gtkradiant/libs/mathlib.h

306 lines
12 KiB
C
Raw Normal View History

/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __MATHLIB__
#define __MATHLIB__
// mathlib.h
#include <math.h>
#include "bytebool.h"
#ifdef __cplusplus
extern "C"
{
#endif
typedef float vec_t;
typedef vec_t vec3_t[3];
typedef vec_t vec5_t[5];
typedef vec_t vec4_t[4];
#define SIDE_FRONT 0
#define SIDE_ON 2
#define SIDE_BACK 1
#define SIDE_CROSS -2
// plane types are used to speed some tests
// 0-2 are axial planes
#define PLANE_X 0
#define PLANE_Y 1
#define PLANE_Z 2
#define PLANE_NON_AXIAL 3
#define Q_PI 3.14159265358979323846f
extern vec3_t vec3_origin;
#define EQUAL_EPSILON 0.001
#ifndef VEC_MAX
#define VEC_MAX 3.402823466e+38F
#endif
qboolean VectorCompare (vec3_t v1, vec3_t v2);
#define DotProduct(x,y) ((x)[0]*(y)[0]+(x)[1]*(y)[1]+(x)[2]*(y)[2])
#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2])
#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2])
#define VectorIncrement(a,b) ((b)[0]+=(a)[0],(b)[1]+=(a)[1],(b)[2]+=(a)[2])
#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2])
#define VectorSet(v, a, b, c) ((v)[0]=(a),(v)[1]=(b),(v)[2]=(c))
#define VectorScale(a,b,c) ((c)[0]=(b)*(a)[0],(c)[1]=(b)*(a)[1],(c)[2]=(b)*(a)[2])
#define VectorMid(a,b,c) ((c)[0]=((a)[0]+(b)[0])*0.5f,(c)[1]=((a)[1]+(b)[1])*0.5f,(c)[2]=((a)[2]+(b)[2])*0.5f)
#define VectorNegative(a,b) ((b)[0]=-(a)[0],(b)[1]=-(a)[1],(b)[2]=-(a)[2])
#define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0])
#define VectorClear(x) ((x)[0]=(x)[1]=(x)[2]=0)
#define Q_rint(in) ((vec_t)floor(in+0.5))
vec_t VectorLength(vec3_t v);
void VectorMA( const vec3_t va, vec_t scale, const vec3_t vb, vec3_t vc );
void _CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross);
vec_t VectorNormalize (const vec3_t in, vec3_t out);
vec_t ColorNormalize( const vec3_t in, vec3_t out );
void VectorInverse (vec3_t v);
void VectorPolar(vec3_t v, float radius, float theta, float phi);
// default snapping, to 1
void VectorSnap(vec3_t v);
// integer snapping
void VectorISnap(vec3_t point, int snap);
// Gef: added snap to float for sub-integer grid sizes
// TTimo: we still use the int version of VectorSnap when possible
// to avoid potential rounding issues
// TTimo: renaming to VectorFSnap for C implementation
void VectorFSnap(vec3_t point, float snap);
// NOTE: added these from Ritual's Q3Radiant
void ClearBounds (vec3_t mins, vec3_t maxs);
void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs);
void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up);
void VectorToAngles( vec3_t vec, vec3_t angles );
#define ZERO_EPSILON 1.0E-6
#define RAD2DEGMULT 57.29577951308232f
#define DEG2RADMULT 0.01745329251994329f
#define RAD2DEG( a ) ( (a) * RAD2DEGMULT )
#define DEG2RAD( a ) ( (a) * DEG2RADMULT )
void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t out);
void VectorRotateOrigin (vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out);
// some function merged from tools mathlib code
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c );
void NormalToLatLong( const vec3_t normal, byte bytes[2] );
int PlaneTypeForNormal (vec3_t normal);
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees );
// Spog
// code imported from geomlib
/*!
\todo
FIXME test calls such as intersect tests should be named test_
*/
typedef vec_t m3x3_t[9];
/*!NOTE
m4x4 looks like this..
x y z
x axis ( 0 1 2)
y axis ( 4 5 6)
z axis ( 8 9 10)
translation (12 13 14)
scale ( 0 5 10)
*/
typedef vec_t m4x4_t[16];
#define M4X4_INDEX(m,row,col) (m[(col<<2)+row])
typedef enum { TRANSLATE, SCALE, ROTATE } transformtype; // legacy, used only in pmesh.cpp
typedef enum { eXYZ, eYZX, eZXY, eXZY, eYXZ, eZYX } eulerOrder_t;
// constructors
/*! create m4x4 as identity matrix */
void m4x4_identity(m4x4_t matrix);
/*! create m4x4 as a translation matrix, for a translation vec3 */
void m4x4_translation_for_vec3(m4x4_t matrix, const vec3_t translation);
/*! create m4x4 as a rotation matrix, for an euler angles (degrees) vec3 */
void m4x4_rotation_for_vec3(m4x4_t matrix, const vec3_t euler, eulerOrder_t order);
/*! create m4x4 as a scaling matrix, for a scale vec3 */
void m4x4_scale_for_vec3(m4x4_t matrix, const vec3_t scale);
/*! create m4x4 as a rotation matrix, for a quaternion vec4 */
void m4x4_rotation_for_quat(m4x4_t matrix, const vec4_t rotation);
/*! create m4x4 as a rotation matrix, for an axis vec3 and an angle (radians) */
void m4x4_rotation_for_axisangle(m4x4_t matrix, const vec3_t axis, vec_t angle);
// a valid m4x4 to be modified is always first argument
/*! translate m4x4 by a translation vec3 */
void m4x4_translate_by_vec3(m4x4_t matrix, const vec3_t translation);
/*! rotate m4x4 by a euler (degrees) vec3 */
void m4x4_rotate_by_vec3(m4x4_t matrix, const vec3_t euler, eulerOrder_t order);
/*! scale m4x4 by a scaling vec3 */
void m4x4_scale_by_vec3(m4x4_t matrix, const vec3_t scale);
/*! rotate m4x4 by a quaternion vec4 */
void m4x4_rotate_by_quat(m4x4_t matrix, const vec4_t rotation);
/*! rotate m4x4 by an axis vec3 and an angle (radians) */
void m4x4_rotate_by_axisangle(m4x4_t matrix, const vec3_t axis, vec_t angle);
/*! transform m4x4 by translation/euler/scaling vec3 (transform = translation.euler.scale) */
void m4x4_transform_by_vec3(m4x4_t matrix, const vec3_t translation, const vec3_t euler, eulerOrder_t order, const vec3_t scale);
/*! rotate m4x4 around a pivot point by euler(degrees) vec3 */
void m4x4_pivoted_rotate_by_vec3(m4x4_t matrix, const vec3_t euler, eulerOrder_t order, const vec3_t pivotpoint);
/*! scale m4x4 around a pivot point by scaling vec3 */
void m4x4_pivoted_scale_by_vec3(m4x4_t matrix, const vec3_t scale, const vec3_t pivotpoint);
/*! transform m4x4 around a pivot point by translation/euler/scaling vec3 */
void m4x4_pivoted_transform_by_vec3(m4x4_t matrix, const vec3_t translation, const vec3_t euler, eulerOrder_t order, const vec3_t scale, const vec3_t pivotpoint);
/*! rotate m4x4 around a pivot point by quaternion vec4 */
void m4x4_pivoted_rotate_by_quat(m4x4_t matrix, const vec4_t rotation, const vec3_t pivotpoint);
/*! rotate m4x4 around a pivot point by axis vec3 and angle (radians) */
void m4x4_pivoted_rotate_by_axisangle(m4x4_t matrix, const vec3_t axis, vec_t angle, const vec3_t pivotpoint);
/*! post-multiply m4x4 by another m4x4 */
void m4x4_multiply_by_m4x4(m4x4_t matrix, const m4x4_t other);
/*! pre-multiply m4x4 by another m4x4 */
void m4x4_premultiply_by_m4x4(m4x4_t matrix, const m4x4_t other);
/*! multiply a point (x,y,z,1) by matrix */
void m4x4_transform_point(const m4x4_t matrix, vec3_t point);
/*! multiply a normal (x,y,z,0) by matrix */
void m4x4_transform_normal(const m4x4_t matrix, vec3_t normal);
/*! multiply a vec4 (x,y,z,w) by matrix */
void m4x4_transform_vec4(const m4x4_t matrix, vec4_t vector);
/*! multiply a point (x,y,z,1) by matrix */
void m4x4_transform_point(const m4x4_t matrix, vec3_t point);
/*! multiply a normal (x,y,z,0) by matrix */
void m4x4_transform_normal(const m4x4_t matrix, vec3_t normal);
/*! transpose a m4x4 */
void m4x4_transpose(m4x4_t matrix);
/*! invert an orthogonal 4x3 subset of a 4x4 matrix */
void m4x4_orthogonal_invert(m4x4_t matrix);
/*! invert any m4x4 using Kramer's rule.. return 1 if matrix is singular, else return 0 */
int m4x4_invert(m4x4_t matrix);
/*!
\todo object/ray intersection functions should maybe return a point rather than a distance?
*/
/*!
aabb_t - "axis-aligned" bounding box...
origin: centre of bounding box...
extents: +/- extents of box from origin...
radius: cached length of extents vector...
*/
typedef struct aabb_s
{
vec3_t origin;
vec3_t extents;
vec_t radius;
} aabb_t;
/*!
bbox_t - oriented bounding box...
aabb: axis-aligned bounding box...
axes: orientation axes...
*/
typedef struct bbox_s
{
aabb_t aabb;
vec3_t axes[3];
} bbox_t;
/*!
ray_t - origin point and direction unit-vector
*/
typedef struct ray_s
{
vec3_t origin;
vec3_t direction;
} ray_t;
/*! Generate AABB from min/max. */
void aabb_construct_for_vec3(aabb_t *aabb, const vec3_t min, const vec3_t max);
/*! Update bounding-sphere radius. */
void aabb_update_radius(aabb_t *aabb);
/*! Initialise AABB to negative size. */
void aabb_clear(aabb_t *aabb);
/*! Extend AABB to include point. */
void aabb_extend_by_point(aabb_t *aabb, const vec3_t point);
/*! Extend AABB to include aabb_src. */
void aabb_extend_by_aabb(aabb_t *aabb, const aabb_t *aabb_src);
/*! Extend AABB by +/- extension vector. */
void aabb_extend_by_vec3(aabb_t *aabb, vec3_t extension);
/*! Return 2 if point is inside, else 1 if point is on surface, else 0. */
int aabb_intersect_point(const aabb_t *aabb, const vec3_t point);
/*! Return 2 if aabb_src intersects, else 1 if aabb_src touches exactly, else 0. */
int aabb_intersect_aabb(const aabb_t *aabb, const aabb_t *aabb_src);
/*! Return 2 if aabb is behind plane, else 1 if aabb intersects plane, else 0. */
int aabb_intersect_plane(const aabb_t *aabb, const float *plane);
/*! Return 1 if aabb intersects ray, else 0... dist = closest intersection. */
int aabb_intersect_ray(const aabb_t *aabb, const ray_t *ray, vec_t *dist);
/*! Return 1 if aabb intersects ray, else 0. Faster, but does not provide point of intersection */
int aabb_test_ray(const aabb_t* aabb, const ray_t* ray);
/*! Generate AABB from oriented bounding box. */
void aabb_for_bbox(aabb_t *aabb, const bbox_t *bbox);
/*! Generate AABB from 2-dimensions of min/max, specified by axis. */
void aabb_for_area(aabb_t *aabb, vec3_t area_tl, vec3_t area_br, int axis);
/*! Generate AABB to contain src * transform. NOTE: transform must be orthogonal */
void aabb_for_transformed_aabb(aabb_t* dst, const aabb_t* src, const m4x4_t transform);
/*! Generate oriented bounding box from AABB and transformation matrix. */
/*!\todo Remove need to specify euler/scale. */
void bbox_for_oriented_aabb(bbox_t *bbox, const aabb_t *aabb,
const m4x4_t matrix, const vec3_t euler, const vec3_t scale);
/*! Return 2 is bbox is behind plane, else return 1 if bbox intersects plane, else return 0. */
int bbox_intersect_plane(const bbox_t *bbox, const vec_t* plane);
/*! Generate a ray from an origin point and a direction unit-vector */
void ray_construct_for_vec3(ray_t *ray, const vec3_t origin, const vec3_t direction);
/*! Transform a ray */
void ray_transform(ray_t *ray, const m4x4_t matrix);
/*! return true if point intersects cone formed by ray, divergence and epsilon */
vec_t ray_intersect_point(const ray_t *ray, const vec3_t point, vec_t epsilon, vec_t divergence);
/*! return true if triangle intersects ray... dist = dist from intersection point to ray-origin */
vec_t ray_intersect_triangle(const ray_t *ray, qboolean bCullBack, const vec3_t vert0, const vec3_t vert1, const vec3_t vert2);
#ifdef __cplusplus
}
#endif
#endif /* __MATHLIB__ */