460 lines
No EOL
12 KiB
C
460 lines
No EOL
12 KiB
C
/*
|
|
Copyright (C) 2002-2003 Charles Hollemeersch
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
PENTA:
|
|
|
|
Bezier curve code...
|
|
We evaluate curves at load time based on the user's precision preferences.
|
|
No dynamic lod...
|
|
*/
|
|
#include "quakedef.h"
|
|
|
|
int numleafbrushes;
|
|
|
|
//these are just utility structures
|
|
typedef struct {
|
|
int firstcontrol;
|
|
int firstvertex;
|
|
int controlwidth, controlheight;
|
|
int width, height;
|
|
} curve_t;
|
|
|
|
typedef struct {
|
|
vec3_t position;
|
|
float texture[2];
|
|
float lightmap[2];
|
|
byte color[4];
|
|
vec3_t tangent;
|
|
vec3_t binormal;
|
|
vec3_t normal;
|
|
} meshvertex_t;
|
|
|
|
|
|
#define MAX_BIN 10
|
|
int binomials[MAX_BIN][MAX_BIN];
|
|
|
|
/*
|
|
We roll or own Bezier code...
|
|
Dunno how id is supposed to do it but we just evaluate the Bernstein polynomials....
|
|
It's not particulary efficient but we pre-evaluate them so it's not a problem...
|
|
*/
|
|
|
|
int fac(int n) {
|
|
int i;
|
|
int rez = 1;
|
|
for (i=2;i<=n;i++) {
|
|
rez*=i;
|
|
}
|
|
return rez;
|
|
}
|
|
|
|
int binomial(int n, int k) {
|
|
return fac(n)/fac(k)/fac(n-k);
|
|
}
|
|
|
|
//Make a lookup table ...
|
|
void CS_FillBinomials(void) {
|
|
int i,j;
|
|
for (i=0; i<MAX_BIN; i++) {
|
|
for (j=0; j<MAX_BIN; j++) {
|
|
binomials[i][j] = binomial(i,j);
|
|
}
|
|
}
|
|
}
|
|
|
|
//Evaluates the bernstein polynomial
|
|
float Bernstein(int k, int n, float u) {
|
|
return (float)binomials[n][k]*(float)pow(1.0-u,n-k)*(float)pow(u,k);
|
|
}
|
|
|
|
/*
|
|
=================
|
|
EvaluateBezier
|
|
|
|
Evaluates the bezier surface with given control points at the u,v parameters
|
|
=================
|
|
*/
|
|
void EvaluateBezier(mmvertex_t *controlpoints,int ofsw, int ofsh, int width, int height, float u, float v,meshvertex_t *result) {
|
|
|
|
int i,j;
|
|
float scale;
|
|
float color[4];
|
|
int n=3;
|
|
int m=3;
|
|
mmvertex_t *controlpoint, *controlpoint2;
|
|
vec3_t temp;
|
|
|
|
for (i=0; i<4; i++) {
|
|
color[i] = 0.0f;
|
|
}
|
|
|
|
for (i=0; i<3; i++) {
|
|
result->position[i] = 0.0;
|
|
result->tangent[i] = 0.0;
|
|
result->normal[i] = 0.0;
|
|
result->binormal[i] = 0.0;
|
|
}
|
|
|
|
for (i=0; i<2; i++) {
|
|
result->texture[i] = 0.0;
|
|
result->lightmap[i] = 0.0;
|
|
}
|
|
|
|
//Calculate vertices & texture coords
|
|
for (i=0; i<n; i++) {
|
|
for (j=0; j<m; j++) {
|
|
scale = Bernstein(i,n-1,u)*Bernstein(j,m-1,v);
|
|
|
|
controlpoint = &controlpoints[(ofsw+i)+(ofsh+j)*width];
|
|
result->position[0]+=(scale*controlpoint->position[0]);
|
|
result->position[1]+=(scale*controlpoint->position[1]);
|
|
result->position[2]+=(scale*controlpoint->position[2]);
|
|
|
|
result->texture[0]+=(scale*controlpoint->texture[0]);
|
|
result->texture[1]+=(scale*controlpoint->texture[1]);
|
|
|
|
result->lightmap[0]+=(scale*controlpoint->lightmap[0]);
|
|
result->lightmap[1]+=(scale*controlpoint->lightmap[1]);
|
|
|
|
color[0]+=(scale*controlpoint->color[0]);
|
|
color[1]+=(scale*controlpoint->color[1]);
|
|
color[2]+=(scale*controlpoint->color[2]);
|
|
color[3]+=(scale*controlpoint->color[3]);
|
|
}
|
|
}
|
|
|
|
//Yeah parametric tangent space! (done by deriving the function to u or v)
|
|
/*
|
|
//tangent
|
|
for (i=0; i<n; i++) {
|
|
for (j=0; j<m-1; j++) {
|
|
scale = Bernstein(i,n-1,u)*Bernstein(j,m-2,v);
|
|
|
|
controlpoint = &controlpoints[(ofsw+i)+(ofsh+j+1)*width];
|
|
controlpoint2 = &controlpoints[(ofsw+i)+(ofsh+j)*width];
|
|
VectorSubtract(controlpoint->position,controlpoint2->position, temp);
|
|
result->tangent[0] += scale*temp[0];
|
|
result->tangent[1] += scale*temp[1];
|
|
result->tangent[2] += scale*temp[2];
|
|
}
|
|
}
|
|
VectorScale(result->tangent,m-1,result->tangent);
|
|
VectorNormalize(result->tangent); //needed?
|
|
|
|
//binormal
|
|
for (i=0; i<n-1; i++) {
|
|
for (j=0; j<m; j++) {
|
|
scale = Bernstein(i,n-2,u)*Bernstein(j,m-1,v);
|
|
|
|
controlpoint = &controlpoints[(ofsw+i+1)+(ofsh+j)*width];
|
|
controlpoint2 = &controlpoints[(ofsw+i)+(ofsh+j)*width];
|
|
VectorSubtract(controlpoint->position,controlpoint2->position, temp);
|
|
result->binormal[0] += scale*temp[0];
|
|
result->binormal[1] += scale*temp[1];
|
|
result->binormal[2] += scale*temp[2];
|
|
}
|
|
}
|
|
VectorScale(result->binormal,n-1,result->binormal);
|
|
VectorNormalize(result->binormal); //needed?
|
|
|
|
//normal
|
|
CrossProduct(result->binormal, result->tangent, result->normal);
|
|
VectorNormalize(result->normal); //needed?
|
|
*/
|
|
/*
|
|
VectorCopy(result->binormal, temp);
|
|
VectorCopy(result->tangent, result->binormal);
|
|
VectorCopy(result->tangent, temp);
|
|
*/
|
|
//VectorScale(result->tangent,-1,result->tangent);
|
|
|
|
for (i=0; i<4; i++) {
|
|
result->color[i] = (byte)color[i];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Quake3 beziers, are made up out of one or more 3x3 bezier patches
|
|
*/
|
|
void EvaluateBiquadraticBeziers(mmvertex_t *controlpoints, int width, int height, float u, float v,meshvertex_t *result) {
|
|
|
|
|
|
// EvaluateBezier(controlpoints,0,0,width,height,u,v,result);
|
|
|
|
//calculate number of patches in curve
|
|
int numpatchx = (width- 1) / 2;
|
|
int numpatchy = (height- 1) / 2;
|
|
|
|
float invx = 1.0f / numpatchx;
|
|
float invy = 1.0f / numpatchy;
|
|
|
|
//caclucate patch given u/v is on
|
|
int ofsx = floor(u*numpatchx)*2;
|
|
int ofsy = floor(v*numpatchy)*2;
|
|
|
|
if (ofsx >= (width-1)) ofsx-=2;
|
|
if (ofsy >= (height-1)) ofsy-=2;
|
|
|
|
//calculate u/v relative to patch
|
|
u = (u-(ofsx/2)*invx)*numpatchx;
|
|
v = (v-(ofsy/2)*invy)*numpatchy;
|
|
|
|
EvaluateBezier(controlpoints,ofsx,ofsy,width,height,u,v,result);
|
|
}
|
|
|
|
/**
|
|
* "Evaluates the controlpoints"
|
|
*/
|
|
void PutMeshOnCurve(curve_t in, mmvertex_t *verts) {
|
|
int i, j, l, w, h;
|
|
float prev, next;
|
|
float du, dv, u ,v;
|
|
meshvertex_t results[128*128];
|
|
du = 1.0f/(in.width-1);
|
|
dv = 1.0f/(in.height-1);
|
|
|
|
for (i=0, u=0; i<in.width; i++, u+=du) {
|
|
for (j=0, v=0; j<in.height; j++, v+=dv) {
|
|
EvaluateBiquadraticBeziers(verts,in.width,in.height,u,v,&results[i+j*in.width]);
|
|
}
|
|
}
|
|
|
|
for (i=0; i<in.width*in.height; i++) {
|
|
VectorCopy(results[i].position,verts[i].position);
|
|
}
|
|
}
|
|
|
|
#define MAX_EXPANDED_AXIS 128
|
|
|
|
/**
|
|
* Evaluate the mesh, subdivide the control grid amount times.
|
|
* Copies the resulting vertices to the out mesh.
|
|
*/
|
|
void SubdivideCurve(curve_t *in, mesh_t *out, mmvertex_t *verts, int amount) {
|
|
int i, j, l, w, h, newwidth, newheight;
|
|
float prev, next;
|
|
float du, dv, u ,v;
|
|
meshvertex_t *expand;
|
|
|
|
newwidth = in->controlwidth*amount;
|
|
newheight = in->controlheight*amount;
|
|
|
|
//only a temporaly buffer
|
|
expand = malloc(sizeof(meshvertex_t)*newwidth*newheight);
|
|
|
|
if (!expand) Sys_Error("No more memory\n");
|
|
|
|
du = 1.0f/(newwidth-1);
|
|
dv = 1.0f/(newheight-1);
|
|
|
|
for (i=0, u=0; i<newwidth; i++, u+=du) {
|
|
for (j=0, v=0; j<newheight; j++, v+=dv) {
|
|
EvaluateBiquadraticBeziers(verts,in->controlwidth,in->controlheight,u,v,&expand[i+j*newwidth]);
|
|
}
|
|
}
|
|
|
|
out->numvertices = newwidth*newheight;
|
|
in->width = newwidth;
|
|
in->height = newheight;
|
|
/*
|
|
out->tangents = Hunk_Alloc(sizeof(vec3_t)*out->numvertices);
|
|
out->binormals = Hunk_Alloc(sizeof(vec3_t)*out->numvertices);
|
|
out->normals = Hunk_Alloc(sizeof(vec3_t)*out->numvertices);
|
|
*/
|
|
for (i=0; i<newwidth*newheight; i++) {
|
|
|
|
//put the vertices in the global vertex table
|
|
if (i==0)
|
|
out->firstvertex = R_AllocateVertexInTemp(expand[i].position, expand[i].texture, expand[i].lightmap, expand[i].color);
|
|
else
|
|
R_AllocateVertexInTemp(expand[i].position, expand[i].texture, expand[i].lightmap, expand[i].color);
|
|
/*
|
|
VectorCopy(expand[i].binormal, out->binormals[i]);
|
|
VectorCopy(expand[i].normal, out->normals[i]);
|
|
VectorCopy(expand[i].tangent, out->tangents[i]);
|
|
*/
|
|
}
|
|
|
|
free(expand);
|
|
}
|
|
|
|
void CreateIndecies(curve_t *curve, mesh_t *mesh)
|
|
{
|
|
int i,j, i1, i2, li1, li2;
|
|
int w,h, index;
|
|
|
|
h = curve->width;
|
|
w = curve->height;
|
|
|
|
mesh->numtriangles = (curve->width-1)*(curve->height-1)*2;
|
|
mesh->numindecies = mesh->numtriangles*3;
|
|
mesh->indecies = (int *)Hunk_Alloc(sizeof(int)*mesh->numindecies);
|
|
|
|
li1 = h;
|
|
li2 = 0;
|
|
index = 0;
|
|
for (i=0; i<w-1; i++) {
|
|
|
|
li1 = (i+1)*h;
|
|
li2 = i*h;
|
|
for (j=1; j<h; j++) {
|
|
i1 = j+(i+1)*h;
|
|
i2 = j+i*h;
|
|
|
|
mesh->indecies[index++] = li2;
|
|
mesh->indecies[index++] = li1;
|
|
mesh->indecies[index++] = i2;
|
|
|
|
mesh->indecies[index++] = i2;
|
|
mesh->indecies[index++] = li1;
|
|
mesh->indecies[index++] = i1;
|
|
|
|
li1 = i1;
|
|
li2 = i2;
|
|
}
|
|
}
|
|
}
|
|
|
|
void TangentForPoly(int *index, mmvertex_t *vertices,vec3_t Tangent, vec3_t Binormal);
|
|
void NormalForPoly(int *index, mmvertex_t *vertices,vec3_t Normal);
|
|
|
|
void CreateTangentSpace(mesh_t *mesh) {
|
|
|
|
int i,j;
|
|
int *num = malloc(sizeof(int)*mesh->numvertices);
|
|
vec3_t tang, bin, v1, v2, norm;
|
|
|
|
Q_memset(num,0,sizeof(int)*mesh->numvertices);
|
|
mesh->tangents = Hunk_Alloc(sizeof(vec3_t)*mesh->numvertices);
|
|
mesh->binormals = Hunk_Alloc(sizeof(vec3_t)*mesh->numvertices);
|
|
mesh->normals = Hunk_Alloc(sizeof(vec3_t)*mesh->numvertices);
|
|
|
|
//average for every triangle
|
|
for (i=0; i<mesh->numtriangles; i++) {
|
|
TangentForPoly(&mesh->indecies[i*3],&tempVertices[mesh->firstvertex],tang,bin);
|
|
NormalForPoly(&mesh->indecies[i*3],&tempVertices[mesh->firstvertex],norm);
|
|
|
|
|
|
for (j=0; j<3; j++) {
|
|
VectorAdd(mesh->tangents[mesh->indecies[i*3+j]],tang,mesh->tangents[mesh->indecies[i*3+j]]);
|
|
VectorAdd(mesh->binormals[mesh->indecies[i*3+j]],bin,mesh->binormals[mesh->indecies[i*3+j]]);
|
|
VectorAdd(mesh->normals[mesh->indecies[i*3+j]],norm,mesh->normals[mesh->indecies[i*3+j]]);
|
|
num[mesh->indecies[i*3+j]]++;
|
|
}
|
|
}
|
|
|
|
for (i=0; i<mesh->numvertices; i++) {
|
|
if (num[i] != 0) {
|
|
VectorScale(mesh->tangents[i],1.0f/num[i],mesh->tangents[i]);
|
|
VectorNormalize(mesh->tangents[i]);
|
|
|
|
VectorScale(mesh->binormals[i],1.0f/num[i],mesh->binormals[i]);
|
|
VectorNormalize(mesh->binormals[i]);
|
|
|
|
VectorScale(mesh->normals[i],1.0f/num[i],mesh->normals[i]);
|
|
VectorNormalize(mesh->normals[i]);
|
|
|
|
//CrossProduct(mesh->binormals[i], mesh->tangents[i], mesh->normals[i]);
|
|
} else Con_Printf("num == 0\n");
|
|
}
|
|
|
|
free(num);
|
|
}
|
|
|
|
/*
|
|
=================
|
|
CurveCreate
|
|
|
|
Creates a curve from the given surface
|
|
|
|
=================
|
|
*/
|
|
void CS_Create(dq3face_t *in, mesh_t *mesh, mapshader_t *shader)
|
|
{
|
|
curve_t curve;
|
|
|
|
curve.controlwidth = in->patchOrder[0];
|
|
curve.controlheight = in->patchOrder[1];
|
|
curve.firstcontrol = in->firstvertex;
|
|
|
|
//just use the control points as vertices
|
|
curve.firstvertex = in->firstmeshvertex;
|
|
|
|
//evaluate the mesh vertices
|
|
if (gl_mesherror.value > 0)
|
|
SubdivideCurve(&curve, mesh, &tempVertices[curve.firstcontrol], gl_mesherror.value);
|
|
|
|
//setup rest of the mesh
|
|
mesh->shader = shader;
|
|
|
|
CreateIndecies(&curve, mesh);
|
|
CreateTangentSpace(mesh);
|
|
|
|
mesh->trans.origin[0] = mesh->trans.origin[1] = mesh->trans.origin[2] = 0.0f;
|
|
mesh->trans.angles[0] = mesh->trans.angles[1] = mesh->trans.angles[2] = 0.0f;
|
|
mesh->trans.scale[0] = mesh->trans.scale[1] = mesh->trans.scale[2] = 1.0f;
|
|
|
|
//PutMeshOnCurve(*curve,&tempVertices[curve->firstcontrol]);
|
|
//SubdivideMesh(curve,gl_mesherror.value,1000,&tempVertices[curve->firstcontrol]);
|
|
// Con_Printf("MeshCurve %i %i %i\n",curve->firstcontrol,curve->controlwidth,curve->controlheight);
|
|
}
|
|
|
|
/**
|
|
* Multiplies the curve's color with the current lightmap brightness.
|
|
*/
|
|
void CS_SetupMeshColors(mesh_t *mesh)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i<mesh->numvertices; i++) {
|
|
globalVertexTable[i+mesh->firstvertex].color[0] = (int)(globalVertexTable[i+mesh->firstvertex].color[0]*sh_lightmapbright.value);
|
|
globalVertexTable[i+mesh->firstvertex].color[1] = (int)(globalVertexTable[i+mesh->firstvertex].color[1]*sh_lightmapbright.value);
|
|
globalVertexTable[i+mesh->firstvertex].color[2] = (int)(globalVertexTable[i+mesh->firstvertex].color[2]*sh_lightmapbright.value);
|
|
}
|
|
}
|
|
|
|
/*
|
|
void CS_DrawAmbient(mcurve_t *curve)
|
|
{
|
|
int i,j, i1, i2;
|
|
int w,h;
|
|
|
|
//GL_Bind(curve->texture->gl_texturenum);
|
|
glShadeModel (GL_SMOOTH);
|
|
//Con_Printf("Drawcurve %i %i %i\n",curve->firstvertex,curve->width,curve->height);
|
|
h = curve->width;
|
|
w = curve->height;
|
|
for (i=0; i<w-1; i++) {
|
|
c_brush_polys+= 2*(h-1);
|
|
glBegin(GL_TRIANGLE_STRIP);
|
|
for (j=0; j<h; j++) {
|
|
i1 = curve->firstvertex+j+(i+1)*h;
|
|
i2 = curve->firstvertex+j+i*h;
|
|
|
|
glColor3ubv((byte *)&((float *)&globalVertexTable[i2])[7]);
|
|
glTexCoord2fv(&((float *)&globalVertexTable[i2])[3]);
|
|
glVertex3fv((float *)&globalVertexTable[i2]);
|
|
|
|
glColor3ubv((byte *)&((float *)&globalVertexTable[i1])[7]);
|
|
glTexCoord2fv(&((float *)&globalVertexTable[i1])[3]);
|
|
glVertex3fv((float *)&globalVertexTable[i1]);
|
|
}
|
|
glEnd();
|
|
}
|
|
}
|
|
*/ |