|
{
|
|
len = VectorLength (l->worldtotex[i]);
|
|
dist = DotProduct (l->worldtotex[i], l->facenormal);
|
|
dist *= distscale;
|
|
VectorMA (l->worldtotex[i], -dist, texnormal, l->textoworld[i]);
|
|
VectorScale (l->textoworld[i], (1/len)*(1/len), l->textoworld[i]);
|
|
}
|
|
|
|
|
|
// calculate texorg on the texture plane
|
|
for (i=0 ; i<3 ; i++)
|
|
l->texorg[i] = -tex->vecs[0][3]* l->textoworld[0][i] - tex->vecs[1][3] * l->textoworld[1][i];
|
|
|
|
// project back to the face plane
|
|
dist = DotProduct (l->texorg, l->facenormal) - l->facedist - 1;
|
|
dist *= distscale;
|
|
VectorMA (l->texorg, -dist, texnormal, l->texorg);
|
|
|
|
// compensate for org'd bmodels
|
|
VectorAdd (l->texorg, l->modelorg, l->texorg);
|
|
|
|
// total sample count
|
|
h = l->texsize[1]+1;
|
|
w = l->texsize[0]+1;
|
|
l->numsurfpt = w * h;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
CalcPoints
|
|
|
|
For each texture aligned grid point, back project onto the plane
|
|
to get the world xyz value of the sample point
|
|
=================
|
|
*/
|
|
void CalcPoints (lightinfo_t *l, float sofs, float tofs)
|
|
{
|
|
int i;
|
|
int s, t, j;
|
|
int w, h, step;
|
|
vec_t starts, startt, us, ut;
|
|
vec_t *surf;
|
|
vec_t mids, midt;
|
|
vec3_t facemid;
|
|
dleaf_t *leaf;
|
|
|
|
surf = l->surfpt[0];
|
|
mids = (l->exactmaxs[0] + l->exactmins[0])/2;
|
|
midt = (l->exactmaxs[1] + l->exactmins[1])/2;
|
|
|
|
for (j=0 ; j<3 ; j++)
|
|
facemid[j] = l->texorg[j] + l->textoworld[0][j]*mids + l->textoworld[1][j]*midt;
|
|
|
|
h = l->texsize[1]+1;
|
|
w = l->texsize[0]+1;
|
|
l->numsurfpt = w * h;
|
|
|
|
starts = l->texmins[0]*16;
|
|
startt = l->texmins[1]*16;
|
|
step = 16;
|
|
|
|
|
|
for (t=0 ; t<h ; t++)
|
|
{
|
|
for (s=0 ; s<w ; s++, surf+=3)
|
|
{
|
|
us = starts + (s+sofs)*step;
|
|
ut = startt + (t+tofs)*step;
|
|
|
|
|
|
// if a line can be traced from surf to facemid, the point is good
|
|
for (i=0 ; i<6 ; i++)
|
|
{
|
|
// calculate texture point
|
|
for (j=0 ; j<3 ; j++)
|
|
surf[j] = l->texorg[j] + l->textoworld[0][j]*us
|
|
+ l->textoworld[1][j]*ut;
|
|
|
|
leaf = Rad_PointInLeaf (surf);
|
|
if (leaf->contents != CONTENTS_SOLID)
|
|
{
|
|
if (!TestLine_r (0, facemid, surf))
|
|
break; // got it
|
|
}
|
|
|
|
// nudge it
|
|
if (i & 1)
|
|
{
|
|
if (us > mids)
|
|
{
|
|
us -= 8;
|
|
if (us < mids)
|
|
us = mids;
|
|
}
|
|
else
|
|
{
|
|
us += 8;
|
|
if (us > mids)
|
|
us = mids;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (ut > midt)
|
|
{
|
|
ut -= 8;
|
|
if (ut < midt)
|
|
ut = midt;
|
|
}
|
|
else
|
|
{
|
|
ut += 8;
|
|
if (ut > midt)
|
|
ut = midt;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
//==============================================================
|
|
|
|
|
|
|
|
#define MAX_STYLES 32
|
|
typedef struct
|
|
{
|
|
int numsamples;
|
|
float *origins;
|
|
int numstyles;
|
|
int stylenums[MAX_STYLES];
|
|
float *samples[MAX_STYLES];
|
|
} facelight_t;
|
|
|
|
directlight_t *directlights[MAX_MAP_LEAFS];
|
|
facelight_t facelight[MAX_MAP_FACES];
|
|
int numdlights;
|
|
|
|
/*
|
|
==================
|
|
FindTargetEntity
|
|
==================
|
|
*/
|
|
entity_t *FindTargetEntity (char *target)
|
|
{
|
|
int i;
|
|
char *n;
|
|
|
|
for (i=0 ; i<num_entities ; i++)
|
|
{
|
|
n = ValueForKey (&entities[i], "targetname");
|
|
if (!strcmp (n, target))
|
|
return &entities[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
//#define DIRECT_LIGHT 3000
|
|
#define DIRECT_LIGHT 3
|
|
|
|
/*
|
|
=============
|
|
CreateDirectLights
|
|
=============
|
|
*/
|
|
void CreateDirectLights (void)
|
|
{
|
|
int i;
|
|
patch_t *p;
|
|
directlight_t *dl;
|
|
dleaf_t *leaf;
|
|
int cluster;
|
|
entity_t *e, *e2;
|
|
char *name;
|
|
char *target;
|
|
float angle;
|
|
vec3_t dest;
|
|
char *_color;
|
|
float intensity;
|
|
|
|
//
|
|
// surfaces
|
|
//
|
|
for (i=0, p=patches ; i< (int) num_patches ; i++, p++)
|
|
{
|
|
if (p->totallight[0] < DIRECT_LIGHT
|
|
&& p->totallight[1] < DIRECT_LIGHT
|
|
&& p->totallight[2] < DIRECT_LIGHT)
|
|
continue;
|
|
|
|
numdlights++;
|
|
dl = malloc(sizeof(directlight_t));
|
|
memset (dl, 0, sizeof(*dl));
|
|
|
|
VectorCopy (p->origin, dl->origin);
|
|
|
|
leaf = Rad_PointInLeaf (dl->origin);
|
|
cluster = leaf->cluster;
|
|
dl->next = directlights[cluster];
|
|
directlights[cluster] = dl;
|
|
|
|
dl->type = emit_surface;
|
|
VectorCopy (p->plane->normal, dl->normal);
|
|
|
|
dl->intensity = ColorNormalize (p->totallight, dl->color);
|
|
dl->intensity *= p->area * direct_scale;
|
|
VectorClear (p->totallight); // all sent now
|
|
}
|
|
|
|
//
|
|
// entities
|
|
//
|
|
for (i=0 ; i<num_entities ; i++)
|
|
{
|
|
e = &entities[i];
|
|
name = ValueForKey (e, "classname");
|
|
if (strncmp (name, "light", 5))
|
|
continue;
|
|
|
|
numdlights++;
|
|
dl = malloc(sizeof(directlight_t));
|
|
memset (dl, 0, sizeof(*dl));
|
|
|
|
GetVectorForKey (e, "origin", dl->origin);
|
|
dl->style = FloatForKey (e, "_style");
|
|
if (!dl->style)
|
|
dl->style = FloatForKey (e, "style");
|
|
if (dl->style < 0 || dl->style >= MAX_LSTYLES)
|
|
dl->style = 0;
|
|
|
|
leaf = Rad_PointInLeaf (dl->origin);
|
|
cluster = leaf->cluster;
|
|
|
|
dl->next = directlights[cluster];
|
|
directlights[cluster] = dl;
|
|
|
|
intensity = FloatForKey (e, "light");
|
|
if (!intensity)
|
|
intensity = FloatForKey (e, "_light");
|
|
if (!intensity)
|
|
intensity = 300;
|
|
_color = ValueForKey (e, "_color");
|
|
if (_color && _color[0])
|
|
{
|
|
sscanf (_color, "%f %f %f", &dl->color[0],&dl->color[1],&dl->color[2]);
|
|
ColorNormalize (dl->color, dl->color);
|
|
}
|
|
else
|
|
dl->color[0] = dl->color[1] = dl->color[2] = 1.0;
|
|
dl->intensity = intensity*entity_scale;
|
|
dl->type = emit_point;
|
|
|
|
target = ValueForKey (e, "target");
|
|
|
|
if (!strcmp (name, "light_spot") || target[0])
|
|
{
|
|
dl->type = emit_spotlight;
|
|
dl->stopdot = FloatForKey (e, "_cone");
|
|
if (!dl->stopdot)
|
|
dl->stopdot = 10;
|
|
dl->stopdot = cos(dl->stopdot/180*3.14159);
|
|
if (target[0])
|
|
{ // point towards target
|
|
e2 = FindTargetEntity (target);
|
|
if (!e2)
|
|
Sys_Printf ("WARNING: light at (%i %i %i) has missing target\n",
|
|
(int)dl->origin[0], (int)dl->origin[1], (int)dl->origin[2]);
|
|
else
|
|
{
|
|
GetVectorForKey (e2, "origin", dest);
|
|
VectorSubtract (dest, dl->origin, dl->normal);
|
|
VectorNormalize (dl->normal, dl->normal);
|
|
}
|
|
}
|
|
else
|
|
{ // point down angle
|
|
angle = FloatForKey (e, "angle");
|
|
if (angle == ANGLE_UP)
|
|
{
|
|
dl->normal[0] = dl->normal[1] = 0;
|
|
dl->normal[2] = 1;
|
|
}
|
|
else if (angle == ANGLE_DOWN)
|
|
{
|
|
dl->normal[0] = dl->normal[1] = 0;
|
|
dl->normal[2] = -1;
|
|
}
|
|
else
|
|
{
|
|
dl->normal[2] = 0;
|
|
dl->normal[0] = cos (angle/180*3.14159);
|
|
dl->normal[1] = sin (angle/180*3.14159);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Sys_FPrintf( SYS_VRB, "%i direct lights\n", numdlights);
|
|
}
|
|
|
|
/*
|
|
=============
|
|
GatherSampleLight
|
|
|
|
Lightscale is the normalizer for multisampling
|
|
=============
|
|
*/
|
|
void GatherSampleLight (vec3_t pos, vec3_t normal,
|
|
float **styletable, int offset, int mapsize, float lightscale)
|
|
{
|
|
int i;
|
|
directlight_t *l;
|
|
byte pvs[(MAX_MAP_LEAFS+7)/8];
|
|
vec3_t delta;
|
|
float dot, dot2;
|
|
float dist;
|
|
float scale;
|
|
float *dest;
|
|
|
|
// get the PVS for the pos to limit the number of checks
|
|
if (!PvsForOrigin (pos, pvs))
|
|
{
|
|
return;
|
|
}
|
|
|
|
for (i = 0 ; i<dvis->numclusters ; i++)
|
|
{
|
|
if ( ! (pvs[ i>>3] & (1<<(i&7))) )
|
|
continue;
|
|
|
|
for (l=directlights[i] ; l ; l=l->next)
|
|
{
|
|
VectorSubtract (l->origin, pos, delta);
|
|
dist = VectorNormalize (delta, delta);
|
|
dot = DotProduct (delta, normal);
|
|
if (dot <= 0.001)
|
|
continue; // behind sample surface
|
|
|
|
switch (l->type)
|
|
{
|
|
case emit_point:
|
|
// linear falloff
|
|
scale = (l->intensity - dist) * dot;
|
|
break;
|
|
|
|
case emit_surface:
|
|
dot2 = -DotProduct (delta, l->normal);
|
|
if (dot2 <= 0.001)
|
|
goto skipadd; // behind light surface
|
|
scale = (l->intensity / (dist*dist) ) * dot * dot2;
|
|
break;
|
|
|
|
case emit_spotlight:
|
|
// linear falloff
|
|
dot2 = -DotProduct (delta, l->normal);
|
|
if (dot2 <= l->stopdot)
|
|
goto skipadd; // outside light cone
|
|
scale = (l->intensity - dist) * dot;
|
|
break;
|
|
default:
|
|
Error ("Bad l->type");
|
|
}
|
|
|
|
if (TestLine_r (0, pos, l->origin))
|
|
continue; // occluded
|
|
|
|
if (scale <= 0)
|
|
continue;
|
|
|
|
// if this style doesn't have a table yet, allocate one
|
|
if (!styletable[l->style])
|
|
{
|
|
styletable[l->style] = malloc (mapsize);
|
|
memset (styletable[l->style], 0, mapsize);
|
|
}
|
|
|
|
dest = styletable[l->style] + offset;
|
|
// add some light to it
|
|
VectorMA (dest, scale*lightscale, l->color, dest);
|
|
|
|
skipadd: ;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
=============
|
|
AddSampleToPatch
|
|
|
|
Take the sample's collected light and
|
|
add it back into the apropriate patch
|
|
for the radiosity pass.
|
|
|
|
The sample is added to all patches that might include
|
|
any part of it. They are counted and averaged, so it
|
|
doesn't generate extra light.
|
|
=============
|
|
*/
|
|
void AddSampleToPatch (vec3_t pos, vec3_t color, int facenum)
|
|
{
|
|
patch_t *patch;
|
|
vec3_t mins, maxs;
|
|
int i;
|
|
|
|
if (numbounce == 0)
|
|
return;
|
|
if (color[0] + color[1] + color[2] < 3)
|
|
return;
|
|
|
|
for (patch = face_patches[facenum] ; patch ; patch=patch->next)
|
|
{
|
|
// see if the point is in this patch (roughly)
|
|
WindingBounds (patch->winding, mins, maxs);
|
|
for (i=0 ; i<3 ; i++)
|
|
{
|
|
if (mins[i] > pos[i] + 16)
|
|
goto nextpatch;
|
|
if (maxs[i] < pos[i] - 16)
|
|
goto nextpatch;
|
|
}
|
|
|
|
// add the sample to the patch
|
|
patch->samples++;
|
|
VectorAdd (patch->samplelight, color, patch->samplelight);
|
|
nextpatch:;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
=============
|
|
BuildFacelights
|
|
=============
|
|
*/
|
|
float sampleofs[5][2] =
|
|
{ {0,0}, {-0.25, -0.25}, {0.25, -0.25}, {0.25, 0.25}, {-0.25, 0.25} };
|
|
|
|
|
|
void BuildFacelights (int facenum)
|
|
{
|
|
dface_t *f;
|
|
lightinfo_t l[5];
|
|
float *styletable[MAX_LSTYLES];
|
|
int i, j;
|
|
float *spot;
|
|
patch_t *patch;
|
|
int numsamples;
|
|
int tablesize;
|
|
facelight_t *fl;
|
|
|
|
f = &dfaces[facenum];
|
|
|
|
if ( texinfo[f->texinfo].flags & (SURF_WARP|SURF_SKY) )
|
|
return; // non-lit texture
|
|
|
|
memset (styletable,0, sizeof(styletable));
|
|
|
|
if (extrasamples)
|
|
numsamples = 5;
|
|
else
|
|
numsamples = 1;
|
|
for (i=0 ; i<numsamples ; i++)
|
|
{
|
|
memset (&l[i], 0, sizeof(l[i]));
|
|
l[i].surfnum = facenum;
|
|
l[i].face = f;
|
|
VectorCopy (dplanes[f->planenum].normal, l[i].facenormal);
|
|
l[i].facedist = dplanes[f->planenum].dist;
|
|
if (f->side)
|
|
{
|
|
VectorSubtract (vec3_origin, l[i].facenormal, l[i].facenormal);
|
|
l[i].facedist = -l[i].facedist;
|
|
}
|
|
|
|
// get the origin offset for rotating bmodels
|
|
VectorCopy (face_offset[facenum], l[i].modelorg);
|
|
|
|
CalcFaceVectors (&l[i]);
|
|
CalcFaceExtents (&l[i]);
|
|
CalcPoints (&l[i], sampleofs[i][0], sampleofs[i][1]);
|
|
}
|
|
|
|
tablesize = l[0].numsurfpt * sizeof(vec3_t);
|
|
styletable[0] = malloc(tablesize);
|
|
memset (styletable[0], 0, tablesize);
|
|
|
|
fl = &facelight[facenum];
|
|
fl->numsamples = l[0].numsurfpt;
|
|
fl->origins = malloc (tablesize);
|
|
memcpy (fl->origins, l[0].surfpt, tablesize);
|
|
|
|
for (i=0 ; i<l[0].numsurfpt ; i++)
|
|
{
|
|
for (j=0 ; j<numsamples ; j++)
|
|
{
|
|
GatherSampleLight (l[j].surfpt[i], l[0].facenormal, styletable,
|
|
i*3, tablesize, 1.0/numsamples);
|
|
}
|
|
|
|
// contribute the sample to one or more patches
|
|
AddSampleToPatch (l[0].surfpt[i], styletable[0]+i*3, facenum);
|
|
}
|
|
|
|
// average up the direct light on each patch for radiosity
|
|
for (patch = face_patches[facenum] ; patch ; patch=patch->next)
|
|
{
|
|
if (patch->samples)
|
|
{
|
|
VectorScale (patch->samplelight, 1.0/patch->samples, patch->samplelight);
|
|
}
|
|
else
|
|
{
|
|
// printf ("patch with no samples\n");
|
|
}
|
|
}
|
|
|
|
for (i=0 ; i<MAX_LSTYLES ; i++)
|
|
{
|
|
if (!styletable[i])
|
|
continue;
|
|
if (fl->numstyles == MAX_STYLES)
|
|
break;
|
|
fl->samples[fl->numstyles] = styletable[i];
|
|
fl->stylenums[fl->numstyles] = i;
|
|
fl->numstyles++;
|
|
}
|
|
|
|
// the light from DIRECT_LIGHTS is sent out, but the
|
|
// texture itself should still be full bright
|
|
|
|
if (face_patches[facenum]->baselight[0] >= DIRECT_LIGHT ||
|
|
face_patches[facenum]->baselight[1] >= DIRECT_LIGHT ||
|
|
face_patches[facenum]->baselight[2] >= DIRECT_LIGHT
|
|
)
|
|
{
|
|
spot = fl->samples[0];
|
|
for (i=0 ; i<l[0].numsurfpt ; i++, spot+=3)
|
|
{
|
|
VectorAdd (spot, face_patches[facenum]->baselight, spot);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=============
|
|
FinalLightFace
|
|
|
|
Add the indirect lighting on top of the direct
|
|
lighting and save into final map format
|
|
=============
|
|
*/
|
|
void FinalLightFace (int facenum)
|
|
{
|
|
dface_t *f;
|
|
int i, j, k, st;
|
|
vec3_t lb;
|
|
patch_t *patch;
|
|
triangulation_t *trian;
|
|
facelight_t *fl;
|
|
float minlight;
|
|
float max, newmax;
|
|
byte *dest;
|
|
int pfacenum;
|
|
vec3_t facemins, facemaxs;
|
|
|
|
f = &dfaces[facenum];
|
|
fl = &facelight[facenum];
|
|
|
|
if ( texinfo[f->texinfo].flags & (SURF_WARP|SURF_SKY) )
|
|
return; // non-lit texture
|
|
|
|
ThreadLock ();
|
|
f->lightofs = lightdatasize;
|
|
lightdatasize += fl->numstyles*(fl->numsamples*3);
|
|
|
|
// add green sentinals between lightmaps
|
|
#if 0
|
|
lightdatasize += 64*3;
|
|
for (i=0 ; i<64 ; i++)
|
|
dlightdata[lightdatasize-(i+1)*3 + 1] = 255;
|
|
#endif
|
|
|
|
if (lightdatasize > MAX_MAP_LIGHTING)
|
|
Error ("MAX_MAP_LIGHTING");
|
|
ThreadUnlock ();
|
|
|
|
f->styles[0] = 0;
|
|
f->styles[1] = f->styles[2] = f->styles[3] = 0xff;
|
|
|
|
//
|
|
// set up the triangulation
|
|
//
|
|
if (numbounce > 0)
|
|
{
|
|
ClearBounds (facemins, facemaxs);
|
|
for (i=0 ; i<f->numedges ; i++)
|
|
{
|
|
int ednum;
|
|
|
|
ednum = dsurfedges[f->firstedge+i];
|
|
if (ednum >= 0)
|
|
AddPointToBounds (dvertexes[dedges[ednum].v[0]].point,
|
|
facemins, facemaxs);
|
|
else
|
|
AddPointToBounds (dvertexes[dedges[-ednum].v[1]].point,
|
|
facemins, facemaxs);
|
|
}
|
|
|
|
trian = AllocTriangulation (&dplanes[f->planenum]);
|
|
|
|
// for all faces on the plane, add the nearby patches
|
|
// to the triangulation
|
|
for (pfacenum = planelinks[f->side][f->planenum]
|
|
; pfacenum ; pfacenum = facelinks[pfacenum])
|
|
{
|
|
for (patch = face_patches[pfacenum] ; patch ; patch=patch->next)
|
|
{
|
|
for (i=0 ; i < 3 ; i++)
|
|
{
|
|
if (facemins[i] - patch->origin[i] > subdiv*2)
|
|
break;
|
|
if (patch->origin[i] - facemaxs[i] > subdiv*2)
|
|
break;
|
|
}
|
|
if (i != 3)
|
|
continue; // not needed for this face
|
|
AddPointToTriangulation (patch, trian);
|
|
}
|
|
}
|
|
for (i=0 ; i<trian->numpoints ; i++)
|
|
memset (trian->edgematrix[i], 0, trian->numpoints*sizeof(trian->edgematrix[0][0]) );
|
|
TriangulatePoints (trian);
|
|
}
|
|
|
|
//
|
|
// sample the triangulation
|
|
//
|
|
|
|
// _minlight allows models that have faces that would not be
|
|
// illuminated to receive a mottled light pattern instead of
|
|
// black
|
|
minlight = FloatForKey (face_entity[facenum], "_minlight") * 128;
|
|
|
|
dest = &dlightdata[f->lightofs];
|
|
|
|
if (fl->numstyles > MAXLIGHTMAPS)
|
|
{
|
|
fl->numstyles = MAXLIGHTMAPS;
|
|
Sys_Printf ("face with too many lightstyles: (%f %f %f)\n",
|
|
face_patches[facenum]->origin[0],
|
|
face_patches[facenum]->origin[1],
|
|
face_patches[facenum]->origin[2]
|
|
);
|
|
}
|
|
|
|
for (st=0 ; st<fl->numstyles ; st++)
|
|
{
|
|
f->styles[st] = fl->stylenums[st];
|
|
for (j=0 ; j<fl->numsamples ; j++)
|
|
{
|
|
VectorCopy ( (fl->samples[st]+j*3), lb);
|
|
if (numbounce > 0 && st == 0)
|
|
{
|
|
vec3_t add;
|
|
|
|
SampleTriangulation (fl->origins + j*3, trian, add);
|
|
VectorAdd (lb, add, lb);
|
|
}
|
|
// add an ambient term if desired
|
|
lb[0] += ambient;
|
|
lb[1] += ambient;
|
|
lb[2] += ambient;
|
|
|
|
VectorScale (lb, lightscale, lb);
|
|
|
|
// we need to clamp without allowing hue to change
|
|
for (k=0 ; k<3 ; k++)
|
|
if (lb[k] < 1)
|
|
lb[k] = 1;
|
|
max = lb[0];
|
|
if (lb[1] > max)
|
|
max = lb[1];
|
|
if (lb[2] > max)
|
|
max = lb[2];
|
|
newmax = max;
|
|
if (newmax < 0)
|
|
newmax = 0; // roundoff problems
|
|
if (newmax < minlight)
|
|
{
|
|
newmax = minlight + (rand()%48);
|
|
}
|
|
if (newmax > maxlight)
|
|
newmax = maxlight;
|
|
|
|
for (k=0 ; k<3 ; k++)
|
|
{
|
|
*dest++ = lb[k]*newmax/max;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (numbounce > 0)
|
|
FreeTriangulation (trian);
|
|
}
|