2007-11-04 03:34:51 +00:00
|
|
|
#ifndef __APPLE__
|
|
|
|
#include <malloc.h>
|
|
|
|
#else
|
|
|
|
#include <stdlib.h>
|
|
|
|
#endif
|
|
|
|
#include <limits.h>
|
|
|
|
#include <float.h>
|
|
|
|
|
|
|
|
#include "mathlib.h"
|
|
|
|
|
|
|
|
#define TINY FLT_MIN
|
|
|
|
|
|
|
|
void lubksb(float **a, int n, int *indx, float b[])
|
|
|
|
// Solves the set of n linear equations A.X=B. Here a[n][n] is input, not as the matrix
|
|
|
|
// A but rather as its LU decomposition determined by the routine ludcmp. indx[n] is input
|
|
|
|
// as the permutation vector returned by ludcmp. b[n] is input as the right-hand side vector
|
|
|
|
// B, and returns with the solution vector X. a, n and indx are not modified by this routine
|
|
|
|
// and can be left in place for successive calls with different right-hand sides b. This routine takes
|
|
|
|
// into account the possibility that b will begin with many zero elements, so it is efficient for use
|
|
|
|
// in matrix inversion
|
|
|
|
{
|
|
|
|
int i,ii=-1,ip,j;
|
|
|
|
float sum;
|
|
|
|
|
|
|
|
for (i=0;i<n;i++) {
|
|
|
|
ip=indx[i];
|
|
|
|
sum=b[ip];
|
|
|
|
b[ip]=b[i];
|
|
|
|
if (ii>=0)
|
|
|
|
for (j=ii;j<i;j++) sum -= a[i][j]*b[j];
|
|
|
|
else if (sum) ii=i;
|
|
|
|
b[i]=sum;
|
|
|
|
}
|
|
|
|
for (i=n-1;i>=0;i--) {
|
|
|
|
sum=b[i];
|
|
|
|
for (j=i+1;j<n;j++) sum -= a[i][j]*b[j];
|
|
|
|
b[i]=sum/a[i][i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* (C) Copr. 1986-92 Numerical Recipes Software */
|
|
|
|
|
|
|
|
|
|
|
|
int ludcmp(float **a, int n, int *indx, float *d)
|
|
|
|
// given a matrix a[n][n] this routine replaces it with the LU decomposition of a rowwise
|
|
|
|
// permutation of itself. a and n are input. a is output, arranged as in above equation;
|
|
|
|
// indx[n] is an output vector that records the row permutation effected by the partial
|
|
|
|
// pivoting; d is output as +/-1 depending on whether the number of row interchanges was even
|
|
|
|
// or odd, respectively. This routine is used in combination with lubksb to solve linear
|
|
|
|
// equations or invert a matrix.
|
|
|
|
{
|
|
|
|
int i,imax,j,k;
|
|
|
|
float big,dum,sum,temp;
|
|
|
|
float *vv;
|
|
|
|
|
|
|
|
vv=(float*)malloc(sizeof(float)*n);
|
|
|
|
*d=1.0;
|
|
|
|
for (i=0;i<n;i++) {
|
|
|
|
big=0.0;
|
|
|
|
for (j=0;j<n;j++)
|
|
|
|
if ((temp=(float)fabs(a[i][j])) > big) big=temp;
|
|
|
|
if (big == 0.0) return 1;
|
|
|
|
vv[i]=1.0f/big;
|
|
|
|
}
|
|
|
|
for (j=0;j<n;j++) {
|
|
|
|
for (i=0;i<j;i++) {
|
|
|
|
sum=a[i][j];
|
|
|
|
for (k=0;k<i;k++) sum -= a[i][k]*a[k][j];
|
|
|
|
a[i][j]=sum;
|
|
|
|
}
|
|
|
|
big=0.0;
|
|
|
|
for (i=j;i<n;i++) {
|
|
|
|
sum=a[i][j];
|
|
|
|
for (k=0;k<j;k++)
|
|
|
|
sum -= a[i][k]*a[k][j];
|
|
|
|
a[i][j]=sum;
|
|
|
|
if ( (dum=vv[i]*(float)fabs(sum)) >= big) {
|
|
|
|
big=dum;
|
|
|
|
imax=i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (j != imax) {
|
|
|
|
for (k=0;k<n;k++) {
|
|
|
|
dum=a[imax][k];
|
|
|
|
a[imax][k]=a[j][k];
|
|
|
|
a[j][k]=dum;
|
|
|
|
}
|
|
|
|
*d = -(*d);
|
|
|
|
vv[imax]=vv[j];
|
|
|
|
}
|
|
|
|
indx[j]=imax;
|
|
|
|
if (a[j][j] == 0.0) a[j][j]=TINY;
|
|
|
|
if (j != n) {
|
|
|
|
dum=1.0f/(a[j][j]);
|
|
|
|
for (i=j+1;i<n;i++) a[i][j] *= dum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
free(vv);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* (C) Copr. 1986-92 Numerical Recipes Software */
|