gtkradiant/tools/quake3/q3map2/visflow.c

1747 lines
39 KiB
C
Raw Normal View History

/* -------------------------------------------------------------------------------
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
----------------------------------------------------------------------------------
This code has been altered significantly from its original form, to support
several games based on the Quake III Arena engine, in the form of "Q3Map2."
------------------------------------------------------------------------------- */
/* marker */
#define VISFLOW_C
/* dependencies */
#include "q3map2.h"
/*
each portal will have a list of all possible to see from first portal
if (!thread->portalmightsee[portalnum])
portal mightsee
for p2 = all other portals in leaf
get sperating planes
for all portals that might be seen by p2
mark as unseen if not present in seperating plane
flood fill a new mightsee
save as passagemightsee
void CalcMightSee (leaf_t *leaf,
*/
int CountBits( byte *bits, int numbits ){
int i;
int c;
c = 0;
for ( i = 0 ; i < numbits ; i++ )
if ( bits[i >> 3] & ( 1 << ( i & 7 ) ) ) {
c++;
}
return c;
}
int c_fullskip;
int c_portalskip, c_leafskip;
int c_vistest, c_mighttest;
int c_chop, c_nochop;
int active;
void CheckStack( leaf_t *leaf, threaddata_t *thread ){
pstack_t *p, *p2;
for ( p = thread->pstack_head.next ; p ; p = p->next )
{
// Sys_Printf ("=");
if ( p->leaf == leaf ) {
Error( "CheckStack: leaf recursion" );
}
for ( p2 = thread->pstack_head.next ; p2 != p ; p2 = p2->next )
if ( p2->leaf == p->leaf ) {
Error( "CheckStack: late leaf recursion" );
}
}
// Sys_Printf ("\n");
}
fixedWinding_t *AllocStackWinding( pstack_t *stack ){
int i;
for ( i = 0 ; i < 3 ; i++ )
{
if ( stack->freewindings[i] ) {
stack->freewindings[i] = 0;
return &stack->windings[i];
}
}
Error( "AllocStackWinding: failed" );
return NULL;
}
void FreeStackWinding( fixedWinding_t *w, pstack_t *stack ){
int i;
i = w - stack->windings;
if ( i < 0 || i > 2 ) {
return; // not from local
}
if ( stack->freewindings[i] ) {
Error( "FreeStackWinding: allready free" );
}
stack->freewindings[i] = 1;
}
/*
==============
VisChopWinding
==============
*/
fixedWinding_t *VisChopWinding( fixedWinding_t *in, pstack_t *stack, visPlane_t *split ){
vec_t dists[128];
int sides[128];
int counts[3];
vec_t dot;
int i, j;
vec_t *p1, *p2;
vec3_t mid;
fixedWinding_t *neww;
counts[0] = counts[1] = counts[2] = 0;
// determine sides for each point
for ( i = 0 ; i < in->numpoints ; i++ )
{
dot = DotProduct( in->points[i], split->normal );
dot -= split->dist;
dists[i] = dot;
if ( dot > ON_EPSILON ) {
sides[i] = SIDE_FRONT;
}
else if ( dot < -ON_EPSILON ) {
sides[i] = SIDE_BACK;
}
else
{
sides[i] = SIDE_ON;
}
counts[sides[i]]++;
}
if ( !counts[1] ) {
return in; // completely on front side
}
if ( !counts[0] ) {
FreeStackWinding( in, stack );
return NULL;
}
sides[i] = sides[0];
dists[i] = dists[0];
neww = AllocStackWinding( stack );
neww->numpoints = 0;
for ( i = 0 ; i < in->numpoints ; i++ )
{
p1 = in->points[i];
if ( neww->numpoints == MAX_POINTS_ON_FIXED_WINDING ) {
FreeStackWinding( neww, stack );
return in; // can't chop -- fall back to original
}
if ( sides[i] == SIDE_ON ) {
VectorCopy( p1, neww->points[neww->numpoints] );
neww->numpoints++;
continue;
}
if ( sides[i] == SIDE_FRONT ) {
VectorCopy( p1, neww->points[neww->numpoints] );
neww->numpoints++;
}
if ( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) {
continue;
}
if ( neww->numpoints == MAX_POINTS_ON_FIXED_WINDING ) {
FreeStackWinding( neww, stack );
return in; // can't chop -- fall back to original
}
// generate a split point
p2 = in->points[( i + 1 ) % in->numpoints];
dot = dists[i] / ( dists[i] - dists[i + 1] );
for ( j = 0 ; j < 3 ; j++ )
{ // avoid round off error when possible
if ( split->normal[j] == 1 ) {
mid[j] = split->dist;
}
else if ( split->normal[j] == -1 ) {
mid[j] = -split->dist;
}
else{
mid[j] = p1[j] + dot * ( p2[j] - p1[j] );
}
}
VectorCopy( mid, neww->points[neww->numpoints] );
neww->numpoints++;
}
// free the original winding
FreeStackWinding( in, stack );
return neww;
}
/*
==============
ClipToSeperators
Source, pass, and target are an ordering of portals.
Generates seperating planes canidates by taking two points from source and one
point from pass, and clips target by them.
If target is totally clipped away, that portal can not be seen through.
Normal clip keeps target on the same side as pass, which is correct if the
order goes source, pass, target. If the order goes pass, source, target then
flipclip should be set.
==============
*/
fixedWinding_t *ClipToSeperators( fixedWinding_t *source, fixedWinding_t *pass, fixedWinding_t *target, qboolean flipclip, pstack_t *stack ){
int i, j, k, l;
visPlane_t plane;
vec3_t v1, v2;
float d;
vec_t length;
int counts[3];
qboolean fliptest;
// check all combinations
for ( i = 0 ; i < source->numpoints ; i++ )
{
l = ( i + 1 ) % source->numpoints;
VectorSubtract( source->points[l], source->points[i], v1 );
// find a vertex of pass that makes a plane that puts all of the
// vertexes of pass on the front side and all of the vertexes of
// source on the back side
for ( j = 0 ; j < pass->numpoints ; j++ )
{
VectorSubtract( pass->points[j], source->points[i], v2 );
plane.normal[0] = v1[1] * v2[2] - v1[2] * v2[1];
plane.normal[1] = v1[2] * v2[0] - v1[0] * v2[2];
plane.normal[2] = v1[0] * v2[1] - v1[1] * v2[0];
// if points don't make a valid plane, skip it
length = plane.normal[0] * plane.normal[0]
+ plane.normal[1] * plane.normal[1]
+ plane.normal[2] * plane.normal[2];
if ( length < ON_EPSILON ) {
continue;
}
length = 1 / sqrt( length );
plane.normal[0] *= length;
plane.normal[1] *= length;
plane.normal[2] *= length;
plane.dist = DotProduct( pass->points[j], plane.normal );
//
// find out which side of the generated seperating plane has the
// source portal
//
#if 1
fliptest = qfalse;
for ( k = 0 ; k < source->numpoints ; k++ )
{
if ( k == i || k == l ) {
continue;
}
d = DotProduct( source->points[k], plane.normal ) - plane.dist;
if ( d < -ON_EPSILON ) { // source is on the negative side, so we want all
// pass and target on the positive side
fliptest = qfalse;
break;
}
else if ( d > ON_EPSILON ) { // source is on the positive side, so we want all
// pass and target on the negative side
fliptest = qtrue;
break;
}
}
if ( k == source->numpoints ) {
continue; // planar with source portal
}
#else
fliptest = flipclip;
#endif
//
// flip the normal if the source portal is backwards
//
if ( fliptest ) {
VectorSubtract( vec3_origin, plane.normal, plane.normal );
plane.dist = -plane.dist;
}
#if 1
//
// if all of the pass portal points are now on the positive side,
// this is the seperating plane
//
counts[0] = counts[1] = counts[2] = 0;
for ( k = 0 ; k < pass->numpoints ; k++ )
{
if ( k == j ) {
continue;
}
d = DotProduct( pass->points[k], plane.normal ) - plane.dist;
if ( d < -ON_EPSILON ) {
break;
}
else if ( d > ON_EPSILON ) {
counts[0]++;
}
else{
counts[2]++;
}
}
if ( k != pass->numpoints ) {
continue; // points on negative side, not a seperating plane
}
if ( !counts[0] ) {
continue; // planar with seperating plane
}
#else
k = ( j + 1 ) % pass->numpoints;
d = DotProduct( pass->points[k], plane.normal ) - plane.dist;
if ( d < -ON_EPSILON ) {
continue;
}
k = ( j + pass->numpoints - 1 ) % pass->numpoints;
d = DotProduct( pass->points[k], plane.normal ) - plane.dist;
if ( d < -ON_EPSILON ) {
continue;
}
#endif
//
// flip the normal if we want the back side
//
if ( flipclip ) {
VectorSubtract( vec3_origin, plane.normal, plane.normal );
plane.dist = -plane.dist;
}
#ifdef SEPERATORCACHE
stack->seperators[flipclip][stack->numseperators[flipclip]] = plane;
if ( ++stack->numseperators[flipclip] >= MAX_SEPERATORS ) {
Error( "MAX_SEPERATORS" );
}
#endif
//MrE: fast check first
d = DotProduct( stack->portal->origin, plane.normal ) - plane.dist;
//if completely at the back of the seperator plane
if ( d < -stack->portal->radius ) {
return NULL;
}
//if completely on the front of the seperator plane
if ( d > stack->portal->radius ) {
break;
}
//
// clip target by the seperating plane
//
target = VisChopWinding( target, stack, &plane );
if ( !target ) {
return NULL; // target is not visible
}
break; // optimization by Antony Suter
}
}
return target;
}
/*
==================
RecursiveLeafFlow
Flood fill through the leafs
If src_portal is NULL, this is the originating leaf
==================
*/
void RecursiveLeafFlow( int leafnum, threaddata_t *thread, pstack_t *prevstack ){
pstack_t stack;
vportal_t *p;
visPlane_t backplane;
leaf_t *leaf;
int i, j, n;
long *test, *might, *prevmight, *vis, more;
int pnum;
thread->c_chains++;
leaf = &leafs[leafnum];
// CheckStack (leaf, thread);
prevstack->next = &stack;
stack.next = NULL;
stack.leaf = leaf;
stack.portal = NULL;
stack.depth = prevstack->depth + 1;
#ifdef SEPERATORCACHE
stack.numseperators[0] = 0;
stack.numseperators[1] = 0;
#endif
might = (long *)stack.mightsee;
vis = (long *)thread->base->portalvis;
// check all portals for flowing into other leafs
for ( i = 0; i < leaf->numportals; i++ )
{
p = leaf->portals[i];
if ( p->removed ) {
continue;
}
pnum = p - portals;
/* MrE: portal trace debug code
{
int portaltrace[] = {13, 16, 17, 37};
pstack_t *s;
s = &thread->pstack_head;
for (j = 0; s->next && j < sizeof(portaltrace)/sizeof(int) - 1; j++, s = s->next)
{
if (s->portal->num != portaltrace[j])
break;
}
if (j >= sizeof(portaltrace)/sizeof(int) - 1)
{
if (p->num == portaltrace[j])
n = 0; //traced through all the portals
}
}
*/
if ( !( prevstack->mightsee[pnum >> 3] & ( 1 << ( pnum & 7 ) ) ) ) {
continue; // can't possibly see it
}
// if the portal can't see anything we haven't allready seen, skip it
if ( p->status == stat_done ) {
test = (long *)p->portalvis;
}
else
{
test = (long *)p->portalflood;
}
more = 0;
prevmight = (long *)prevstack->mightsee;
for ( j = 0 ; j < portallongs ; j++ )
{
might[j] = prevmight[j] & test[j];
more |= ( might[j] & ~vis[j] );
}
if ( !more &&
( thread->base->portalvis[pnum >> 3] & ( 1 << ( pnum & 7 ) ) ) ) { // can't see anything new
continue;
}
// get plane of portal, point normal into the neighbor leaf
stack.portalplane = p->plane;
VectorSubtract( vec3_origin, p->plane.normal, backplane.normal );
backplane.dist = -p->plane.dist;
// c_portalcheck++;
stack.portal = p;
stack.next = NULL;
stack.freewindings[0] = 1;
stack.freewindings[1] = 1;
stack.freewindings[2] = 1;
#if 1
{
float d;
d = DotProduct( p->origin, thread->pstack_head.portalplane.normal );
d -= thread->pstack_head.portalplane.dist;
if ( d < -p->radius ) {
continue;
}
else if ( d > p->radius ) {
stack.pass = p->winding;
}
else
{
stack.pass = VisChopWinding( p->winding, &stack, &thread->pstack_head.portalplane );
if ( !stack.pass ) {
continue;
}
}
}
#else
stack.pass = VisChopWinding( p->winding, &stack, &thread->pstack_head.portalplane );
if ( !stack.pass ) {
continue;
}
#endif
#if 1
{
float d;
d = DotProduct( thread->base->origin, p->plane.normal );
d -= p->plane.dist;
//MrE: vis-bug fix
//if (d > p->radius)
if ( d > thread->base->radius ) {
continue;
}
//MrE: vis-bug fix
//if (d < -p->radius)
else if ( d < -thread->base->radius ) {
stack.source = prevstack->source;
}
else
{
stack.source = VisChopWinding( prevstack->source, &stack, &backplane );
//FIXME: shouldn't we create a new source origin and radius for fast checks?
if ( !stack.source ) {
continue;
}
}
}
#else
stack.source = VisChopWinding( prevstack->source, &stack, &backplane );
if ( !stack.source ) {
continue;
}
#endif
if ( !prevstack->pass ) { // the second leaf can only be blocked if coplanar
// mark the portal as visible
thread->base->portalvis[pnum >> 3] |= ( 1 << ( pnum & 7 ) );
RecursiveLeafFlow( p->leaf, thread, &stack );
continue;
}
#ifdef SEPERATORCACHE
if ( stack.numseperators[0] ) {
for ( n = 0; n < stack.numseperators[0]; n++ )
{
stack.pass = VisChopWinding( stack.pass, &stack, &stack.seperators[0][n] );
if ( !stack.pass ) {
break; // target is not visible
}
}
if ( n < stack.numseperators[0] ) {
continue;
}
}
else
{
stack.pass = ClipToSeperators( prevstack->source, prevstack->pass, stack.pass, qfalse, &stack );
}
#else
stack.pass = ClipToSeperators( stack.source, prevstack->pass, stack.pass, qfalse, &stack );
#endif
if ( !stack.pass ) {
continue;
}
#ifdef SEPERATORCACHE
if ( stack.numseperators[1] ) {
for ( n = 0; n < stack.numseperators[1]; n++ )
{
stack.pass = VisChopWinding( stack.pass, &stack, &stack.seperators[1][n] );
if ( !stack.pass ) {
break; // target is not visible
}
}
}
else
{
stack.pass = ClipToSeperators( prevstack->pass, prevstack->source, stack.pass, qtrue, &stack );
}
#else
stack.pass = ClipToSeperators( prevstack->pass, stack.source, stack.pass, qtrue, &stack );
#endif
if ( !stack.pass ) {
continue;
}
// mark the portal as visible
thread->base->portalvis[pnum >> 3] |= ( 1 << ( pnum & 7 ) );
// flow through it for real
RecursiveLeafFlow( p->leaf, thread, &stack );
//
stack.next = NULL;
}
}
/*
===============
PortalFlow
generates the portalvis bit vector
===============
*/
void PortalFlow( int portalnum ){
threaddata_t data;
int i;
vportal_t *p;
int c_might, c_can;
#ifdef MREDEBUG
Sys_Printf( "\r%6d", portalnum );
#endif
p = sorted_portals[portalnum];
if ( p->removed ) {
p->status = stat_done;
return;
}
p->status = stat_working;
c_might = CountBits( p->portalflood, numportals * 2 );
memset( &data, 0, sizeof( data ) );
data.base = p;
data.pstack_head.portal = p;
data.pstack_head.source = p->winding;
data.pstack_head.portalplane = p->plane;
data.pstack_head.depth = 0;
for ( i = 0 ; i < portallongs ; i++ )
( (long *)data.pstack_head.mightsee )[i] = ( (long *)p->portalflood )[i];
RecursiveLeafFlow( p->leaf, &data, &data.pstack_head );
p->status = stat_done;
c_can = CountBits( p->portalvis, numportals * 2 );
Sys_FPrintf( SYS_VRB,"portal:%4i mightsee:%4i cansee:%4i (%i chains)\n",
(int)( p - portals ), c_might, c_can, data.c_chains );
}
/*
==================
RecursivePassageFlow
==================
*/
void RecursivePassageFlow( vportal_t *portal, threaddata_t *thread, pstack_t *prevstack ){
pstack_t stack;
vportal_t *p;
leaf_t *leaf;
passage_t *passage, *nextpassage;
int i, j;
long *might, *vis, *prevmight, *cansee, *portalvis, more;
int pnum;
leaf = &leafs[portal->leaf];
prevstack->next = &stack;
stack.next = NULL;
stack.depth = prevstack->depth + 1;
vis = (long *)thread->base->portalvis;
passage = portal->passages;
nextpassage = passage;
// check all portals for flowing into other leafs
for ( i = 0; i < leaf->numportals; i++, passage = nextpassage )
{
p = leaf->portals[i];
if ( p->removed ) {
continue;
}
nextpassage = passage->next;
pnum = p - portals;
if ( !( prevstack->mightsee[pnum >> 3] & ( 1 << ( pnum & 7 ) ) ) ) {
continue; // can't possibly see it
}
// mark the portal as visible
thread->base->portalvis[pnum >> 3] |= ( 1 << ( pnum & 7 ) );
prevmight = (long *)prevstack->mightsee;
cansee = (long *)passage->cansee;
might = (long *)stack.mightsee;
memcpy( might, prevmight, portalbytes );
if ( p->status == stat_done ) {
portalvis = (long *) p->portalvis;
}
else{
portalvis = (long *) p->portalflood;
}
more = 0;
for ( j = 0; j < portallongs; j++ )
{
if ( *might ) {
*might &= *cansee++ & *portalvis++;
more |= ( *might & ~vis[j] );
}
else
{
cansee++;
portalvis++;
}
might++;
}
if ( !more ) {
// can't see anything new
continue;
}
// flow through it for real
RecursivePassageFlow( p, thread, &stack );
stack.next = NULL;
}
}
/*
===============
PassageFlow
===============
*/
void PassageFlow( int portalnum ){
threaddata_t data;
int i;
vportal_t *p;
// int c_might, c_can;
#ifdef MREDEBUG
Sys_Printf( "\r%6d", portalnum );
#endif
p = sorted_portals[portalnum];
if ( p->removed ) {
p->status = stat_done;
return;
}
p->status = stat_working;
// c_might = CountBits (p->portalflood, numportals*2);
memset( &data, 0, sizeof( data ) );
data.base = p;
data.pstack_head.portal = p;
data.pstack_head.source = p->winding;
data.pstack_head.portalplane = p->plane;
data.pstack_head.depth = 0;
for ( i = 0 ; i < portallongs ; i++ )
( (long *)data.pstack_head.mightsee )[i] = ( (long *)p->portalflood )[i];
RecursivePassageFlow( p, &data, &data.pstack_head );
p->status = stat_done;
/*
c_can = CountBits (p->portalvis, numportals*2);
Sys_FPrintf (SYS_VRB,"portal:%4i mightsee:%4i cansee:%4i (%i chains)\n",
(int)(p - portals), c_might, c_can, data.c_chains);
*/
}
/*
==================
RecursivePassagePortalFlow
==================
*/
void RecursivePassagePortalFlow( vportal_t *portal, threaddata_t *thread, pstack_t *prevstack ){
pstack_t stack;
vportal_t *p;
leaf_t *leaf;
visPlane_t backplane;
passage_t *passage, *nextpassage;
int i, j, n;
long *might, *vis, *prevmight, *cansee, *portalvis, more;
int pnum;
// thread->c_chains++;
leaf = &leafs[portal->leaf];
// CheckStack (leaf, thread);
prevstack->next = &stack;
stack.next = NULL;
stack.leaf = leaf;
stack.portal = NULL;
stack.depth = prevstack->depth + 1;
#ifdef SEPERATORCACHE
stack.numseperators[0] = 0;
stack.numseperators[1] = 0;
#endif
vis = (long *)thread->base->portalvis;
passage = portal->passages;
nextpassage = passage;
// check all portals for flowing into other leafs
for ( i = 0; i < leaf->numportals; i++, passage = nextpassage )
{
p = leaf->portals[i];
if ( p->removed ) {
continue;
}
nextpassage = passage->next;
pnum = p - portals;
if ( !( prevstack->mightsee[pnum >> 3] & ( 1 << ( pnum & 7 ) ) ) ) {
continue; // can't possibly see it
}
prevmight = (long *)prevstack->mightsee;
cansee = (long *)passage->cansee;
might = (long *)stack.mightsee;
memcpy( might, prevmight, portalbytes );
if ( p->status == stat_done ) {
portalvis = (long *) p->portalvis;
}
else{
portalvis = (long *) p->portalflood;
}
more = 0;
for ( j = 0; j < portallongs; j++ )
{
if ( *might ) {
*might &= *cansee++ & *portalvis++;
more |= ( *might & ~vis[j] );
}
else
{
cansee++;
portalvis++;
}
might++;
}
if ( !more && ( thread->base->portalvis[pnum >> 3] & ( 1 << ( pnum & 7 ) ) ) ) { // can't see anything new
continue;
}
// get plane of portal, point normal into the neighbor leaf
stack.portalplane = p->plane;
VectorSubtract( vec3_origin, p->plane.normal, backplane.normal );
backplane.dist = -p->plane.dist;
// c_portalcheck++;
stack.portal = p;
stack.next = NULL;
stack.freewindings[0] = 1;
stack.freewindings[1] = 1;
stack.freewindings[2] = 1;
#if 1
{
float d;
d = DotProduct( p->origin, thread->pstack_head.portalplane.normal );
d -= thread->pstack_head.portalplane.dist;
if ( d < -p->radius ) {
continue;
}
else if ( d > p->radius ) {
stack.pass = p->winding;
}
else
{
stack.pass = VisChopWinding( p->winding, &stack, &thread->pstack_head.portalplane );
if ( !stack.pass ) {
continue;
}
}
}
#else
stack.pass = VisChopWinding( p->winding, &stack, &thread->pstack_head.portalplane );
if ( !stack.pass ) {
continue;
}
#endif
#if 1
{
float d;
d = DotProduct( thread->base->origin, p->plane.normal );
d -= p->plane.dist;
//MrE: vis-bug fix
//if (d > p->radius)
if ( d > thread->base->radius ) {
continue;
}
//MrE: vis-bug fix
//if (d < -p->radius)
else if ( d < -thread->base->radius ) {
stack.source = prevstack->source;
}
else
{
stack.source = VisChopWinding( prevstack->source, &stack, &backplane );
//FIXME: shouldn't we create a new source origin and radius for fast checks?
if ( !stack.source ) {
continue;
}
}
}
#else
stack.source = VisChopWinding( prevstack->source, &stack, &backplane );
if ( !stack.source ) {
continue;
}
#endif
if ( !prevstack->pass ) { // the second leaf can only be blocked if coplanar
// mark the portal as visible
thread->base->portalvis[pnum >> 3] |= ( 1 << ( pnum & 7 ) );
RecursivePassagePortalFlow( p, thread, &stack );
continue;
}
#ifdef SEPERATORCACHE
if ( stack.numseperators[0] ) {
for ( n = 0; n < stack.numseperators[0]; n++ )
{
stack.pass = VisChopWinding( stack.pass, &stack, &stack.seperators[0][n] );
if ( !stack.pass ) {
break; // target is not visible
}
}
if ( n < stack.numseperators[0] ) {
continue;
}
}
else
{
stack.pass = ClipToSeperators( prevstack->source, prevstack->pass, stack.pass, qfalse, &stack );
}
#else
stack.pass = ClipToSeperators( stack.source, prevstack->pass, stack.pass, qfalse, &stack );
#endif
if ( !stack.pass ) {
continue;
}
#ifdef SEPERATORCACHE
if ( stack.numseperators[1] ) {
for ( n = 0; n < stack.numseperators[1]; n++ )
{
stack.pass = VisChopWinding( stack.pass, &stack, &stack.seperators[1][n] );
if ( !stack.pass ) {
break; // target is not visible
}
}
}
else
{
stack.pass = ClipToSeperators( prevstack->pass, prevstack->source, stack.pass, qtrue, &stack );
}
#else
stack.pass = ClipToSeperators( prevstack->pass, stack.source, stack.pass, qtrue, &stack );
#endif
if ( !stack.pass ) {
continue;
}
// mark the portal as visible
thread->base->portalvis[pnum >> 3] |= ( 1 << ( pnum & 7 ) );
// flow through it for real
RecursivePassagePortalFlow( p, thread, &stack );
//
stack.next = NULL;
}
}
/*
===============
PassagePortalFlow
===============
*/
void PassagePortalFlow( int portalnum ){
threaddata_t data;
int i;
vportal_t *p;
// int c_might, c_can;
#ifdef MREDEBUG
Sys_Printf( "\r%6d", portalnum );
#endif
p = sorted_portals[portalnum];
if ( p->removed ) {
p->status = stat_done;
return;
}
p->status = stat_working;
// c_might = CountBits (p->portalflood, numportals*2);
memset( &data, 0, sizeof( data ) );
data.base = p;
data.pstack_head.portal = p;
data.pstack_head.source = p->winding;
data.pstack_head.portalplane = p->plane;
data.pstack_head.depth = 0;
for ( i = 0 ; i < portallongs ; i++ )
( (long *)data.pstack_head.mightsee )[i] = ( (long *)p->portalflood )[i];
RecursivePassagePortalFlow( p, &data, &data.pstack_head );
p->status = stat_done;
/*
c_can = CountBits (p->portalvis, numportals*2);
Sys_FPrintf (SYS_VRB,"portal:%4i mightsee:%4i cansee:%4i (%i chains)\n",
(int)(p - portals), c_might, c_can, data.c_chains);
*/
}
fixedWinding_t *PassageChopWinding( fixedWinding_t *in, fixedWinding_t *out, visPlane_t *split ){
vec_t dists[128];
int sides[128];
int counts[3];
vec_t dot;
int i, j;
vec_t *p1, *p2;
vec3_t mid;
fixedWinding_t *neww;
counts[0] = counts[1] = counts[2] = 0;
// determine sides for each point
for ( i = 0 ; i < in->numpoints ; i++ )
{
dot = DotProduct( in->points[i], split->normal );
dot -= split->dist;
dists[i] = dot;
if ( dot > ON_EPSILON ) {
sides[i] = SIDE_FRONT;
}
else if ( dot < -ON_EPSILON ) {
sides[i] = SIDE_BACK;
}
else
{
sides[i] = SIDE_ON;
}
counts[sides[i]]++;
}
if ( !counts[1] ) {
return in; // completely on front side
}
if ( !counts[0] ) {
return NULL;
}
sides[i] = sides[0];
dists[i] = dists[0];
neww = out;
neww->numpoints = 0;
for ( i = 0 ; i < in->numpoints ; i++ )
{
p1 = in->points[i];
if ( neww->numpoints == MAX_POINTS_ON_FIXED_WINDING ) {
return in; // can't chop -- fall back to original
}
if ( sides[i] == SIDE_ON ) {
VectorCopy( p1, neww->points[neww->numpoints] );
neww->numpoints++;
continue;
}
if ( sides[i] == SIDE_FRONT ) {
VectorCopy( p1, neww->points[neww->numpoints] );
neww->numpoints++;
}
if ( sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i] ) {
continue;
}
if ( neww->numpoints == MAX_POINTS_ON_FIXED_WINDING ) {
return in; // can't chop -- fall back to original
}
// generate a split point
p2 = in->points[( i + 1 ) % in->numpoints];
dot = dists[i] / ( dists[i] - dists[i + 1] );
for ( j = 0 ; j < 3 ; j++ )
{ // avoid round off error when possible
if ( split->normal[j] == 1 ) {
mid[j] = split->dist;
}
else if ( split->normal[j] == -1 ) {
mid[j] = -split->dist;
}
else{
mid[j] = p1[j] + dot * ( p2[j] - p1[j] );
}
}
VectorCopy( mid, neww->points[neww->numpoints] );
neww->numpoints++;
}
return neww;
}
/*
===============
AddSeperators
===============
*/
int AddSeperators( fixedWinding_t *source, fixedWinding_t *pass, qboolean flipclip, visPlane_t *seperators, int maxseperators ){
int i, j, k, l;
visPlane_t plane;
vec3_t v1, v2;
float d;
vec_t length;
int counts[3], numseperators;
qboolean fliptest;
numseperators = 0;
// check all combinations
for ( i = 0 ; i < source->numpoints ; i++ )
{
l = ( i + 1 ) % source->numpoints;
VectorSubtract( source->points[l], source->points[i], v1 );
// find a vertex of pass that makes a plane that puts all of the
// vertexes of pass on the front side and all of the vertexes of
// source on the back side
for ( j = 0 ; j < pass->numpoints ; j++ )
{
VectorSubtract( pass->points[j], source->points[i], v2 );
plane.normal[0] = v1[1] * v2[2] - v1[2] * v2[1];
plane.normal[1] = v1[2] * v2[0] - v1[0] * v2[2];
plane.normal[2] = v1[0] * v2[1] - v1[1] * v2[0];
// if points don't make a valid plane, skip it
length = plane.normal[0] * plane.normal[0]
+ plane.normal[1] * plane.normal[1]
+ plane.normal[2] * plane.normal[2];
if ( length < ON_EPSILON ) {
continue;
}
length = 1 / sqrt( length );
plane.normal[0] *= length;
plane.normal[1] *= length;
plane.normal[2] *= length;
plane.dist = DotProduct( pass->points[j], plane.normal );
//
// find out which side of the generated seperating plane has the
// source portal
//
#if 1
fliptest = qfalse;
for ( k = 0 ; k < source->numpoints ; k++ )
{
if ( k == i || k == l ) {
continue;
}
d = DotProduct( source->points[k], plane.normal ) - plane.dist;
if ( d < -ON_EPSILON ) { // source is on the negative side, so we want all
// pass and target on the positive side
fliptest = qfalse;
break;
}
else if ( d > ON_EPSILON ) { // source is on the positive side, so we want all
// pass and target on the negative side
fliptest = qtrue;
break;
}
}
if ( k == source->numpoints ) {
continue; // planar with source portal
}
#else
fliptest = flipclip;
#endif
//
// flip the normal if the source portal is backwards
//
if ( fliptest ) {
VectorSubtract( vec3_origin, plane.normal, plane.normal );
plane.dist = -plane.dist;
}
#if 1
//
// if all of the pass portal points are now on the positive side,
// this is the seperating plane
//
counts[0] = counts[1] = counts[2] = 0;
for ( k = 0 ; k < pass->numpoints ; k++ )
{
if ( k == j ) {
continue;
}
d = DotProduct( pass->points[k], plane.normal ) - plane.dist;
if ( d < -ON_EPSILON ) {
break;
}
else if ( d > ON_EPSILON ) {
counts[0]++;
}
else{
counts[2]++;
}
}
if ( k != pass->numpoints ) {
continue; // points on negative side, not a seperating plane
}
if ( !counts[0] ) {
continue; // planar with seperating plane
}
#else
k = ( j + 1 ) % pass->numpoints;
d = DotProduct( pass->points[k], plane.normal ) - plane.dist;
if ( d < -ON_EPSILON ) {
continue;
}
k = ( j + pass->numpoints - 1 ) % pass->numpoints;
d = DotProduct( pass->points[k], plane.normal ) - plane.dist;
if ( d < -ON_EPSILON ) {
continue;
}
#endif
//
// flip the normal if we want the back side
//
if ( flipclip ) {
VectorSubtract( vec3_origin, plane.normal, plane.normal );
plane.dist = -plane.dist;
}
if ( numseperators >= maxseperators ) {
Error( "max seperators" );
}
seperators[numseperators] = plane;
numseperators++;
break;
}
}
return numseperators;
}
/*
===============
CreatePassages
MrE: create passages from one portal to all the portals in the leaf the portal leads to
every passage has a cansee bit string with all the portals that can be
seen through the passage
===============
*/
void CreatePassages( int portalnum ){
int i, j, k, n, numseperators, numsee;
float d;
vportal_t *portal, *p, *target;
leaf_t *leaf;
passage_t *passage, *lastpassage;
visPlane_t seperators[MAX_SEPERATORS * 2];
fixedWinding_t *w;
fixedWinding_t in, out, *res;
#ifdef MREDEBUG
Sys_Printf( "\r%6d", portalnum );
#endif
portal = sorted_portals[portalnum];
if ( portal->removed ) {
portal->status = stat_done;
return;
}
lastpassage = NULL;
leaf = &leafs[portal->leaf];
for ( i = 0; i < leaf->numportals; i++ )
{
target = leaf->portals[i];
if ( target->removed ) {
continue;
}
passage = (passage_t *) safe_malloc( sizeof( passage_t ) + portalbytes );
memset( passage, 0, sizeof( passage_t ) + portalbytes );
numseperators = AddSeperators( portal->winding, target->winding, qfalse, seperators, MAX_SEPERATORS * 2 );
numseperators += AddSeperators( target->winding, portal->winding, qtrue, &seperators[numseperators], MAX_SEPERATORS * 2 - numseperators );
passage->next = NULL;
if ( lastpassage ) {
lastpassage->next = passage;
}
else{
portal->passages = passage;
}
lastpassage = passage;
numsee = 0;
//create the passage->cansee
for ( j = 0; j < numportals * 2; j++ )
{
p = &portals[j];
if ( p->removed ) {
continue;
}
if ( !( target->portalflood[j >> 3] & ( 1 << ( j & 7 ) ) ) ) {
continue;
}
if ( !( portal->portalflood[j >> 3] & ( 1 << ( j & 7 ) ) ) ) {
continue;
}
for ( k = 0; k < numseperators; k++ )
{
//
d = DotProduct( p->origin, seperators[k].normal ) - seperators[k].dist;
//if completely at the back of the seperator plane
if ( d < -p->radius + ON_EPSILON ) {
break;
}
w = p->winding;
for ( n = 0; n < w->numpoints; n++ )
{
d = DotProduct( w->points[n], seperators[k].normal ) - seperators[k].dist;
//if at the front of the seperator
if ( d > ON_EPSILON ) {
break;
}
}
//if no points are at the front of the seperator
if ( n >= w->numpoints ) {
break;
}
}
if ( k < numseperators ) {
continue;
}
/* explitive deleted */
/* ydnar: prefer correctness to stack overflow */
//% memcpy( &in, p->winding, (int)((fixedWinding_t *)0)->points[p->winding->numpoints] );
if ( p->winding->numpoints <= MAX_POINTS_ON_FIXED_WINDING ) {
memcpy( &in, p->winding, (size_t) &( ( (fixedWinding_t*) 0 )->points[ p->winding->numpoints ] ) );
}
else{
memcpy( &in, p->winding, sizeof( fixedWinding_t ) );
}
for ( k = 0; k < numseperators; k++ )
{
/* ydnar: this is a shitty crutch */
if ( in.numpoints > MAX_POINTS_ON_FIXED_WINDING ) {
//% Sys_Printf( "[%d]", p->winding->numpoints );
in.numpoints = MAX_POINTS_ON_FIXED_WINDING;
}
res = PassageChopWinding( &in, &out, &seperators[ k ] );
if ( res == &out ) {
memcpy( &in, &out, sizeof( fixedWinding_t ) );
}
if ( res == NULL ) {
break;
}
}
if ( k < numseperators ) {
continue;
}
passage->cansee[j >> 3] |= ( 1 << ( j & 7 ) );
numsee++;
}
}
}
void PassageMemory( void ){
int i, j, totalmem, totalportals;
vportal_t *portal, *target;
leaf_t *leaf;
totalmem = 0;
totalportals = 0;
for ( i = 0; i < numportals; i++ )
{
portal = sorted_portals[i];
if ( portal->removed ) {
continue;
}
leaf = &leafs[portal->leaf];
for ( j = 0; j < leaf->numportals; j++ )
{
target = leaf->portals[j];
if ( target->removed ) {
continue;
}
totalmem += sizeof( passage_t ) + portalbytes;
totalportals++;
}
}
Sys_Printf( "%7i average number of passages per leaf\n", totalportals / numportals );
Sys_Printf( "%7i MB required passage memory\n", totalmem >> 10 >> 10 );
}
/*
===============================================================================
This is a rough first-order aproximation that is used to trivially reject some
of the final calculations.
Calculates portalfront and portalflood bit vectors
thinking about:
typedef struct passage_s
{
struct passage_s *next;
struct portal_s *to;
stryct sep_s *seperators;
byte *mightsee;
} passage_t;
typedef struct portal_s
{
struct passage_s *passages;
int leaf; // leaf portal faces into
} portal_s;
leaf = portal->leaf
clear
for all portals
calc portal visibility
clear bit vector
for all passages
passage visibility
for a portal to be visible to a passage, it must be on the front of
all seperating planes, and both portals must be behind the new portal
===============================================================================
*/
int c_flood, c_vis;
/*
==================
SimpleFlood
==================
*/
void SimpleFlood( vportal_t *srcportal, int leafnum ){
int i;
leaf_t *leaf;
vportal_t *p;
int pnum;
leaf = &leafs[leafnum];
for ( i = 0 ; i < leaf->numportals ; i++ )
{
p = leaf->portals[i];
if ( p->removed ) {
continue;
}
pnum = p - portals;
if ( !( srcportal->portalfront[pnum >> 3] & ( 1 << ( pnum & 7 ) ) ) ) {
continue;
}
if ( srcportal->portalflood[pnum >> 3] & ( 1 << ( pnum & 7 ) ) ) {
continue;
}
srcportal->portalflood[pnum >> 3] |= ( 1 << ( pnum & 7 ) );
SimpleFlood( srcportal, p->leaf );
}
}
/*
==============
BasePortalVis
==============
*/
void BasePortalVis( int portalnum ){
int j, k;
vportal_t *tp, *p;
float d;
fixedWinding_t *w;
vec3_t dir;
p = portals + portalnum;
if ( p->removed ) {
return;
}
p->portalfront = safe_malloc( portalbytes );
memset( p->portalfront, 0, portalbytes );
p->portalflood = safe_malloc( portalbytes );
memset( p->portalflood, 0, portalbytes );
p->portalvis = safe_malloc( portalbytes );
memset( p->portalvis, 0, portalbytes );
for ( j = 0, tp = portals ; j < numportals * 2 ; j++, tp++ )
{
if ( j == portalnum ) {
continue;
}
if ( tp->removed ) {
continue;
}
/* ydnar: this is old farplane vis code from mre */
/*
if (farplanedist >= 0)
{
vec3_t dir;
VectorSubtract(p->origin, tp->origin, dir);
if (VectorLength(dir) > farplanedist - p->radius - tp->radius)
continue;
}
*/
/* ydnar: this is known-to-be-working farplane code */
if ( farPlaneDist > 0.0f ) {
VectorSubtract( p->origin, tp->origin, dir );
if ( VectorLength( dir ) - p->radius - tp->radius > farPlaneDist ) {
continue;
}
}
w = tp->winding;
for ( k = 0 ; k < w->numpoints ; k++ )
{
d = DotProduct( w->points[k], p->plane.normal )
- p->plane.dist;
if ( d > ON_EPSILON ) {
break;
}
}
if ( k == w->numpoints ) {
continue; // no points on front
}
w = p->winding;
for ( k = 0 ; k < w->numpoints ; k++ )
{
d = DotProduct( w->points[k], tp->plane.normal )
- tp->plane.dist;
if ( d < -ON_EPSILON ) {
break;
}
}
if ( k == w->numpoints ) {
continue; // no points on front
}
p->portalfront[j >> 3] |= ( 1 << ( j & 7 ) );
}
SimpleFlood( p, p->leaf );
p->nummightsee = CountBits( p->portalflood, numportals * 2 );
// Sys_Printf ("portal %i: %i mightsee\n", portalnum, p->nummightsee);
c_flood += p->nummightsee;
}
/*
===============================================================================
This is a second order aproximation
Calculates portalvis bit vector
WAAAAAAY too slow.
===============================================================================
*/
/*
==================
RecursiveLeafBitFlow
==================
*/
void RecursiveLeafBitFlow( int leafnum, byte *mightsee, byte *cansee ){
vportal_t *p;
leaf_t *leaf;
int i, j;
long more;
int pnum;
byte newmight[MAX_PORTALS / 8];
leaf = &leafs[leafnum];
// check all portals for flowing into other leafs
for ( i = 0 ; i < leaf->numportals ; i++ )
{
p = leaf->portals[i];
if ( p->removed ) {
continue;
}
pnum = p - portals;
// if some previous portal can't see it, skip
if ( !( mightsee[pnum >> 3] & ( 1 << ( pnum & 7 ) ) ) ) {
continue;
}
// if this portal can see some portals we mightsee, recurse
more = 0;
for ( j = 0 ; j < portallongs ; j++ )
{
( (long *)newmight )[j] = ( (long *)mightsee )[j]
& ( (long *)p->portalflood )[j];
more |= ( (long *)newmight )[j] & ~( (long *)cansee )[j];
}
if ( !more ) {
continue; // can't see anything new
}
cansee[pnum >> 3] |= ( 1 << ( pnum & 7 ) );
RecursiveLeafBitFlow( p->leaf, newmight, cansee );
}
}
/*
==============
BetterPortalVis
==============
*/
void BetterPortalVis( int portalnum ){
vportal_t *p;
p = portals + portalnum;
if ( p->removed ) {
return;
}
RecursiveLeafBitFlow( p->leaf, p->portalflood, p->portalvis );
// build leaf vis information
p->nummightsee = CountBits( p->portalvis, numportals * 2 );
c_vis += p->nummightsee;
}