tenebrae2/gl_curves.c
2003-01-17 21:18:53 +00:00

489 lines
13 KiB
C

/*
Copyright (C) 2002-2003 Charles Hollemeersch
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
PENTA:
Bezier curve code...
We evaluate curves at load time based on the user's precision preferences.
No dynamic lod...
*/
#include "quakedef.h"
int numleafbrushes;
mcurve_t *curvechain = NULL;
#define MAX_BIN 10
int binomials[MAX_BIN][MAX_BIN];
/*
We roll or own Bezier code...
Dunno how id is supposed to do it but we just evaluate the Bernstein polynomials....
It's not particulary efficient but we pre-evaluate them so it's not a problem...
*/
int fac(int n) {
int i;
int rez = 1;
for (i=2;i<=n;i++) {
rez*=i;
}
return rez;
}
int binomial(int n, int k) {
return fac(n)/fac(k)/fac(n-k);
}
//Make a lookup table ...
void CS_FillBinomials(void) {
int i,j;
for (i=0; i<MAX_BIN; i++) {
for (j=0; j<MAX_BIN; j++) {
binomials[i][j] = binomial(i,j);
}
}
}
//Evaluates the bernstein polynomial
float Bernstein(int k, int n, float u) {
return (float)binomials[n][k]*(float)pow(1.0-u,n-k)*(float)pow(u,k);
}
/*
=================
EvaluateBezier
Evaluates the bezier surface with given control points at the u,v parameters
=================
*/
void EvaluateBezier(mmvertex_t *controlpoints,int ofsw, int ofsh, int width, int height, float u, float v,mmvertex_t *result) {
int i,j;
float scale;
float color[4];
int n=3;
int m=3;
mmvertex_t *controlpoint;
for (i=0; i<4; i++) {
color[i] = 0.0f;
}
for (i=0; i<3; i++) {
result->position[i] = 0.0;
}
for (i=0; i<2; i++) {
result->texture[i] = 0.0;
result->lightmap[i] = 0.0;
}
for (i=0; i<n; i++) {
for (j=0; j<m; j++) {
scale = Bernstein(i,n-1,u)*Bernstein(j,m-1,v);
controlpoint = &controlpoints[(ofsw+i)+(ofsh+j)*width];
result->position[0]+=(scale*controlpoint->position[0]);
result->position[1]+=(scale*controlpoint->position[1]);
result->position[2]+=(scale*controlpoint->position[2]);
result->texture[0]+=(scale*controlpoint->texture[0]);
result->texture[1]+=(scale*controlpoint->texture[1]);
result->lightmap[0]+=(scale*controlpoint->lightmap[0]);
result->lightmap[1]+=(scale*controlpoint->lightmap[1]);
color[0]+=(scale*controlpoint->color[0]);
color[1]+=(scale*controlpoint->color[1]);
color[2]+=(scale*controlpoint->color[2]);
color[3]+=(scale*controlpoint->color[3]);
}
}
for (i=0; i<4; i++) {
result->color[i] = (byte)color[i];
}
}
void EvaluateBiquadraticBeziers(mmvertex_t *controlpoints, int width, int height, float u, float v,mmvertex_t *result) {
// EvaluateBezier(controlpoints,0,0,width,height,u,v,result);
//calculate number of patches in curve
int numpatchx = (width- 1) / 2;
int numpatchy = (height- 1) / 2;
float invx = 1.0f / numpatchx;
float invy = 1.0f / numpatchy;
//caclucate patch given u/v is on
int ofsx = floor(u*numpatchx)*2;
int ofsy = floor(v*numpatchy)*2;
if (ofsx >= (width-1)) ofsx-=2;
if (ofsy >= (height-1)) ofsy-=2;
//calculate u/v relative to patch
u = (u-(ofsx/2)*invx)*numpatchx;
v = (v-(ofsy/2)*invy)*numpatchy;
EvaluateBezier(controlpoints,ofsx,ofsy,width,height,u,v,result);
}
void MeanVert( mmvertex_t *a, mmvertex_t *b, mmvertex_t *out ) {
out->position[0] = 0.5 * (a->position[0] + b->position[0]);
out->position[1] = 0.5 * (a->position[1] + b->position[1]);
out->position[2] = 0.5 * (a->position[2] + b->position[2]);
out->texture[0] = 0.5 * (a->texture[0] + b->texture[0]);
out->texture[1] = 0.5 * (a->texture[1] + b->texture[1]);
out->lightmap[0] = 0.5 * (a->lightmap[0] + b->lightmap[0]);
out->lightmap[1] = 0.5 * (a->lightmap[1] + b->lightmap[1]);
out->color[0] = (a->color[0] + b->color[0]) >> 1;
out->color[1] = (a->color[1] + b->color[1]) >> 1;
out->color[2] = (a->color[2] + b->color[2]) >> 1;
out->color[3] = (a->color[3] + b->color[3]) >> 1;
}
/*
=================
PutMeshOnCurve
Drops the aproximating points onto the curve
=================
*/
void PutMeshOnCurve(mcurve_t in, mmvertex_t *verts) {
int i, j, l, w, h;
float prev, next;
float du, dv, u ,v;
mmvertex_t results[128*128];
du = 1.0f/(in.width-1);
dv = 1.0f/(in.height-1);
for (i=0, u=0; i<in.width; i++, u+=du) {
for (j=0, v=0; j<in.height; j++, v+=dv) {
EvaluateBiquadraticBeziers(verts,in.width,in.height,u,v,&results[i+j*in.width]);
}
}
for (i=0; i<in.width*in.height; i++) {
verts[i] = results[i];
}
/*
// put all the aproximating points on the curve
for (i=0; i<w; i++) {
for (j=1; j<h; j+=2) {
for (l=0; l<3; l++) {
prev = ( verts[j*in.width+i].position[l] + verts[(j+1)*in.width+i].position[l] ) * 0.5;
next = ( verts[j*in.width+i].position[l] + verts[(j-1)*in.width+i].position[l] ) * 0.5;
verts[j*in.width+i].position[l] = ( prev + next ) * 0.5;
}
}
}
for (j=0; j<h; j++) {
for (i=1; i<w; i+=2) {
for (l=0; l<3; l++) {
prev = ( verts[j*in.width+i].position[l] + verts[j*in.width+i+1].position[l] ) * 0.5;
next = ( verts[j*in.width+i].position[l] + verts[j*in.width+i-1].position[l] ) * 0.5;
verts[j*in.width+i].position[l] = ( prev + next ) * 0.5;
}
}
}
*/
}
void SubdivideCurve(mcurve_t *in, mmvertex_t *verts, int amount) {
int i, j, l, w, h, newwidth, newheight;
float prev, next;
float du, dv, u ,v;
mmvertex_t expand[128*128];
newwidth = in->controlwidth*amount;
newheight = in->controlheight*amount;
du = 1.0f/(newwidth-1);
dv = 1.0f/(newheight-1);
for (i=0, u=0; i<newwidth; i++, u+=du) {
for (j=0, v=0; j<newheight; j++, v+=dv) {
EvaluateBiquadraticBeziers(verts,in->controlwidth,in->controlheight,u,v,&expand[i+j*newwidth]);
}
}
for (i=0; i<newwidth*newheight; i++) {
if (i==0)
in->firstvertex = R_AllocateVertexInTemp(expand[i].position,
expand[i].texture, expand[i].lightmap, expand[i].color);
else
R_AllocateVertexInTemp(expand[i].position,
expand[i].texture, expand[i].lightmap, expand[i].color);
}
in->width = newwidth;
in->height = newheight;
}
#define MAX_EXPANDED_AXIS 128
int originalWidths[MAX_EXPANDED_AXIS];
int originalHeights[MAX_EXPANDED_AXIS];
/*
=================
SubdivideMesh
=================
*/
/*
void SubdivideMesh(mcurve_t *in, float maxError, float minLength, mmvertex_t *verts) {
int i, j, k, l;
mmvertex_t prev, next, mid;
vec3_t prevposition, nextposition, midposition;
vec3_t delta;
float len;
mmvertex_t expand[MAX_EXPANDED_AXIS][MAX_EXPANDED_AXIS];
for ( i = 0 ; i < in->width ; i++ ) {
for ( j = 0 ; j < in->height ; j++ ) {
expand[j][i] = verts[j*in->width+i];
}
}
for ( i = 0 ; i < in->height ; i++ ) {
originalHeights[i] = i;
}
for ( i = 0 ; i < in->width ; i++ ) {
originalWidths[i] = i;
}
// horizontal subdivisions
for ( j = 0 ; j + 2 < in->width ; j += 2 ) {
// check subdivided midpoints against control points
for ( i = 0 ; i < in->height ; i++ ) {
for ( l = 0 ; l < 3 ; l++ ) {
prevposition[l] = expand[i][j+1].position[l] - expand[i][j].position[l];
nextposition[l] = expand[i][j+2].position[l] - expand[i][j+1].position[l];
midposition[l] = (expand[i][j].position[l] + expand[i][j+1].position[l] * 2
+ expand[i][j+2].position[l] ) * 0.25;
}
// if the span length is too long, force a subdivision
if ( Length( prevposition ) > minLength
|| Length( nextposition ) > minLength ) {
break;
}
// see if this midpoint is off far enough to subdivide
VectorSubtract( expand[i][j+1].position, midposition, delta );
len = Length( delta );
if ( len > maxError ) {
break;
}
}
if ( in->width + 2 >= MAX_EXPANDED_AXIS ) {
break; // can't subdivide any more
}
if ( i == in->height ) {
continue; // didn't need subdivision
}
// insert two columns and replace the peak
in->width += 2;
for ( k = in->width - 1 ; k > j + 3 ; k-- ) {
originalWidths[k] = originalWidths[k-2];
}
originalWidths[j+3] = originalWidths[j+1];
originalWidths[j+2] = originalWidths[j+1];
originalWidths[j+1] = originalWidths[j];
for ( i = 0 ; i < in->height ; i++ ) {
MeanVert( &expand[i][j], &expand[i][j+1], &prev );
MeanVert( &expand[i][j+1], &expand[i][j+2], &next );
MeanVert( &prev, &next, &mid );
for ( k = in->width - 1 ; k > j + 3 ; k-- ) {
expand[i][k] = expand[i][k-2];
}
expand[i][j + 1] = prev;
expand[i][j + 2] = mid;
expand[i][j + 3] = next;
}
// back up and recheck this set again, it may need more subdivision
j -= 2;
}
// vertical subdivisions
for ( j = 0 ; j + 2 < in->height ; j += 2 ) {
// check subdivided midpoints against control points
for ( i = 0 ; i < in->width ; i++ ) {
for ( l = 0 ; l < 3 ; l++ ) {
prevposition[l] = expand[j+1][i].position[l] - expand[j][i].position[l];
nextposition[l] = expand[j+2][i].position[l] - expand[j+1][i].position[l];
midposition[l] = (expand[j][i].position[l] + expand[j+1][i].position[l] * 2
+ expand[j+2][i].position[l] ) * 0.25;
}
// if the span length is too long, force a subdivision
if ( Length( prevposition ) > minLength
|| Length( nextposition ) > minLength ) {
break;
}
// see if this midpoint is off far enough to subdivide
VectorSubtract( expand[j+1][i].position, midposition, delta );
len = Length( delta );
if ( len > maxError ) {
break;
}
}
if ( in->height + 2 >= MAX_EXPANDED_AXIS ) {
break; // can't subdivide any more
}
if ( i == in->width ) {
continue; // didn't need subdivision
}
// insert two columns and replace the peak
in->height += 2;
for ( k = in->height - 1 ; k > j + 3 ; k-- ) {
originalHeights[k] = originalHeights[k-2];
}
originalHeights[j+3] = originalHeights[j+1];
originalHeights[j+2] = originalHeights[j+1];
originalHeights[j+1] = originalHeights[j];
for ( i = 0 ; i < in->width ; i++ ) {
MeanVert( &expand[j][i], &expand[j+1][i], &prev );
MeanVert( &expand[j+1][i], &expand[j+2][i], &next );
MeanVert( &prev, &next, &mid );
for ( k = in->height - 1 ; k > j + 3 ; k-- ) {
expand[k][i] = expand[k-2][i];
}
expand[j+1][i] = prev;
expand[j+2][i] = mid;
expand[j+3][i] = next;
}
// back up and recheck this set again, it may need more subdivision
j -= 2;
}
// collapse the verts
verts = &expand[0][0];
for ( i = 1 ; i < in->height ; i++ ) {
memmove( &verts[i*in->width], expand[i], in->width * sizeof(mmvertex_t) );
}
for (i=0; i<in->width; i++) {
for (j=0; j<in->height; j++) {
if ((i==0) && (j==0))
in->firstcontrol = R_AllocateVertexInTemp(expand[j][i].position,
expand[j][i].texture, expand[j][i].lightmap, expand[j][i].color);
else
R_AllocateVertexInTemp(expand[j][i].position,
expand[j][i].texture, expand[j][i].lightmap, expand[j][i].color);
}
}
*/
/*
out.verts = &expand[0][0];
for ( i = 1 ; i < out.height ; i++ ) {
memmove( &out.verts[i*out.width], expand[i], out.width * sizeof(drawVert_t) );
}
return CopyMesh(&out);
*/
//}
/*
=================
CurveCreate
Creates a curve from the given surface
=================
*/
void CS_Create(dq3face_t *in, mcurve_t *curve, texture_t *texture)
{
curve->controlwidth = in->patchOrder[0];
curve->controlheight = in->patchOrder[1];
curve->firstcontrol = in->firstvertex;
//just use the control points as vertices
curve->firstvertex = in->firstmeshvertex;
curve->width = curve->controlwidth;
curve->height = curve->controlheight;
curve->next = NULL;
curve->texture = texture;
if (gl_mesherror.value > 0)
SubdivideCurve(curve,&tempVertices[curve->firstcontrol],gl_mesherror.value);
//PutMeshOnCurve(*curve,&tempVertices[curve->firstcontrol]);
//SubdivideMesh(curve,gl_mesherror.value,1000,&tempVertices[curve->firstcontrol]);
// Con_Printf("MeshCurve %i %i %i\n",curve->firstcontrol,curve->controlwidth,curve->controlheight);
}
void CS_DrawAmbient(mcurve_t *curve)
{
int i,j, i1, i2;
int w,h;
GL_Bind(curve->texture->gl_texturenum);
glShadeModel (GL_SMOOTH);
//Con_Printf("Drawcurve %i %i %i\n",curve->firstvertex,curve->width,curve->height);
h = curve->width;
w = curve->height;
for (i=0; i<w-1; i++) {
c_brush_polys+= 2*(h-1);
glBegin(GL_TRIANGLE_STRIP);
for (j=0; j<h; j++) {
i1 = curve->firstvertex+j+(i+1)*h;
i2 = curve->firstvertex+j+i*h;
glColor3ubv((byte *)&((float *)&globalVertexTable[i2])[7]);
glTexCoord2fv(&((float *)&globalVertexTable[i2])[3]);
glVertex3fv((float *)&globalVertexTable[i2]);
glColor3ubv((byte *)&((float *)&globalVertexTable[i1])[7]);
glTexCoord2fv(&((float *)&globalVertexTable[i1])[3]);
glVertex3fv((float *)&globalVertexTable[i1]);
}
glEnd();
}
}