tenebrae2/sv_q3support.c
2003-06-25 09:18:55 +00:00

1226 lines
No EOL
24 KiB
C

/*
Copyright (C) 2002-2003 Charles Hollemeersch
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
PENTA:
Quake 3 collision/areaportals code
Heavily based on the public quake2 source
*/
#include "quakedef.h"
mplane_t *box_planes;
int box_firstbrush;
mbrush_t *box_brush;
//#define M sv.worldmodel
//timestamp variables
int c_pointcontents = 0;
int c_brush_traces = 0;
int checkcount = 0;
int c_traces = 0;
/*
===================
CM_InitBoxHull
Set up the planes and nodes so that the six floats of a bounding box
can just be stored out and get a proper clipping hull structure.
===================
*/
void CM_InitBoxHull (model_t *M)
{
int i;
int side;
mplane_t *p;
mbrushside_t *s;
box_planes = &M->planes[M->numplanes];
box_firstbrush = M->numbrushes;
box_brush = &M->brushes[M->numbrushes];
box_brush->numsides = 6;
box_brush->firstbrushside = M->numbrushsides;
box_brush->contents = CONTENTS_SOLID;
for (i=0 ; i<6 ; i++)
{
side = i&1;
// brush sides
s = &M->brushsides[M->numbrushsides+i];
s->plane = M->planes + (M->numplanes+i*2+side);
s->shader = NULL;
// planes
p = &box_planes[i*2];
p->type = i>>1;
p->signbits = 0;
VectorClear (p->normal);
p->normal[i>>1] = 1;
p = &box_planes[i*2+1];
p->type = 3 + (i>>1);
p->signbits = 0;
VectorClear (p->normal);
p->normal[i>>1] = -1;
}
}
/*
===================
CM_HeadnodeForBox
To keep everything totally uniform, bounding boxes are turned into small
BSP trees instead of being compared directly.
===================
*//*
int CM_HeadnodeForBox (vec3_t mins, vec3_t maxs)
{
box_planes[0].dist = maxs[0];
box_planes[1].dist = -maxs[0];
box_planes[2].dist = mins[0];
box_planes[3].dist = -mins[0];
box_planes[4].dist = maxs[1];
box_planes[5].dist = -maxs[1];
box_planes[6].dist = mins[1];
box_planes[7].dist = -mins[1];
box_planes[8].dist = maxs[2];
box_planes[9].dist = -maxs[2];
box_planes[10].dist = mins[2];
box_planes[11].dist = -mins[2];
return box_headnode;
}
*/
/*
===================
CM_BrushForBox
===================
*/
int CM_BrushForBox (vec3_t mins, vec3_t maxs)
{
box_planes[0].dist = maxs[0];
box_planes[1].dist = -maxs[0];
box_planes[2].dist = mins[0];
box_planes[3].dist = -mins[0];
box_planes[4].dist = maxs[1];
box_planes[5].dist = -maxs[1];
box_planes[6].dist = mins[1];
box_planes[7].dist = -mins[1];
box_planes[8].dist = maxs[2];
box_planes[9].dist = -maxs[2];
box_planes[10].dist = mins[2];
box_planes[11].dist = -mins[2];
return box_firstbrush;
}
/*
==================
CM_PointLeafnum_r
==================
*/
int CM_PointLeafnum_r (model_t *M, vec3_t p, int num)
{
float d;
mnode_t *node;
mplane_t *plane;
while (num >= 0)
{
node = M->nodes + num;
plane = node->plane;
if (plane->type < 3)
d = p[plane->type] - plane->dist;
else
d = DotProduct (plane->normal, p) - plane->dist;
if (d < 0)
num = node->ichildren[1];
else
num = node->ichildren[0];
}
c_pointcontents++; // optimize counter
return -1 - num;
}
int CM_PointLeafnum (model_t *M, vec3_t p)
{
if (!M->numplanes)
return 0; // sound may call this without map loaded
return CM_PointLeafnum_r (M, p, 0);
}
/*
=============
CM_BoxLeafnums
Fills in a list of all the leafs touched
=============
*/
int leaf_count, leaf_maxcount;
int *leaf_list;
float *leaf_mins, *leaf_maxs;
int leaf_topnode;
void CM_BoxLeafnums_r (model_t *M, int nodenum)
{
mplane_t *plane;
mnode_t *node;
int s;
while (1)
{
if (nodenum < 0)
{
if (leaf_count >= leaf_maxcount)
{
// Com_Printf ("CM_BoxLeafnums_r: overflow\n");
return;
}
leaf_list[leaf_count++] = -1 - nodenum;
return;
}
node = &M->nodes[nodenum];
plane = node->plane;
// s = BoxOnPlaneSide (leaf_mins, leaf_maxs, plane);
s = BOX_ON_PLANE_SIDE(leaf_mins, leaf_maxs, plane);
if (s == 1)
nodenum = node->ichildren[0];
else if (s == 2)
nodenum = node->ichildren[1];
else
{ // go down both
if (leaf_topnode == -1)
leaf_topnode = nodenum;
CM_BoxLeafnums_r (M, node->ichildren[0]);
nodenum = node->ichildren[1];
}
}
}
int CM_BoxLeafnums_headnode (model_t *M, vec3_t mins, vec3_t maxs, int *list, int listsize, int headnode, int *topnode)
{
leaf_list = list;
leaf_count = 0;
leaf_maxcount = listsize;
leaf_mins = mins;
leaf_maxs = maxs;
leaf_topnode = -1;
CM_BoxLeafnums_r (M, headnode);
if (topnode)
*topnode = leaf_topnode;
return leaf_count;
}
int CM_BoxLeafnums (model_t *M,vec3_t mins, vec3_t maxs, int *list, int listsize, int *topnode)
{
return CM_BoxLeafnums_headnode (M,mins, maxs, list,
listsize, 0 /*headnode??*/, topnode);
}
/*
==================
CM_PointContents
==================
*/
int CM_PointContents (model_t *M, vec3_t p, int headnode)
{
int l, contents, i, j;
mleaf_t *leaf;
mbrush_t *brush;
mbrushside_t *brushside;
if (!M->numnodes) // map not loaded
return 0;
l = CM_PointLeafnum_r (M, p, 0 /*headnode*/);
//PENTA: Based on qfusion contents soucre
leaf = &M->leafs[l];
if ( leaf->contents & CONTENTS_NODROP ) {
contents = CONTENTS_NODROP;
} else {
contents = 0;
}
for (i = 0; i < leaf->numbrushes; i++)
{
brush = &M->brushes[M->leafbrushes[leaf->firstbrush + i]];
// check if brush actually adds something to contents
if ( (contents & brush->contents) == brush->contents ) {
continue;
}
brushside = &M->brushsides[brush->firstbrushside];
for ( j = 0; j < brush->numsides; j++, brushside++ )
{
if ((DotProduct(p, brushside->plane->normal) -brushside->plane->dist) > 0)
break;
}
if (j == brush->numsides)
contents |= brush->contents;
}
return contents;
}
/*
==================
CM_TransformedPointContents
Handles offseting and rotation of the end points for moving and
rotating entities
==================
*/
int CM_TransformedPointContents (model_t *M, vec3_t p, int headnode, vec3_t origin, vec3_t angles)
{
vec3_t p_l;
vec3_t temp;
vec3_t forward, right, up;
int l;
// subtract origin offset
VectorSubtract (p, origin, p_l);
// rotate start and end into the models frame of reference
if (angles[0] || angles[1] || angles[2])
{
AngleVectors (angles, forward, right, up);
VectorCopy (p_l, temp);
p_l[0] = DotProduct (temp, forward);
p_l[1] = -DotProduct (temp, right);
p_l[2] = DotProduct (temp, up);
}
l = CM_PointLeafnum_r (M, p_l, headnode);
return M->leafs[l].contents;
}
/*
===============================================================================
BOX TRACING
===============================================================================
*/
// 1/32 epsilon to keep floating point happy
#define DIST_EPSILON (0.03125)
vec3_t trace_start, trace_end;
vec3_t trace_mins, trace_maxs;
vec3_t trace_extents;
trace_t trace_trace;
int trace_contents;
qboolean trace_ispoint; // optimized case
/*
================
CM_ClipBoxToBrush
================
*/
void CM_ClipBoxToBrush (model_t *M, vec3_t mins, vec3_t maxs, vec3_t p1, vec3_t p2,
trace_t *trace, mbrush_t *brush)
{
int i, j;
mplane_t *plane, *clipplane;
float dist;
float enterfrac, leavefrac;
vec3_t ofs;
float d1, d2;
qboolean getout, startout;
float f;
mbrushside_t *side, *leadside;
enterfrac = -1;
leavefrac = 1;
clipplane = NULL;
if (!brush->numsides)
return;
c_brush_traces++;
getout = false;
startout = false;
leadside = NULL;
for (i=0 ; i<brush->numsides ; i++)
{
side = &M->brushsides[brush->firstbrushside+i];
plane = side->plane;
// FIXME: special case for axial
if (!trace_ispoint)
{ // general box case
// push the plane out apropriately for mins/maxs
// FIXME: use signbits into 8 way lookup for each mins/maxs
for (j=0 ; j<3 ; j++)
{
if (plane->normal[j] < 0)
ofs[j] = maxs[j];
else
ofs[j] = mins[j];
}
dist = DotProduct (ofs, plane->normal);
dist = plane->dist - dist;
}
else
{ // special point case
dist = plane->dist;
}
d1 = DotProduct (p1, plane->normal) - dist;
d2 = DotProduct (p2, plane->normal) - dist;
if (d2 > 0)
getout = true; // endpoint is not in solid
if (d1 > 0)
startout = true;
// if completely in front of face, no intersection
if (d1 > 0 && d2 >= d1)
return;
if (d1 <= 0 && d2 <= 0)
continue;
// crosses face
if (d1 > d2)
{ // enter
f = (d1-DIST_EPSILON) / (d1-d2);
if (f > enterfrac)
{
enterfrac = f;
clipplane = plane;
leadside = side;
}
}
else
{ // leave
f = (d1+DIST_EPSILON) / (d1-d2);
if (f < leavefrac)
leavefrac = f;
}
}
if (!startout)
{ // original point was inside brush
trace->startsolid = true;
if (!getout)
trace->allsolid = true;
return;
}
/*if (getout || startout)*/ trace->inopen = true;
if (enterfrac < leavefrac)
{
if (enterfrac > -1 && enterfrac < trace->fraction)
{
if (enterfrac < 0)
enterfrac = 0;
trace->fraction = enterfrac;
//trace->plane = *clipplane;
//trace->surface = &(leadside->surface->c);
VectorCopy(clipplane->normal,trace->plane.normal);
trace->plane.dist = clipplane->dist;
//trace->contents = brush->contents;
}
}
}
/*
================
CM_TestBoxInBrush
================
*/
void CM_TestBoxInBrush (model_t *M, vec3_t mins, vec3_t maxs, vec3_t p1,
trace_t *trace, mbrush_t *brush)
{
int i, j;
mplane_t *plane;
float dist;
vec3_t ofs;
float d1;
mbrushside_t *side;
if (!brush->numsides)
return;
for (i=0 ; i<brush->numsides ; i++)
{
side = &M->brushsides[brush->firstbrushside+i];
plane = side->plane;
// FIXME: special case for axial
// general box case
// push the plane out apropriately for mins/maxs
// FIXME: use signbits into 8 way lookup for each mins/maxs
for (j=0 ; j<3 ; j++)
{
if (plane->normal[j] < 0)
ofs[j] = maxs[j];
else
ofs[j] = mins[j];
}
dist = DotProduct (ofs, plane->normal);
dist = plane->dist - dist;
d1 = DotProduct (p1, plane->normal) - dist;
// if completely in front of face, no intersection
if (d1 > 0) {
trace->inopen = true;
return;
}
}
// inside this brush
trace->startsolid = trace->allsolid = true;
trace->fraction = 0;
//trace->contents = brush->contents;
}
/*
================
CM_TraceToLeaf
================
*/
void CM_TraceToLeaf (model_t *M, int leafnum)
{
int k;
int brushnum;
mleaf_t *leaf;
mbrush_t *b;
leaf = &M->leafs[leafnum];
//if ( !(leaf->contents & trace_contents))
// return;
// trace line against all brushes in the leaf
for (k=0 ; k<leaf->numbrushes ; k++)
{
brushnum = M->leafbrushes[leaf->firstbrush+k];
b = &M->brushes[brushnum];
/*
Con_Printf("Checkbrush %i",brushnum);
if (brushnum == 1800) {
int j;
for (j=0; j<b->numsides; j++) {
Con_Printf("Side: %f %f %f %f\n",M->brushsides[j+b->firstbrushside].plane->normal[0],
M->brushsides[j+b->firstbrushside].plane->normal[1],
M->brushsides[j+b->firstbrushside].plane->normal[2],
M->brushsides[j+b->firstbrushside].plane->dist);
}
}
*/
if (b->checkcount == checkcount)
continue; // already checked this brush in another leaf
b->checkcount = checkcount;
if ( !(b->contents & trace_contents))
continue;
CM_ClipBoxToBrush (M, trace_mins, trace_maxs, trace_start, trace_end, &trace_trace, b);
if (!trace_trace.fraction)
return;
}
}
/*
================
CM_TraceToBrushModel
PENTA: Clips to the given brush model
Q3 doesn't have bsp's associated with map models anymore, just a list of brushes
================
*/
void CM_TraceToBrushModel (model_t *M, int firstbrush, int numbrushes, vec3_t mins, vec3_t maxs,
vec3_t start, vec3_t end, trace_t *trace, int brushmask)
{
int i, brushnum;
mbrush_t *b;
//Con_Printf("CM_TraceToBrushModel");
if (!M->numnodes) // map not loaded
return;
trace_contents = brushmask;
trace_ispoint = false;
for (i=0; i<numbrushes; i++)
{
//brushnum = M->leafbrushes[firstbrush+i];
b = &M->brushes[firstbrush+i];
if ( !(b->contents & trace_contents))
continue;
CM_ClipBoxToBrush (M, mins, maxs, start, end, trace, b);
if (!trace->fraction)
return;
}
if (trace->fraction == 1)
{
VectorCopy (end, trace->endpos);
}
else
{
for (i=0 ; i<3 ; i++)
trace->endpos[i] = start[i] + trace->fraction * (end[i] - start[i]);
}
}
/*
================
CM_TestInLeaf
================
*/
void CM_TestInLeaf (model_t *M, int leafnum)
{
int k;
int brushnum;
mleaf_t *leaf;
mbrush_t *b;
leaf = &M->leafs[leafnum];
//if ( !(leaf->contents & trace_contents))
// return;
// trace line against all brushes in the leaf
for (k=0 ; k<leaf->numbrushes ; k++)
{
brushnum = M->leafbrushes[leaf->firstbrush+k];
b = &M->brushes[brushnum];
if (b->checkcount == checkcount)
continue; // already checked this brush in another leaf
b->checkcount = checkcount;
if ( !(b->contents & trace_contents))
continue;
CM_TestBoxInBrush (M, trace_mins, trace_maxs, trace_start, &trace_trace, b);
if (!trace_trace.fraction)
return;
}
}
/*
==================
CM_RecursiveHullCheck
==================
*/
void CM_RecursiveHullCheck (model_t *M, int num, float p1f, float p2f, vec3_t p1, vec3_t p2)
{
mnode_t *node;
mplane_t *plane;
float t1, t2, offset;
float frac, frac2;
float idist;
int i;
vec3_t mid;
int side;
float midf;
if (trace_trace.fraction <= p1f)
return; // already hit something nearer
// if < 0, we are in a leaf node
if (num < 0)
{
CM_TraceToLeaf (M, -1-num);
return;
}
//
// find the point distances to the seperating plane
// and the offset for the size of the box
//
node = M->nodes + num;
plane = node->plane;
if (plane->type < 3)
{
t1 = p1[plane->type] - plane->dist;
t2 = p2[plane->type] - plane->dist;
offset = trace_extents[plane->type];
}
else
{
t1 = DotProduct (plane->normal, p1) - plane->dist;
t2 = DotProduct (plane->normal, p2) - plane->dist;
if (trace_ispoint)
offset = 0;
else
offset = fabs(trace_extents[0]*plane->normal[0]) +
fabs(trace_extents[1]*plane->normal[1]) +
fabs(trace_extents[2]*plane->normal[2]);
}
#if 0
CM_RecursiveHullCheck (M, node->ichildren[0], p1f, p2f, p1, p2);
CM_RecursiveHullCheck (M, node->ichildren[1], p1f, p2f, p1, p2);
return;
#endif
// see which sides we need to consider
if (t1 >= offset && t2 >= offset)
{
CM_RecursiveHullCheck (M, node->ichildren[0], p1f, p2f, p1, p2);
return;
}
if (t1 < -offset && t2 < -offset)
{
CM_RecursiveHullCheck (M, node->ichildren[1], p1f, p2f, p1, p2);
return;
}
// put the crosspoint DIST_EPSILON pixels on the near side
if (t1 < t2)
{
idist = 1.0/(t1-t2);
side = 1;
frac2 = (t1 + offset + DIST_EPSILON)*idist;
frac = (t1 - offset + DIST_EPSILON)*idist;
}
else if (t1 > t2)
{
idist = 1.0/(t1-t2);
side = 0;
frac2 = (t1 - offset - DIST_EPSILON)*idist;
frac = (t1 + offset + DIST_EPSILON)*idist;
}
else
{
side = 0;
frac = 1;
frac2 = 0;
}
// move up to the node
if (frac < 0)
frac = 0;
if (frac > 1)
frac = 1;
midf = p1f + (p2f - p1f)*frac;
for (i=0 ; i<3 ; i++)
mid[i] = p1[i] + frac*(p2[i] - p1[i]);
CM_RecursiveHullCheck (M, node->ichildren[side], p1f, midf, p1, mid);
// go past the node
if (frac2 < 0)
frac2 = 0;
if (frac2 > 1)
frac2 = 1;
midf = p1f + (p2f - p1f)*frac2;
for (i=0 ; i<3 ; i++)
mid[i] = p1[i] + frac2*(p2[i] - p1[i]);
CM_RecursiveHullCheck (M, node->ichildren[side^1], midf, p2f, mid, p2);
}
//======================================================================
/*
==================
CM_BoxTrace
==================
*/
trace_t CM_BoxTrace (model_t *M, vec3_t start, vec3_t end,
vec3_t mins, vec3_t maxs,
int headnode, int brushmask)
{
int i;
// Con_Printf("CM_BoxTrace");
checkcount++; // for multi-check avoidance
c_traces++; // for statistics, may be zeroed
// fill in a default trace
memset (&trace_trace, 0, sizeof(trace_trace));
trace_trace.fraction = 1;
//trace_trace.surface = &(nullsurface.c);
if (!M->numnodes) // map not loaded
return trace_trace;
trace_contents = brushmask;
VectorCopy (start, trace_start);
VectorCopy (end, trace_end);
VectorCopy (mins, trace_mins);
VectorCopy (maxs, trace_maxs);
//
// check for position test special case
//
if (start[0] == end[0] && start[1] == end[1] && start[2] == end[2])
{
int leafs[1024];
int i, numleafs;
vec3_t c1, c2;
int topnode;
VectorAdd (start, mins, c1);
VectorAdd (start, maxs, c2);
for (i=0 ; i<3 ; i++)
{
c1[i] -= 1;
c2[i] += 1;
}
numleafs = CM_BoxLeafnums_headnode (M, c1, c2, leafs, 1024, headnode, &topnode);
for (i=0 ; i<numleafs ; i++)
{
CM_TestInLeaf (M, leafs[i]);
if (trace_trace.allsolid)
break;
}
VectorCopy (start, trace_trace.endpos);
return trace_trace;
}
//
// check for point special case
//
if (mins[0] == 0 && mins[1] == 0 && mins[2] == 0
&& maxs[0] == 0 && maxs[1] == 0 && maxs[2] == 0)
{
trace_ispoint = true;
VectorClear (trace_extents);
}
else
{
trace_ispoint = false;
trace_extents[0] = -mins[0] > maxs[0] ? -mins[0] : maxs[0];
trace_extents[1] = -mins[1] > maxs[1] ? -mins[1] : maxs[1];
trace_extents[2] = -mins[2] > maxs[2] ? -mins[2] : maxs[2];
}
//
// general sweeping through world
//
CM_RecursiveHullCheck (M, headnode, 0, 1, start, end);
if (trace_trace.fraction == 1)
{
VectorCopy (end, trace_trace.endpos);
}
else
{
for (i=0 ; i<3 ; i++)
trace_trace.endpos[i] = start[i] + trace_trace.fraction * (end[i] - start[i]);
}
return trace_trace;
}
/*
==================
CM_TransformedBoxTrace
Handles offseting and rotation of the end points for moving and
rotating entities
==================
*/
#ifdef _WIN32
#pragma optimize( "", off )
#endif
trace_t CM_TransformedBoxTrace (model_t *M, vec3_t start, vec3_t end,
vec3_t mins, vec3_t maxs,
int headnode, int brushmask,
vec3_t origin, vec3_t angles)
{
trace_t trace;
vec3_t start_l, end_l;
vec3_t a;
vec3_t forward, right, up;
vec3_t temp;
qboolean rotated;
// subtract origin offset
VectorSubtract (start, origin, start_l);
VectorSubtract (end, origin, end_l);
// rotate start and end into the models frame of reference
if (angles[0] || angles[1] || angles[2] )
rotated = true;
else
rotated = false;
if (rotated)
{
AngleVectors (angles, forward, right, up);
VectorCopy (start_l, temp);
start_l[0] = DotProduct (temp, forward);
start_l[1] = -DotProduct (temp, right);
start_l[2] = DotProduct (temp, up);
VectorCopy (end_l, temp);
end_l[0] = DotProduct (temp, forward);
end_l[1] = -DotProduct (temp, right);
end_l[2] = DotProduct (temp, up);
}
// sweep the box through the model
trace = CM_BoxTrace (M, start_l, end_l, mins, maxs, headnode, brushmask);
if (rotated && trace.fraction != 1.0)
{
// FIXME: figure out how to do this with existing angles
VectorNegate (angles, a);
AngleVectors (a, forward, right, up);
VectorCopy (trace.plane.normal, temp);
trace.plane.normal[0] = DotProduct (temp, forward);
trace.plane.normal[1] = -DotProduct (temp, right);
trace.plane.normal[2] = DotProduct (temp, up);
}
trace.endpos[0] = start[0] + trace.fraction * (end[0] - start[0]);
trace.endpos[1] = start[1] + trace.fraction * (end[1] - start[1]);
trace.endpos[2] = start[2] + trace.fraction * (end[2] - start[2]);
return trace;
}
#ifdef _WIN32
#pragma optimize( "", on )
#endif
/*
===============================================================================
PVS / PHS
===============================================================================
*/
/*
===================
CM_DecompressVis
===================
*/
/*
void CM_DecompressVis (byte *in, byte *out)
{
int c;
byte *out_p;
int row;
row = (numclusters+7)>>3;
out_p = out;
if (!in || !numvisibility)
{ // no vis info, so make all visible
while (row)
{
*out_p++ = 0xff;
row--;
}
return;
}
do
{
if (*in)
{
*out_p++ = *in++;
continue;
}
c = in[1];
in += 2;
if ((out_p - out) + c > row)
{
c = row - (out_p - out);
Com_DPrintf ("warning: Vis decompression overrun\n");
}
while (c)
{
*out_p++ = 0;
c--;
}
} while (out_p - out < row);
}
byte pvsrow[MAX_MAP_LEAFS/8];
byte phsrow[MAX_MAP_LEAFS/8];
byte *CM_ClusterPVS (int cluster)
{
if (cluster == -1)
memset (pvsrow, 0, (numclusters+7)>>3);
else
CM_DecompressVis (map_visibility + map_vis->bitofs[cluster][DVIS_PVS], pvsrow);
return pvsrow;
}
byte *CM_ClusterPHS (int cluster)
{
if (cluster == -1)
memset (phsrow, 0, (numclusters+7)>>3);
else
CM_DecompressVis (map_visibility + map_vis->bitofs[cluster][DVIS_PHS], phsrow);
return phsrow;
}
*/
/*
===============================================================================
AREAPORTALS
PENTA: Areaportals seem to have changed somewhat from quake2
this is based on the qfusion source who supports quake3 style areaportals
===============================================================================
*/
/*
====================
FloodAreaConnections
====================
*/
void FloodAreaConnections (model_t *M)
{
int i, j;
// area 0 is not used
for (i=1 ; i<M->numareas ; i++)
{
for ( j = 1; j < M->numareas; j++ ) {
M->areas[i].numareaportals[j] = ( j == i );
}
}
}
void CM_SetAreaPortalState (model_t *M, int area1, int area2, qboolean open)
{
if (area1 > M->numareas || area2 > M->numareas) {
Con_Printf ("CM_SetAreaPortalState: area > M->numareas\n");
return;
}
if ( open ) {
M->areas[area1].numareaportals[area2]++;
M->areas[area2].numareaportals[area1]++;
Con_Printf("Open portal between %i and %i\n", area1, area2);
} else {
M->areas[area1].numareaportals[area2]--;
//shouln't really happen
if (M->areas[area1].numareaportals[area2] < 0)
M->areas[area1].numareaportals[area2] = 0;
M->areas[area2].numareaportals[area1]--;
//shouln't really happen
if (M->areas[area2].numareaportals[area1] < 0)
M->areas[area2].numareaportals[area1] = 0;
Con_Printf("Close portal between %i and %i\n", area1, area2);
}
}
qboolean CM_AreasConnected (model_t *M, int area1, int area2)
{
int i;
/*
if (cm_noAreas->value)
return true;
*/
if (area1 > M->numareas || area2 > M->numareas)
Sys_Error ("CM_AreasConnected: area > numareas");
if ( M->areas[area1].numareaportals[area2] )
return true;
// area 0 is not used
for (i=1 ; i<M->numareas ; i++)
{
if ( M->areas[i].numareaportals[area1] &&
M->areas[i].numareaportals[area2] )
return true;
}
return false;
}
/*
=================
CM_WriteAreaBits
Writes a length byte followed by a bit vector of all the areas
that area in the same flood as the area parameter
This is used by the client refreshes to cull visibility
=================
*/
int CM_WriteAreaBits (model_t *M, byte *buffer, int area)
{
int i;
int bytes;
bytes = (M->numareas+7)>>3;
/*
if (cm_noAreas->value)
{ // for debugging, send everything
memset (buffer, 255, bytes);
}
else
*/
{
memset (buffer, 0, bytes);
for (i=1 ; i<M->numareas ; i++)
{
if (!area || CM_AreasConnected (M, i, area ) || i == area)
buffer[i>>3] |= 1<<(i&7);
}
}
buffer[area>>3] |= 1<<(area&7);
return bytes;
}
/*
=================
CM_MergeAreaBits
=================
*/
void CM_MergeAreaBits (model_t *M, byte *buffer, int area)
{
int i;
for (i=1 ; i<M->numareas ; i++)
{
if ( CM_AreasConnected (M, i, area ) || i == area)
buffer[i>>3] |= 1<<(i&7);
}
}
/*
===================
CM_WritePortalState
Writes the portal state to a savegame file
===================
*/
void CM_WritePortalState (model_t *M, FILE *f)
{
}
/*
===================
CM_ReadPortalState
Reads the portal state from a savegame file
and recalculates the area connections
===================
*/
void CM_ReadPortalState (model_t *M, FILE *f)
{
}
/*
=============
CM_HeadnodeVisible
Returns true if any leaf under headnode has a cluster that
is potentially visible
=============
*/
/*
qboolean CM_HeadnodeVisible (int nodenum, byte *visbits)
{
int leafnum;
int cluster;
mnode_t *node;
if (nodenum < 0)
{
leafnum = -1-nodenum;
cluster = map_leafs[leafnum].cluster;
if (cluster == -1)
return false;
if (visbits[cluster>>3] & (1<<(cluster&7)))
return true;
return false;
}
node = &map_nodes[nodenum];
if (CM_HeadnodeVisible(node->ichildren[0], visbits))
return true;
return CM_HeadnodeVisible(node->ichildren[1], visbits);
}
*/