gtkradiant/libs/render.h

1370 lines
33 KiB
C
Raw Normal View History

/*
Copyright (C) 2001-2006, William Joseph.
All Rights Reserved.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if !defined(INCLUDED_RENDER_H)
#define INCLUDED_RENDER_H
/// \file
/// \brief High-level constructs for efficient OpenGL rendering.
#include "irender.h"
#include "igl.h"
#include "container/array.h"
#include "math/vector.h"
#include "math/pi.h"
#include <vector>
typedef unsigned int RenderIndex;
const GLenum RenderIndexTypeID = GL_UNSIGNED_INT;
/// \brief A resizable buffer of indices.
class IndexBuffer
{
typedef std::vector<RenderIndex> Indices;
Indices m_data;
public:
typedef Indices::iterator iterator;
typedef Indices::const_iterator const_iterator;
iterator begin()
{
return m_data.begin();
}
const_iterator begin() const
{
return m_data.begin();
}
iterator end()
{
return m_data.end();
}
const_iterator end() const
{
return m_data.end();
}
bool empty() const
{
return m_data.empty();
}
std::size_t size() const
{
return m_data.size();
}
const RenderIndex* data() const
{
return &(*m_data.begin());
}
RenderIndex& operator[](std::size_t index)
{
return m_data[index];
}
const RenderIndex& operator[](std::size_t index) const
{
return m_data[index];
}
void clear()
{
m_data.clear();
}
void reserve(std::size_t max_indices)
{
m_data.reserve(max_indices);
}
void insert(RenderIndex index)
{
m_data.push_back(index);
}
void swap(IndexBuffer& other)
{
std::swap(m_data, m_data);
}
};
namespace std
{
/// \brief Swaps the values of \p self and \p other.
/// Overloads std::swap.
inline void swap(IndexBuffer& self, IndexBuffer& other)
{
self.swap(other);
}
}
/// \brief A resizable buffer of vertices.
/// \param Vertex The vertex data type.
template<typename Vertex>
class VertexBuffer
{
typedef typename std::vector<Vertex> Vertices;
Vertices m_data;
public:
typedef typename Vertices::iterator iterator;
typedef typename Vertices::const_iterator const_iterator;
iterator begin()
{
return m_data.begin();
}
iterator end()
{
return m_data.end();
}
const_iterator begin() const
{
return m_data.begin();
}
const_iterator end() const
{
return m_data.end();
}
bool empty() const
{
return m_data.empty();
}
RenderIndex size() const
{
return RenderIndex(m_data.size());
}
const Vertex* data() const
{
return &(*m_data.begin());
}
Vertex& operator[](std::size_t index)
{
return m_data[index];
}
const Vertex& operator[](std::size_t index) const
{
return m_data[index];
}
void clear()
{
m_data.clear();
}
void reserve(std::size_t max_vertices)
{
m_data.reserve(max_vertices);
}
void push_back(const Vertex& vertex)
{
m_data.push_back(vertex);
}
};
/// \brief A wrapper around a VertexBuffer which inserts only vertices which have not already been inserted.
/// \param Vertex The vertex data type. Must support operator<, operator== and operator!=.
/// For best performance, quantise vertices before inserting them.
template<typename Vertex>
class UniqueVertexBuffer
{
typedef VertexBuffer<Vertex> Vertices;
Vertices& m_data;
struct bnode
{
bnode()
: m_left(0), m_right(0)
{
}
RenderIndex m_left;
RenderIndex m_right;
};
std::vector<bnode> m_btree;
RenderIndex m_prev0;
RenderIndex m_prev1;
RenderIndex m_prev2;
const RenderIndex find_or_insert(const Vertex& vertex)
{
RenderIndex index = 0;
while(1)
{
if(vertex < m_data[index])
{
bnode& node = m_btree[index];
if(node.m_left != 0)
{
index = node.m_left;
continue;
}
else
{
node.m_left = RenderIndex(m_btree.size());
m_btree.push_back(bnode());
m_data.push_back(vertex);
return RenderIndex(m_btree.size()-1);
}
}
if(m_data[index] < vertex)
{
bnode& node = m_btree[index];
if(node.m_right != 0)
{
index = node.m_right;
continue;
}
else
{
node.m_right = RenderIndex(m_btree.size());
m_btree.push_back(bnode());
m_data.push_back(vertex);
return RenderIndex(m_btree.size()-1);
}
}
return index;
}
}
public:
UniqueVertexBuffer(Vertices& data)
: m_data(data), m_prev0(0), m_prev1(0), m_prev2(0)
{
}
typedef typename Vertices::const_iterator iterator;
iterator begin() const
{
return m_data.begin();
}
iterator end() const
{
return m_data.end();
}
std::size_t size() const
{
return m_data.size();
}
const Vertex* data() const
{
return &(*m_data.begin());
}
Vertex& operator[](std::size_t index)
{
return m_data[index];
}
const Vertex& operator[](std::size_t index) const
{
return m_data[index];
}
void clear()
{
m_prev0 = 0;
m_prev1 = 0;
m_prev2 = 0;
m_data.clear();
m_btree.clear();
}
void reserve(std::size_t max_vertices)
{
m_data.reserve(max_vertices);
m_btree.reserve(max_vertices);
}
/// \brief Returns the index of the element equal to \p vertex.
RenderIndex insert(const Vertex& vertex)
{
if(m_data.empty())
{
m_data.push_back(vertex);
m_btree.push_back(bnode());
return 0;
}
if(m_data[m_prev0] == vertex)
return m_prev0;
if(m_prev1 != m_prev0 && m_data[m_prev1] == vertex)
return m_prev1;
if(m_prev2 != m_prev0 && m_prev2 != m_prev1 && m_data[m_prev2] == vertex)
return m_prev2;
m_prev2 = m_prev1;
m_prev1 = m_prev0;
m_prev0 = find_or_insert(vertex);
return m_prev0;
}
};
/// \brief A 4-byte colour.
struct Colour4b
{
unsigned char r, g, b, a;
Colour4b()
{
}
Colour4b(unsigned char _r, unsigned char _g, unsigned char _b, unsigned char _a)
: r(_r), g(_g), b(_b), a(_a)
{
}
};
inline bool operator<(const Colour4b& self, const Colour4b& other)
{
if(self.r != other.r)
{
return self.r < other.r;
}
if(self.g != other.g)
{
return self.g < other.g;
}
if(self.b != other.b)
{
return self.b < other.b;
}
if(self.a != other.a)
{
return self.a < other.a;
}
return false;
}
inline bool operator==(const Colour4b& self, const Colour4b& other)
{
return self.r == other.r && self.g == other.g && self.b == other.b && self.a == other.a;
}
inline bool operator!=(const Colour4b& self, const Colour4b& other)
{
return !operator==(self, other);
}
/// \brief A 3-float vertex.
struct Vertex3f : public Vector3
{
Vertex3f()
{
}
Vertex3f(float _x, float _y, float _z)
: Vector3(_x, _y, _z)
{
}
};
inline bool operator<(const Vertex3f& self, const Vertex3f& other)
{
if(self.x() != other.x())
{
return self.x() < other.x();
}
if(self.y() != other.y())
{
return self.y() < other.y();
}
if(self.z() != other.z())
{
return self.z() < other.z();
}
return false;
}
inline bool operator==(const Vertex3f& self, const Vertex3f& other)
{
return self.x() == other.x() && self.y() == other.y() && self.z() == other.z();
}
inline bool operator!=(const Vertex3f& self, const Vertex3f& other)
{
return !operator==(self, other);
}
inline Vertex3f vertex3f_from_array(const float* array)
{
return Vertex3f(array[0], array[1], array[2]);
}
inline float* vertex3f_to_array(Vertex3f& vertex)
{
return reinterpret_cast<float*>(&vertex);
}
inline const float* vertex3f_to_array(const Vertex3f& vertex)
{
return reinterpret_cast<const float*>(&vertex);
}
const Vertex3f vertex3f_identity(0, 0, 0);
inline Vertex3f vertex3f_for_vector3(const Vector3& vector3)
{
return Vertex3f(vector3.x(), vector3.y(), vector3.z());
}
inline const Vector3& vertex3f_to_vector3(const Vertex3f& vertex)
{
return vertex;
}
inline Vector3& vertex3f_to_vector3(Vertex3f& vertex)
{
return vertex;
}
/// \brief A 3-float normal.
struct Normal3f : public Vector3
{
Normal3f()
{
}
Normal3f(float _x, float _y, float _z)
: Vector3(_x, _y, _z)
{
}
};
inline bool operator<(const Normal3f& self, const Normal3f& other)
{
if(self.x() != other.x())
{
return self.x() < other.x();
}
if(self.y() != other.y())
{
return self.y() < other.y();
}
if(self.z() != other.z())
{
return self.z() < other.z();
}
return false;
}
inline bool operator==(const Normal3f& self, const Normal3f& other)
{
return self.x() == other.x() && self.y() == other.y() && self.z() == other.z();
}
inline bool operator!=(const Normal3f& self, const Normal3f& other)
{
return !operator==(self, other);
}
inline Normal3f normal3f_from_array(const float* array)
{
return Normal3f(array[0], array[1], array[2]);
}
inline float* normal3f_to_array(Normal3f& normal)
{
return reinterpret_cast<float*>(&normal);
}
inline const float* normal3f_to_array(const Normal3f& normal)
{
return reinterpret_cast<const float*>(&normal);
}
inline Normal3f normal3f_for_vector3(const Vector3& vector3)
{
return Normal3f(vector3.x(), vector3.y(), vector3.z());
}
inline const Vector3& normal3f_to_vector3(const Normal3f& normal)
{
return normal;
}
inline Vector3& normal3f_to_vector3(Normal3f& normal)
{
return normal;
}
/// \brief A 2-float texture-coordinate set.
struct TexCoord2f : public Vector2
{
TexCoord2f()
{
}
TexCoord2f(float _s, float _t)
: Vector2(_s, _t)
{
}
float& s()
{
return x();
}
const float& s() const
{
return x();
}
float& t()
{
return y();
}
const float& t() const
{
return y();
}
};
inline bool operator<(const TexCoord2f& self, const TexCoord2f& other)
{
if(self.s() != other.s())
{
return self.s() < other.s();
}
if(self.t() != other.t())
{
return self.t() < other.t();
}
return false;
}
inline bool operator==(const TexCoord2f& self, const TexCoord2f& other)
{
return self.s() == other.s() && self.t() == other.t();
}
inline bool operator!=(const TexCoord2f& self, const TexCoord2f& other)
{
return !operator==(self, other);
}
inline float* texcoord2f_to_array(TexCoord2f& texcoord)
{
return reinterpret_cast<float*>(&texcoord);
}
inline const float* texcoord2f_to_array(const TexCoord2f& texcoord)
{
return reinterpret_cast<const float*>(&texcoord);
}
inline const TexCoord2f& texcoord2f_from_array(const float* array)
{
return *reinterpret_cast<const TexCoord2f*>(array);
}
inline TexCoord2f texcoord2f_for_vector2(const Vector2& vector2)
{
return TexCoord2f(vector2.x(), vector2.y());
}
inline const Vector2& texcoord2f_to_vector2(const TexCoord2f& vertex)
{
return vertex;
}
inline Vector2& texcoord2f_to_vector2(TexCoord2f& vertex)
{
return vertex;
}
/// \brief Returns \p normal rescaled to be unit-length.
inline Normal3f normal3f_normalised(const Normal3f& normal)
{
return normal3f_for_vector3(vector3_normalised(normal3f_to_vector3(normal)));
}
enum UnitSphereOctant
{
UNITSPHEREOCTANT_000 = 0 << 0 | 0 << 1 | 0 << 2,
UNITSPHEREOCTANT_001 = 0 << 0 | 0 << 1 | 1 << 2,
UNITSPHEREOCTANT_010 = 0 << 0 | 1 << 1 | 0 << 2,
UNITSPHEREOCTANT_011 = 0 << 0 | 1 << 1 | 1 << 2,
UNITSPHEREOCTANT_100 = 1 << 0 | 0 << 1 | 0 << 2,
UNITSPHEREOCTANT_101 = 1 << 0 | 0 << 1 | 1 << 2,
UNITSPHEREOCTANT_110 = 1 << 0 | 1 << 1 | 0 << 2,
UNITSPHEREOCTANT_111 = 1 << 0 | 1 << 1 | 1 << 2,
};
/// \brief Returns the octant for \p normal indicating the sign of the region of unit-sphere space it lies within.
inline UnitSphereOctant normal3f_classify_octant(const Normal3f& normal)
{
return static_cast<UnitSphereOctant>(
((normal.x() > 0) << 0) | ((normal.y() > 0) << 1) | ((normal.z() > 0) << 2)
);
}
/// \brief Returns \p normal with its components signs made positive based on \p octant.
inline Normal3f normal3f_fold_octant(const Normal3f& normal, UnitSphereOctant octant)
{
switch(octant)
{
case UNITSPHEREOCTANT_000:
return Normal3f(-normal.x(), -normal.y(), -normal.z());
case UNITSPHEREOCTANT_001:
return Normal3f(normal.x(), -normal.y(), -normal.z());
case UNITSPHEREOCTANT_010:
return Normal3f(-normal.x(), normal.y(), -normal.z());
case UNITSPHEREOCTANT_011:
return Normal3f(normal.x(), normal.y(), -normal.z());
case UNITSPHEREOCTANT_100:
return Normal3f(-normal.x(), -normal.y(), normal.z());
case UNITSPHEREOCTANT_101:
return Normal3f(normal.x(), -normal.y(), normal.z());
case UNITSPHEREOCTANT_110:
return Normal3f(-normal.x(), normal.y(), normal.z());
case UNITSPHEREOCTANT_111:
return Normal3f(normal.x(), normal.y(), normal.z());
}
return Normal3f();
}
/// \brief Reverses the effect of normal3f_fold_octant() on \p normal with \p octant.
/// \p normal must have been obtained with normal3f_fold_octant().
/// \p octant must have been obtained with normal3f_classify_octant().
inline Normal3f normal3f_unfold_octant(const Normal3f& normal, UnitSphereOctant octant)
{
return normal3f_fold_octant(normal, octant);
}
enum UnitSphereSextant
{
UNITSPHERESEXTANT_XYZ = 0,
UNITSPHERESEXTANT_XZY = 1,
UNITSPHERESEXTANT_YXZ = 2,
UNITSPHERESEXTANT_YZX = 3,
UNITSPHERESEXTANT_ZXY = 4,
UNITSPHERESEXTANT_ZYX = 5,
};
/// \brief Returns the sextant for \p normal indicating how to sort its components so that x > y > z.
/// All components of \p normal must be positive.
/// \p normal must be normalised.
inline UnitSphereSextant normal3f_classify_sextant(const Normal3f& normal)
{
return
normal.x() >= normal.y()
? normal.x() >= normal.z()
? normal.y() >= normal.z()
? UNITSPHERESEXTANT_XYZ
: UNITSPHERESEXTANT_XZY
: UNITSPHERESEXTANT_ZXY
: normal.y() >= normal.z()
? normal.x() >= normal.z()
? UNITSPHERESEXTANT_YXZ
: UNITSPHERESEXTANT_YZX
: UNITSPHERESEXTANT_ZYX;
}
/// \brief Returns \p normal with its components sorted so that x > y > z based on \p sextant.
/// All components of \p normal must be positive.
/// \p normal must be normalised.
inline Normal3f normal3f_fold_sextant(const Normal3f& normal, UnitSphereSextant sextant)
{
switch(sextant)
{
case UNITSPHERESEXTANT_XYZ:
return Normal3f(normal.x(), normal.y(), normal.z());
case UNITSPHERESEXTANT_XZY:
return Normal3f(normal.x(), normal.z(), normal.y());
case UNITSPHERESEXTANT_YXZ:
return Normal3f(normal.y(), normal.x(), normal.z());
case UNITSPHERESEXTANT_YZX:
return Normal3f(normal.y(), normal.z(), normal.x());
case UNITSPHERESEXTANT_ZXY:
return Normal3f(normal.z(), normal.x(), normal.y());
case UNITSPHERESEXTANT_ZYX:
return Normal3f(normal.z(), normal.y(), normal.x());
}
return Normal3f();
}
/// \brief Reverses the effect of normal3f_fold_sextant() on \p normal with \p sextant.
/// \p normal must have been obtained with normal3f_fold_sextant().
/// \p sextant must have been obtained with normal3f_classify_sextant().
inline Normal3f normal3f_unfold_sextant(const Normal3f& normal, UnitSphereSextant sextant)
{
return normal3f_fold_sextant(normal, sextant);
}
const std::size_t c_quantise_normal = 1 << 6;
/// \brief All the components of \p folded must be positive and sorted so that x > y > z.
inline Normal3f normal3f_folded_quantised(const Normal3f& folded)
{
// compress
double scale = static_cast<float>(c_quantise_normal) / (folded.x() + folded.y() + folded.z());
unsigned int zbits = static_cast<unsigned int>(folded.z() * scale);
unsigned int ybits = static_cast<unsigned int>(folded.y() * scale);
// decompress
return normal3f_normalised(Normal3f(
static_cast<float>(c_quantise_normal - zbits - ybits),
static_cast<float>(ybits),
static_cast<float>(zbits)
));
}
/// \brief Returns \p normal quantised by compressing and then decompressing its representation.
inline Normal3f normal3f_quantised_custom(const Normal3f& normal)
{
UnitSphereOctant octant = normal3f_classify_octant(normal);
Normal3f folded = normal3f_fold_octant(normal, octant);
UnitSphereSextant sextant = normal3f_classify_sextant(folded);
folded = normal3f_fold_sextant(folded, sextant);
return normal3f_unfold_octant(normal3f_unfold_sextant(normal3f_folded_quantised(folded), sextant), octant);
}
struct spherical_t
{
double longditude, latitude;
spherical_t(double _longditude, double _latitude)
: longditude(_longditude), latitude(_latitude)
{
}
};
/*
{
theta = 2pi * U;
phi = acos((2 * V) - 1);
U = theta / 2pi;
V = (cos(phi) + 1) / 2;
}
longitude = atan(y / x);
latitude = acos(z);
*/
struct uniformspherical_t
{
double U, V;
uniformspherical_t(double U_, double V_)
: U(U_), V(V_)
{
}
};
inline spherical_t spherical_from_normal3f(const Normal3f& normal)
{
return spherical_t(normal.x() == 0 ? c_pi / 2 : normal.x() > 0 ? atan(normal.y() / normal.x()) : atan(normal.y() / normal.x()) + c_pi, acos(normal.z()));
}
inline Normal3f normal3f_from_spherical(const spherical_t& spherical)
{
return Normal3f(
static_cast<float>(cos(spherical.longditude) * sin(spherical.latitude)),
static_cast<float>(sin(spherical.longditude) * sin(spherical.latitude)),
static_cast<float>(cos(spherical.latitude))
);
}
inline uniformspherical_t uniformspherical_from_spherical(const spherical_t& spherical)
{
return uniformspherical_t(spherical.longditude * c_inv_2pi, (cos(spherical.latitude) + 1) * 0.5);
}
inline spherical_t spherical_from_uniformspherical(const uniformspherical_t& uniformspherical)
{
return spherical_t(c_2pi * uniformspherical.U, acos((2 * uniformspherical.V) - 1));
}
inline uniformspherical_t uniformspherical_from_normal3f(const Normal3f& normal)
{
return uniformspherical_from_spherical(spherical_from_normal3f(normal));
//return uniformspherical_t(atan2(normal.y / normal.x) * c_inv_2pi, (normal.z + 1) * 0.5);
}
inline Normal3f normal3f_from_uniformspherical(const uniformspherical_t& uniformspherical)
{
return normal3f_from_spherical(spherical_from_uniformspherical(uniformspherical));
}
/// \brief Returns a single-precision \p component quantised to \p precision.
inline float float_quantise(float component, float precision)
{
return float_snapped(component, precision);
}
/// \brief Returns a double-precision \p component quantised to \p precision.
inline double double_quantise(double component, double precision)
{
return float_snapped(component, precision);
}
inline spherical_t spherical_quantised(const spherical_t& spherical, float snap)
{
return spherical_t(double_quantise(spherical.longditude, snap), double_quantise(spherical.latitude, snap));
}
inline uniformspherical_t uniformspherical_quantised(const uniformspherical_t& uniformspherical, float snap)
{
return uniformspherical_t(double_quantise(uniformspherical.U, snap), double_quantise(uniformspherical.V, snap));
}
/// \brief Returns a \p vertex quantised to \p precision.
inline Vertex3f vertex3f_quantised(const Vertex3f& vertex, float precision)
{
return Vertex3f(float_quantise(vertex.x(), precision), float_quantise(vertex.y(), precision), float_quantise(vertex.z(), precision));
}
/// \brief Returns a \p normal quantised to a fixed precision.
inline Normal3f normal3f_quantised(const Normal3f& normal)
{
return normal3f_quantised_custom(normal);
//return normal3f_from_spherical(spherical_quantised(spherical_from_normal3f(normal), snap));
//return normal3f_from_uniformspherical(uniformspherical_quantised(uniformspherical_from_normal3f(normal), snap));
// float_quantise(normal.x, snap), float_quantise(normal.y, snap), float_quantise(normal.y, snap));
}
/// \brief Returns a \p texcoord quantised to \p precision.
inline TexCoord2f texcoord2f_quantised(const TexCoord2f& texcoord, float precision)
{
return TexCoord2f(float_quantise(texcoord.s(), precision), float_quantise(texcoord.t(), precision));
}
/// \brief Standard vertex type for lines and points.
struct PointVertex
{
Colour4b colour;
Vertex3f vertex;
PointVertex()
{
}
PointVertex(Vertex3f _vertex)
: colour(Colour4b(255, 255, 255, 255)), vertex(_vertex)
{
}
PointVertex(Vertex3f _vertex, Colour4b _colour)
: colour(_colour), vertex(_vertex)
{
}
};
inline bool operator<(const PointVertex& self, const PointVertex& other)
{
if(self.vertex != other.vertex)
{
return self.vertex < other.vertex;
}
if(self.colour != other.colour)
{
return self.colour < other.colour;
}
return false;
}
inline bool operator==(const PointVertex& self, const PointVertex& other)
{
return self.colour == other.colour && self.vertex == other.vertex;
}
inline bool operator!=(const PointVertex& self, const PointVertex& other)
{
return !operator==(self, other);
}
/// \brief Standard vertex type for lit/textured meshes.
struct ArbitraryMeshVertex
{
TexCoord2f texcoord;
Normal3f normal;
Vertex3f vertex;
Normal3f tangent;
Normal3f bitangent;
ArbitraryMeshVertex() : tangent(0, 0, 0), bitangent(0, 0, 0)
{
}
ArbitraryMeshVertex(Vertex3f _vertex, Normal3f _normal, TexCoord2f _texcoord)
: texcoord(_texcoord), normal(_normal), vertex(_vertex), tangent(0, 0, 0), bitangent(0, 0, 0)
{
}
};
inline bool operator<(const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other)
{
if(self.texcoord != other.texcoord)
{
return self.texcoord < other.texcoord;
}
if(self.normal != other.normal)
{
return self.normal < other.normal;
}
if(self.vertex != other.vertex)
{
return self.vertex < other.vertex;
}
return false;
}
inline bool operator==(const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other)
{
return self.texcoord == other.texcoord && self.normal == other.normal && self.vertex == other.vertex;
}
inline bool operator!=(const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other)
{
return !operator==(self, other);
}
const float c_quantise_vertex = 1.f / static_cast<float>(1 << 3);
/// \brief Returns \p v with vertex quantised to a fixed precision.
inline PointVertex pointvertex_quantised(const PointVertex& v)
{
return PointVertex(vertex3f_quantised(v.vertex, c_quantise_vertex), v.colour);
}
const float c_quantise_texcoord = 1.f / static_cast<float>(1 << 8);
/// \brief Returns \p v with vertex, normal and texcoord quantised to a fixed precision.
inline ArbitraryMeshVertex arbitrarymeshvertex_quantised(const ArbitraryMeshVertex& v)
{
return ArbitraryMeshVertex(vertex3f_quantised(v.vertex, c_quantise_vertex), normal3f_quantised(v.normal), texcoord2f_quantised(v.texcoord, c_quantise_texcoord));
}
/// \brief Sets up the OpenGL colour and vertex arrays for \p array.
inline void pointvertex_gl_array(const PointVertex* array)
{
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(PointVertex), &array->colour);
glVertexPointer(3, GL_FLOAT, sizeof(PointVertex), &array->vertex);
}
class RenderablePointArray : public OpenGLRenderable
{
const Array<PointVertex>& m_array;
const GLenum m_mode;
public:
RenderablePointArray(const Array<PointVertex>& array, GLenum mode)
: m_array(array), m_mode(mode)
{
}
void render(RenderStateFlags state) const
{
#define NV_DRIVER_BUG 1
#if NV_DRIVER_BUG
glColorPointer(4, GL_UNSIGNED_BYTE, 0, 0);
glVertexPointer(3, GL_FLOAT, 0, 0);
glDrawArrays(GL_TRIANGLE_FAN, 0, 0);
#endif
pointvertex_gl_array(m_array.data());
glDrawArrays(m_mode, 0, GLsizei(m_array.size()));
}
};
class RenderablePointVector : public OpenGLRenderable
{
std::vector<PointVertex> m_vector;
const GLenum m_mode;
public:
RenderablePointVector(GLenum mode)
: m_mode(mode)
{
}
void render(RenderStateFlags state) const
{
pointvertex_gl_array(&m_vector.front());
glDrawArrays(m_mode, 0, GLsizei(m_vector.size()));
}
std::size_t size() const
{
return m_vector.size();
}
bool empty() const
{
return m_vector.empty();
}
void clear()
{
m_vector.clear();
}
void reserve(std::size_t size)
{
m_vector.reserve(size);
}
void push_back(const PointVertex& point)
{
m_vector.push_back(point);
}
};
class RenderableVertexBuffer : public OpenGLRenderable
{
const GLenum m_mode;
const VertexBuffer<PointVertex>& m_vertices;
public:
RenderableVertexBuffer(GLenum mode, const VertexBuffer<PointVertex>& vertices)
: m_mode(mode), m_vertices(vertices)
{
}
void render(RenderStateFlags state) const
{
pointvertex_gl_array(m_vertices.data());
glDrawArrays(m_mode, 0, m_vertices.size());
}
};
class RenderableIndexBuffer : public OpenGLRenderable
{
const GLenum m_mode;
const IndexBuffer& m_indices;
const VertexBuffer<PointVertex>& m_vertices;
public:
RenderableIndexBuffer(GLenum mode, const IndexBuffer& indices, const VertexBuffer<PointVertex>& vertices)
: m_mode(mode), m_indices(indices), m_vertices(vertices)
{
}
void render(RenderStateFlags state) const
{
#if 1
pointvertex_gl_array(m_vertices.data());
glDrawElements(m_mode, GLsizei(m_indices.size()), RenderIndexTypeID, m_indices.data());
#else
glBegin(m_mode);
if(state & RENDER_COLOURARRAY != 0)
{
for(std::size_t i = 0; i < m_indices.size(); ++i)
{
glColor4ubv(&m_vertices[m_indices[i]].colour.r);
glVertex3fv(&m_vertices[m_indices[i]].vertex.x);
}
}
else
{
for(std::size_t i = 0; i < m_indices.size(); ++i)
{
glVertex3fv(&m_vertices[m_indices[i]].vertex.x);
}
}
glEnd();
#endif
}
};
class RemapXYZ
{
public:
static void set(Vertex3f& vertex, float x, float y, float z)
{
vertex.x() = x;
vertex.y() = y;
vertex.z() = z;
}
};
class RemapYZX
{
public:
static void set(Vertex3f& vertex, float x, float y, float z)
{
vertex.x() = z;
vertex.y() = x;
vertex.z() = y;
}
};
class RemapZXY
{
public:
static void set(Vertex3f& vertex, float x, float y, float z)
{
vertex.x() = y;
vertex.y() = z;
vertex.z() = x;
}
};
template<typename remap_policy>
inline void draw_circle(const std::size_t segments, const float radius, PointVertex* vertices, remap_policy remap)
{
const double increment = c_pi / double(segments << 2);
std::size_t count = 0;
float x = radius;
float y = 0;
while(count < segments)
{
PointVertex* i = vertices + count;
PointVertex* j = vertices + ((segments << 1) - (count + 1));
PointVertex* k = i + (segments << 1);
PointVertex* l = j + (segments << 1);
PointVertex* m = i + (segments << 2);
PointVertex* n = j + (segments << 2);
PointVertex* o = k + (segments << 2);
PointVertex* p = l + (segments << 2);
remap_policy::set(i->vertex, x,-y, 0);
remap_policy::set(k->vertex,-y,-x, 0);
remap_policy::set(m->vertex,-x, y, 0);
remap_policy::set(o->vertex, y, x, 0);
++count;
{
const double theta = increment * count;
x = static_cast<float>(radius * cos(theta));
y = static_cast<float>(radius * sin(theta));
}
remap_policy::set(j->vertex, y,-x, 0);
remap_policy::set(l->vertex,-x,-y, 0);
remap_policy::set(n->vertex,-y, x, 0);
remap_policy::set(p->vertex, x, y, 0);
}
}
#if 0
class PointVertexArrayIterator
{
PointVertex* m_point;
public:
PointVertexArrayIterator(PointVertex* point)
: m_point(point)
{
}
PointVertexArrayIterator& operator++()
{
++m_point;
return *this;
}
PointVertexArrayIterator operator++(int)
{
PointVertexArrayIterator tmp(*this);
++m_point;
return tmp;
}
Vertex3f& operator*()
{
return m_point.vertex;
}
Vertex3f* operator->()
{
return &(operator*());
}
}
template<typename remap_policy, typename iterator_type
inline void draw_circle(const std::size_t segments, const float radius, iterator_type start, remap_policy remap)
{
const float increment = c_pi / (double)(segments << 2);
std::size_t count = 0;
iterator_type pxpy(start);
iterator_type pypx(pxpy + (segments << 1));
iterator_type pynx(pxpy + (segments << 1));
iterator_type nxpy(pypx + (segments << 1));
iterator_type nxny(pypx + (segments << 1));
iterator_type nynx(nxpy + (segments << 1));
iterator_type nypx(nxpy + (segments << 1));
iterator_type pxny(start);
while(count < segments)
{
const float theta = increment * count;
const float x = radius * cos(theta);
const float y = radius * sin(theta);
remap_policy::set((*pxpy), x, y, 0);
remap_policy::set((*pxny), x,-y, 0);
remap_policy::set((*nxpy),-x, y, 0);
remap_policy::set((*nxny),-x,-y, 0);
remap_policy::set((*pypx), y, x, 0);
remap_policy::set((*pynx), y,-x, 0);
remap_policy::set((*nypx),-y, x, 0);
remap_policy::set((*nynx),-y,-x, 0);
}
}
template<typename remap_policy, typename iterator_type
inline void draw_semicircle(const std::size_t segments, const float radius, iterator_type start, remap_policy remap)
{
const float increment = c_pi / (double)(segments << 2);
std::size_t count = 0;
iterator_type pxpy(start);
iterator_type pypx(pxpy + (segments << 1));
iterator_type pynx(pxpy + (segments << 1));
iterator_type nxpy(pypx + (segments << 1));
iterator_type nxny(pypx + (segments << 1));
iterator_type nynx(nxpy + (segments << 1));
iterator_type nypx(nxpy + (segments << 1));
iterator_type pxny(start);
while(count < segments)
{
const float theta = increment * count;
const float x = radius * cos(theta);
const float y = radius * sin(theta);
remap_policy::set((*pxpy), x, y, 0);
remap_policy::set((*pxny), x,-y, 0);
remap_policy::set((*nxpy),-x, y, 0);
remap_policy::set((*nxny),-x,-y, 0);
//remap_policy::set((*pypx), y, x, 0);
//remap_policy::set((*pynx), y,-x, 0);
//remap_policy::set((*nypx),-y, x, 0);
//remap_policy::set((*nynx),-y,-x, 0);
}
}
#endif
inline void draw_quad(const float radius, PointVertex* quad)
{
(*quad++).vertex = Vertex3f(-radius, radius, 0);
(*quad++).vertex = Vertex3f(radius, radius, 0);
(*quad++).vertex = Vertex3f(radius, -radius, 0);
(*quad++).vertex = Vertex3f(-radius, -radius, 0);
}
inline void draw_cube(const float radius, PointVertex* cube)
{
(*cube++).vertex = Vertex3f(-radius, -radius, -radius);
(*cube++).vertex = Vertex3f(radius, -radius, -radius);
(*cube++).vertex = Vertex3f(-radius, radius, -radius);
(*cube++).vertex = Vertex3f(radius, radius, -radius);
(*cube++).vertex = Vertex3f(-radius, -radius, radius);
(*cube++).vertex = Vertex3f(radius, -radius, radius);
(*cube++).vertex = Vertex3f(-radius, radius, radius);
(*cube++).vertex = Vertex3f(radius, radius, radius);
}
/// \brief Calculates the tangent vectors for a triangle \p a, \p b, \p c and stores the tangent in \p s and the bitangent in \p t.
inline void ArbitraryMeshTriangle_calcTangents(const ArbitraryMeshVertex& a, const ArbitraryMeshVertex& b, const ArbitraryMeshVertex& c, Vector3& s, Vector3& t)
{
s = Vector3(0, 0, 0);
t = Vector3(0, 0, 0);
{
Vector3 cross(
vector3_cross(
vector3_subtracted(
Vector3(b.vertex.x(), b.texcoord.s(), b.texcoord.t()),
Vector3(a.vertex.x(), a.texcoord.s(), a.texcoord.t())
),
vector3_subtracted(
Vector3(c.vertex.x(), c.texcoord.s(), c.texcoord.t()),
Vector3(a.vertex.x(), a.texcoord.s(), a.texcoord.t())
)
)
);
if(fabs(cross.x()) > 0.000001f)
{
s.x() = -cross.y() / cross.x();
}
if(fabs(cross.x()) > 0.000001f)
{
t.x() = -cross.z() / cross.x();
}
}
{
Vector3 cross(
vector3_cross(
vector3_subtracted(
Vector3(b.vertex.y(), b.texcoord.s(), b.texcoord.t()),
Vector3(a.vertex.y(), a.texcoord.s(), a.texcoord.t())
),
vector3_subtracted(
Vector3(c.vertex.y(), c.texcoord.s(), c.texcoord.t()),
Vector3(a.vertex.y(), a.texcoord.s(), a.texcoord.t())
)
)
);
if(fabs(cross.x()) > 0.000001f)
{
s.y() = -cross.y() / cross.x();
}
if(fabs(cross.x()) > 0.000001f)
{
t.y() = -cross.z() / cross.x();
}
}
{
Vector3 cross(
vector3_cross(
vector3_subtracted(
Vector3(b.vertex.z(), b.texcoord.s(), b.texcoord.t()),
Vector3(a.vertex.z(), a.texcoord.s(), a.texcoord.t())
),
vector3_subtracted(
Vector3(c.vertex.z(), c.texcoord.s(), c.texcoord.t()),
Vector3(a.vertex.z(), a.texcoord.s(), a.texcoord.t())
)
)
);
if(fabs(cross.x()) > 0.000001f)
{
s.z() = -cross.y() / cross.x();
}
if(fabs(cross.x()) > 0.000001f)
{
t.z() = -cross.z() / cross.x();
}
}
}
inline void ArbitraryMeshTriangle_sumTangents(ArbitraryMeshVertex& a, ArbitraryMeshVertex& b, ArbitraryMeshVertex& c)
{
Vector3 s, t;
ArbitraryMeshTriangle_calcTangents(a, b, c, s, t);
reinterpret_cast<Vector3&>(a.tangent) += s;
reinterpret_cast<Vector3&>(b.tangent) += s;
reinterpret_cast<Vector3&>(c.tangent) += s;
reinterpret_cast<Vector3&>(a.bitangent) += t;
reinterpret_cast<Vector3&>(b.bitangent) += t;
reinterpret_cast<Vector3&>(c.bitangent) += t;
}
#endif