697 lines
14 KiB
C
697 lines
14 KiB
C
|
/*
|
||
|
Copyright (C) 1996-1997 Id Software, Inc.
|
||
|
|
||
|
This program is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU General Public License
|
||
|
as published by the Free Software Foundation; either version 2
|
||
|
of the License, or (at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
|
||
|
See the GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, write to the Free Software
|
||
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
|
|
||
|
*/
|
||
|
// mathlib.c -- math primitives
|
||
|
|
||
|
#include <math.h>
|
||
|
#include "quakedef.h"
|
||
|
|
||
|
void Sys_Error (char *error, ...);
|
||
|
|
||
|
vec3_t vec3_origin = {0,0,0};
|
||
|
int nanmask = 255<<23;
|
||
|
|
||
|
/*-----------------------------------------------------------------*/
|
||
|
|
||
|
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
|
||
|
{
|
||
|
float d;
|
||
|
vec3_t n;
|
||
|
float inv_denom;
|
||
|
|
||
|
inv_denom = 1.0F / DotProduct( normal, normal );
|
||
|
|
||
|
d = DotProduct( normal, p ) * inv_denom;
|
||
|
|
||
|
n[0] = normal[0] * inv_denom;
|
||
|
n[1] = normal[1] * inv_denom;
|
||
|
n[2] = normal[2] * inv_denom;
|
||
|
|
||
|
dst[0] = p[0] - d * n[0];
|
||
|
dst[1] = p[1] - d * n[1];
|
||
|
dst[2] = p[2] - d * n[2];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
** assumes "src" is normalized
|
||
|
*/
|
||
|
/*void PerpendicularVector( vec3_t dst, const vec3_t src )
|
||
|
{
|
||
|
int pos;
|
||
|
int i;
|
||
|
float minelem = 1.0F;
|
||
|
vec3_t tempvec;
|
||
|
|
||
|
for ( pos = 0, i = 0; i < 3; i++ )
|
||
|
{
|
||
|
if ( fabs( src[i] ) < minelem )
|
||
|
{
|
||
|
pos = i;
|
||
|
minelem = fabs( src[i] );
|
||
|
}
|
||
|
}
|
||
|
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
|
||
|
tempvec[pos] = 1.0F;
|
||
|
|
||
|
ProjectPointOnPlane( dst, tempvec, src );
|
||
|
|
||
|
VectorNormalize( dst );
|
||
|
}*/
|
||
|
|
||
|
void PerpendicularVector( vec3_t dst, const vec3_t src ) //Optimized a bit :) - Eradicator
|
||
|
{
|
||
|
int pos;
|
||
|
float minelem;
|
||
|
|
||
|
if (src[0])
|
||
|
{
|
||
|
dst[0] = 0;
|
||
|
if (src[1])
|
||
|
{
|
||
|
dst[1] = 0;
|
||
|
if (src[2])
|
||
|
{
|
||
|
dst[2] = 0;
|
||
|
pos = 0;
|
||
|
minelem = fabs(src[0]);
|
||
|
if (fabs(src[1]) < minelem)
|
||
|
{
|
||
|
pos = 1;
|
||
|
minelem = fabs(src[1]);
|
||
|
}
|
||
|
if (fabs(src[2]) < minelem)
|
||
|
pos = 2;
|
||
|
|
||
|
dst[pos] = 1;
|
||
|
dst[0] -= src[pos] * src[0];
|
||
|
dst[1] -= src[pos] * src[1];
|
||
|
dst[2] -= src[pos] * src[2];
|
||
|
|
||
|
VectorNormalize(dst);
|
||
|
}
|
||
|
else
|
||
|
dst[2] = 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
dst[1] = 1;
|
||
|
dst[2] = 0;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
dst[0] = 1;
|
||
|
dst[1] = 0;
|
||
|
dst[2] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef _WIN32
|
||
|
#pragma optimize( "", off )
|
||
|
#endif
|
||
|
|
||
|
|
||
|
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees )
|
||
|
{
|
||
|
float m[3][3];
|
||
|
float im[3][3];
|
||
|
float zrot[3][3];
|
||
|
float tmpmat[3][3];
|
||
|
float rot[3][3];
|
||
|
int i;
|
||
|
vec3_t vr, vup, vf;
|
||
|
|
||
|
vf[0] = dir[0];
|
||
|
vf[1] = dir[1];
|
||
|
vf[2] = dir[2];
|
||
|
|
||
|
PerpendicularVector( vr, dir );
|
||
|
CrossProduct( vr, vf, vup );
|
||
|
|
||
|
m[0][0] = vr[0];
|
||
|
m[1][0] = vr[1];
|
||
|
m[2][0] = vr[2];
|
||
|
|
||
|
m[0][1] = vup[0];
|
||
|
m[1][1] = vup[1];
|
||
|
m[2][1] = vup[2];
|
||
|
|
||
|
m[0][2] = vf[0];
|
||
|
m[1][2] = vf[1];
|
||
|
m[2][2] = vf[2];
|
||
|
|
||
|
memcpy( im, m, sizeof( im ) );
|
||
|
|
||
|
im[0][1] = m[1][0];
|
||
|
im[0][2] = m[2][0];
|
||
|
im[1][0] = m[0][1];
|
||
|
im[1][2] = m[2][1];
|
||
|
im[2][0] = m[0][2];
|
||
|
im[2][1] = m[1][2];
|
||
|
|
||
|
memset( zrot, 0, sizeof( zrot ) );
|
||
|
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
|
||
|
|
||
|
zrot[0][0] = cos( DEG2RAD( degrees ) );
|
||
|
zrot[0][1] = sin( DEG2RAD( degrees ) );
|
||
|
zrot[1][0] = -sin( DEG2RAD( degrees ) );
|
||
|
zrot[1][1] = cos( DEG2RAD( degrees ) );
|
||
|
|
||
|
R_ConcatRotations( m, zrot, tmpmat );
|
||
|
R_ConcatRotations( tmpmat, im, rot );
|
||
|
|
||
|
for ( i = 0; i < 3; i++ )
|
||
|
{
|
||
|
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef _WIN32
|
||
|
#pragma optimize( "", on )
|
||
|
#endif
|
||
|
|
||
|
/*-----------------------------------------------------------------*/
|
||
|
|
||
|
|
||
|
float anglemod(float a)
|
||
|
{
|
||
|
#if 0
|
||
|
if (a >= 0)
|
||
|
a -= 360*(int)(a/360);
|
||
|
else
|
||
|
a += 360*( 1 + (int)(-a/360) );
|
||
|
#endif
|
||
|
a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
|
||
|
return a;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
==================
|
||
|
BOPS_Error
|
||
|
|
||
|
Split out like this for ASM to call.
|
||
|
==================
|
||
|
*/
|
||
|
void BOPS_Error (void)
|
||
|
{
|
||
|
Sys_Error ("BoxOnPlaneSide: Bad signbits");
|
||
|
}
|
||
|
|
||
|
|
||
|
#if !id386
|
||
|
|
||
|
/*
|
||
|
==================
|
||
|
BoxOnPlaneSide
|
||
|
|
||
|
Returns 1, 2, or 1 + 2
|
||
|
==================
|
||
|
*/
|
||
|
int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, mplane_t *p)
|
||
|
{
|
||
|
float dist1, dist2;
|
||
|
int sides;
|
||
|
|
||
|
#if 0 // this is done by the BOX_ON_PLANE_SIDE macro before calling this
|
||
|
// function
|
||
|
// fast axial cases
|
||
|
if (p->type < 3)
|
||
|
{
|
||
|
if (p->dist <= emins[p->type])
|
||
|
return 1;
|
||
|
if (p->dist >= emaxs[p->type])
|
||
|
return 2;
|
||
|
return 3;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// general case
|
||
|
switch (p->signbits)
|
||
|
{
|
||
|
case 0:
|
||
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
||
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
||
|
break;
|
||
|
case 1:
|
||
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
||
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
||
|
break;
|
||
|
case 2:
|
||
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
||
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
||
|
break;
|
||
|
case 3:
|
||
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
||
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
||
|
break;
|
||
|
case 4:
|
||
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
||
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
||
|
break;
|
||
|
case 5:
|
||
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
||
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
||
|
break;
|
||
|
case 6:
|
||
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
||
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
||
|
break;
|
||
|
case 7:
|
||
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
||
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
||
|
break;
|
||
|
default:
|
||
|
dist1 = dist2 = 0; // shut up compiler
|
||
|
BOPS_Error ();
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
int i;
|
||
|
vec3_t corners[2];
|
||
|
|
||
|
for (i=0 ; i<3 ; i++)
|
||
|
{
|
||
|
if (plane->normal[i] < 0)
|
||
|
{
|
||
|
corners[0][i] = emins[i];
|
||
|
corners[1][i] = emaxs[i];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
corners[1][i] = emins[i];
|
||
|
corners[0][i] = emaxs[i];
|
||
|
}
|
||
|
}
|
||
|
dist = DotProduct (plane->normal, corners[0]) - plane->dist;
|
||
|
dist2 = DotProduct (plane->normal, corners[1]) - plane->dist;
|
||
|
sides = 0;
|
||
|
if (dist1 >= 0)
|
||
|
sides = 1;
|
||
|
if (dist2 < 0)
|
||
|
sides |= 2;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
sides = 0;
|
||
|
if (dist1 >= p->dist)
|
||
|
sides = 1;
|
||
|
if (dist2 < p->dist)
|
||
|
sides |= 2;
|
||
|
|
||
|
#ifdef PARANOID
|
||
|
if (sides == 0)
|
||
|
Sys_Error ("BoxOnPlaneSide: sides==0");
|
||
|
#endif
|
||
|
|
||
|
return sides;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
|
||
|
{
|
||
|
float angle;
|
||
|
float sr, sp, sy, cr, cp, cy;
|
||
|
|
||
|
angle = angles[YAW] * (M_PI*2 / 360);
|
||
|
sy = sin(angle);
|
||
|
cy = cos(angle);
|
||
|
angle = angles[PITCH] * (M_PI*2 / 360);
|
||
|
sp = sin(angle);
|
||
|
cp = cos(angle);
|
||
|
angle = angles[ROLL] * (M_PI*2 / 360);
|
||
|
sr = sin(angle);
|
||
|
cr = cos(angle);
|
||
|
|
||
|
forward[0] = cp*cy;
|
||
|
forward[1] = cp*sy;
|
||
|
forward[2] = -sp;
|
||
|
right[0] = (-1*sr*sp*cy+-1*cr*-sy);
|
||
|
right[1] = (-1*sr*sp*sy+-1*cr*cy);
|
||
|
right[2] = -1*sr*cp;
|
||
|
up[0] = (cr*sp*cy+-sr*-sy);
|
||
|
up[1] = (cr*sp*sy+-sr*cy);
|
||
|
up[2] = cr*cp;
|
||
|
}
|
||
|
|
||
|
int VectorCompare (vec3_t v1, vec3_t v2)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i=0 ; i<3 ; i++)
|
||
|
if (v1[i] != v2[i])
|
||
|
return 0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
void VectorMA (vec3_t veca, float scale, vec3_t vecb, vec3_t vecc)
|
||
|
{
|
||
|
vecc[0] = veca[0] + scale*vecb[0];
|
||
|
vecc[1] = veca[1] + scale*vecb[1];
|
||
|
vecc[2] = veca[2] + scale*vecb[2];
|
||
|
}
|
||
|
|
||
|
|
||
|
vec_t _DotProduct (vec3_t v1, vec3_t v2)
|
||
|
{
|
||
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
||
|
}
|
||
|
|
||
|
void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out)
|
||
|
{
|
||
|
out[0] = veca[0]-vecb[0];
|
||
|
out[1] = veca[1]-vecb[1];
|
||
|
out[2] = veca[2]-vecb[2];
|
||
|
}
|
||
|
|
||
|
void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out)
|
||
|
{
|
||
|
out[0] = veca[0]+vecb[0];
|
||
|
out[1] = veca[1]+vecb[1];
|
||
|
out[2] = veca[2]+vecb[2];
|
||
|
}
|
||
|
|
||
|
void _VectorCopy (vec3_t in, vec3_t out)
|
||
|
{
|
||
|
out[0] = in[0];
|
||
|
out[1] = in[1];
|
||
|
out[2] = in[2];
|
||
|
}
|
||
|
|
||
|
void CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross)
|
||
|
{
|
||
|
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
||
|
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
||
|
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
||
|
}
|
||
|
|
||
|
double sqrt(double x);
|
||
|
|
||
|
vec_t Length(vec3_t v)
|
||
|
{
|
||
|
int i;
|
||
|
float length;
|
||
|
|
||
|
length = 0;
|
||
|
for (i=0 ; i< 3 ; i++)
|
||
|
length += v[i]*v[i];
|
||
|
length = sqrt (length); // FIXME
|
||
|
|
||
|
return length;
|
||
|
}
|
||
|
|
||
|
float VectorNormalize (vec3_t v)
|
||
|
{
|
||
|
float length, ilength;
|
||
|
|
||
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
||
|
length = sqrt (length); // FIXME
|
||
|
|
||
|
if (length)
|
||
|
{
|
||
|
ilength = 1/length;
|
||
|
v[0] *= ilength;
|
||
|
v[1] *= ilength;
|
||
|
v[2] *= ilength;
|
||
|
}
|
||
|
|
||
|
return length;
|
||
|
|
||
|
}
|
||
|
|
||
|
void VectorInverse (vec3_t v)
|
||
|
{
|
||
|
v[0] = -v[0];
|
||
|
v[1] = -v[1];
|
||
|
v[2] = -v[2];
|
||
|
}
|
||
|
|
||
|
void VectorScale (vec3_t in, vec_t scale, vec3_t out)
|
||
|
{
|
||
|
out[0] = in[0]*scale;
|
||
|
out[1] = in[1]*scale;
|
||
|
out[2] = in[2]*scale;
|
||
|
}
|
||
|
|
||
|
|
||
|
int Q_log2(int val)
|
||
|
{
|
||
|
int answer=0;
|
||
|
while (val>>=1)
|
||
|
answer++;
|
||
|
return answer;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
================
|
||
|
R_ConcatRotations
|
||
|
================
|
||
|
*/
|
||
|
void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3])
|
||
|
{
|
||
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
||
|
in1[0][2] * in2[2][0];
|
||
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
||
|
in1[0][2] * in2[2][1];
|
||
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
||
|
in1[0][2] * in2[2][2];
|
||
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
||
|
in1[1][2] * in2[2][0];
|
||
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
||
|
in1[1][2] * in2[2][1];
|
||
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
||
|
in1[1][2] * in2[2][2];
|
||
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
||
|
in1[2][2] * in2[2][0];
|
||
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
||
|
in1[2][2] * in2[2][1];
|
||
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
||
|
in1[2][2] * in2[2][2];
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
================
|
||
|
R_ConcatTransforms
|
||
|
================
|
||
|
*/
|
||
|
void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4])
|
||
|
{
|
||
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
||
|
in1[0][2] * in2[2][0];
|
||
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
||
|
in1[0][2] * in2[2][1];
|
||
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
||
|
in1[0][2] * in2[2][2];
|
||
|
out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] +
|
||
|
in1[0][2] * in2[2][3] + in1[0][3];
|
||
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
||
|
in1[1][2] * in2[2][0];
|
||
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
||
|
in1[1][2] * in2[2][1];
|
||
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
||
|
in1[1][2] * in2[2][2];
|
||
|
out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] +
|
||
|
in1[1][2] * in2[2][3] + in1[1][3];
|
||
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
||
|
in1[2][2] * in2[2][0];
|
||
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
||
|
in1[2][2] * in2[2][1];
|
||
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
||
|
in1[2][2] * in2[2][2];
|
||
|
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] +
|
||
|
in1[2][2] * in2[2][3] + in1[2][3];
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
===================
|
||
|
FloorDivMod
|
||
|
|
||
|
Returns mathematically correct (floor-based) quotient and remainder for
|
||
|
numer and denom, both of which should contain no fractional part. The
|
||
|
quotient must fit in 32 bits.
|
||
|
====================
|
||
|
*/
|
||
|
|
||
|
void FloorDivMod (double numer, double denom, int *quotient,
|
||
|
int *rem)
|
||
|
{
|
||
|
int q, r;
|
||
|
double x;
|
||
|
|
||
|
#ifndef PARANOID
|
||
|
if (denom <= 0.0)
|
||
|
Sys_Error ("FloorDivMod: bad denominator %d\n", denom);
|
||
|
|
||
|
// if ((floor(numer) != numer) || (floor(denom) != denom))
|
||
|
// Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n",
|
||
|
// numer, denom);
|
||
|
#endif
|
||
|
|
||
|
if (numer >= 0.0)
|
||
|
{
|
||
|
|
||
|
x = floor(numer / denom);
|
||
|
q = (int)x;
|
||
|
r = (int)floor(numer - (x * denom));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
//
|
||
|
// perform operations with positive values, and fix mod to make floor-based
|
||
|
//
|
||
|
x = floor(-numer / denom);
|
||
|
q = -(int)x;
|
||
|
r = (int)floor(-numer - (x * denom));
|
||
|
if (r != 0)
|
||
|
{
|
||
|
q--;
|
||
|
r = (int)denom - r;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
*quotient = q;
|
||
|
*rem = r;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
===================
|
||
|
GreatestCommonDivisor
|
||
|
====================
|
||
|
*/
|
||
|
int GreatestCommonDivisor (int i1, int i2)
|
||
|
{
|
||
|
if (i1 > i2)
|
||
|
{
|
||
|
if (i2 == 0)
|
||
|
return (i1);
|
||
|
return GreatestCommonDivisor (i2, i1 % i2);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (i1 == 0)
|
||
|
return (i2);
|
||
|
return GreatestCommonDivisor (i1, i2 % i1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#if !id386
|
||
|
|
||
|
// TODO: move to nonintel.c
|
||
|
|
||
|
/*
|
||
|
===================
|
||
|
Invert24To16
|
||
|
|
||
|
Inverts an 8.24 value to a 16.16 value
|
||
|
====================
|
||
|
*/
|
||
|
|
||
|
fixed16_t Invert24To16(fixed16_t val)
|
||
|
{
|
||
|
if (val < 256)
|
||
|
return (0xFFFFFFFF);
|
||
|
|
||
|
return (fixed16_t)
|
||
|
(((double)0x10000 * (double)0x1000000 / (double)val) + 0.5);
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
void Mat_Mul_1x4_4x4(matrix_1x4 a,
|
||
|
matrix_4x4 b,
|
||
|
matrix_1x4 result)
|
||
|
{
|
||
|
// this function multiplies a 1x4 by a 4x4 and stores the result in a 1x4
|
||
|
|
||
|
int index_j, // column index
|
||
|
index_k; // row index
|
||
|
|
||
|
float sum; // temp used to hold sum of products
|
||
|
|
||
|
// loop thru columns of b
|
||
|
|
||
|
for (index_j=0; index_j<4; index_j++)
|
||
|
{
|
||
|
|
||
|
// multiply ith row of a by jth column of b and store the sum
|
||
|
// of products in the position i,j of result
|
||
|
|
||
|
sum=0;
|
||
|
|
||
|
for (index_k=0; index_k<4; index_k++)
|
||
|
sum+=a[index_k]*b[index_k][index_j];
|
||
|
|
||
|
// store result
|
||
|
|
||
|
result[index_j] = sum;
|
||
|
|
||
|
} // end for index_j
|
||
|
|
||
|
} // end Mat_Mul_1x4_4x4
|
||
|
|
||
|
/*
|
||
|
PENTA: Easy & fast matrix inversions with some quirks (just what Carmack likes ;) )
|
||
|
Thnx to http://www.cs.unc.edu/~gotz/code/affinverse.html
|
||
|
Find the inverse of a matrix that is made up of only scales, rotations,
|
||
|
and translations.
|
||
|
*/
|
||
|
void MatrixAffineInverse( matrix_4x4 m, matrix_4x4 result )
|
||
|
{
|
||
|
float Tx, Ty, Tz;
|
||
|
|
||
|
// The rotational part of the matrix is simply the transpose of the
|
||
|
// original matrix.
|
||
|
result[0][0] = m[0][0];
|
||
|
result[1][0] = m[0][1];
|
||
|
result[2][0] = m[0][2];
|
||
|
|
||
|
result[0][1] = m[1][0];
|
||
|
result[1][1] = m[1][1];
|
||
|
result[2][1] = m[1][2];
|
||
|
|
||
|
result[0][2] = m[2][0];
|
||
|
result[1][2] = m[2][1];
|
||
|
result[2][2] = m[2][2];
|
||
|
|
||
|
// The right column vector of the matrix should always be [ 0 0 0 1 ]
|
||
|
// In most cases. . . you don't need this column at all because it'll
|
||
|
// never be used in the program, but since this code is used with GL
|
||
|
// and it does consider this column, it is here.
|
||
|
result[0][3] = result[1][3] = result[2][3] = 0;
|
||
|
result[3][3] = 1;
|
||
|
|
||
|
// The translation components of the original matrix.
|
||
|
Tx = m[3][0];
|
||
|
Ty = m[3][1];
|
||
|
Tz = m[3][2];
|
||
|
|
||
|
// Rresult = -(Tm * Rm) to get the translation part of the inverse
|
||
|
result[3][0] = -( m[0][0] * Tx + m[0][1] * Ty + m[0][2] * Tz );
|
||
|
result[3][1] = -( m[1][0] * Tx + m[1][1] * Ty + m[1][2] * Tz );
|
||
|
result[3][2] = -( m[2][0] * Tx + m[2][1] * Ty + m[2][2] * Tz );
|
||
|
}
|