raze/source/common/rendering/polyrenderer/backend/poly_buffers.cpp
Christoph Oelckers 9071949a46 - backend upate from GZDoom
* Vulkan SDK and dependencies updated.
* better interface for buffers in the render backend.
2021-10-30 09:34:38 +02:00

183 lines
5.6 KiB
C++

/*
** Softpoly backend
** Copyright (c) 2016-2020 Magnus Norddahl
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any damages
** arising from the use of this software.
**
** Permission is granted to anyone to use this software for any purpose,
** including commercial applications, and to alter it and redistribute it
** freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you must not
** claim that you wrote the original software. If you use this software
** in a product, an acknowledgment in the product documentation would be
** appreciated but is not required.
** 2. Altered source versions must be plainly marked as such, and must not be
** misrepresented as being the original software.
** 3. This notice may not be removed or altered from any source distribution.
**
*/
#include "poly_buffers.h"
#include "poly_framebuffer.h"
#include "poly_renderstate.h"
#include "poly_thread.h"
#include "engineerrors.h"
PolyBuffer *PolyBuffer::First = nullptr;
PolyBuffer::PolyBuffer()
{
Next = First;
First = this;
if (Next) Next->Prev = this;
}
PolyBuffer::~PolyBuffer()
{
if (Next) Next->Prev = Prev;
if (Prev) Prev->Next = Next;
else First = Next;
auto fb = GetPolyFrameBuffer();
if (fb && !mData.empty())
fb->FrameDeleteList.Buffers.push_back(std::move(mData));
}
void PolyBuffer::ResetAll()
{
for (PolyBuffer *cur = PolyBuffer::First; cur; cur = cur->Next)
cur->Reset();
}
void PolyBuffer::Reset()
{
}
void PolyBuffer::SetData(size_t size, const void *data, BufferUsageType usage)
{
mData.resize(size);
map = mData.data();
if (data)
memcpy(map, data, size);
buffersize = size;
}
void PolyBuffer::SetSubData(size_t offset, size_t size, const void *data)
{
memcpy(static_cast<uint8_t*>(map) + offset, data, size);
}
void PolyBuffer::Resize(size_t newsize)
{
mData.resize(newsize);
buffersize = newsize;
map = mData.data();
}
void PolyBuffer::Map()
{
}
void PolyBuffer::Unmap()
{
}
void *PolyBuffer::Lock(unsigned int size)
{
if (mData.size() < (size_t)size)
Resize(size);
return map;
}
void PolyBuffer::Unlock()
{
}
/////////////////////////////////////////////////////////////////////////////
void PolyVertexBuffer::SetFormat(int numBindingPoints, int numAttributes, size_t stride, const FVertexBufferAttribute *attrs)
{
VertexFormat = GetPolyFrameBuffer()->GetRenderState()->GetVertexFormat(numBindingPoints, numAttributes, stride, attrs);
}
/////////////////////////////////////////////////////////////////////////////
void PolyVertexInputAssembly::Load(PolyTriangleThreadData *thread, const void *vertices, int frame0, int frame1, int index)
{
uint8_t* buff = (uint8_t*)vertices;
// [GEC] finds the right frame.
uint32_t offsets[2] = { static_cast<uint32_t>(frame0 * Stride), static_cast<uint32_t>(frame1 * Stride) };
uint8_t* vertexBuffers[2] = { buff + offsets[0], buff + offsets[1] };
const uint8_t* vertex = static_cast<const uint8_t*>(vertexBuffers[0]) + mStride * index;
const float* attrVertex = reinterpret_cast<const float*>(vertex + mOffsets[VATTR_VERTEX]);
const uint8_t* vertex2 = static_cast<const uint8_t*>(vertexBuffers[1]) + mStride * index;
const float* attrVertex2 = reinterpret_cast<const float*>(vertex2 + mOffsets[VATTR_VERTEX]);
const float *attrTexcoord = reinterpret_cast<const float*>(vertex + mOffsets[VATTR_TEXCOORD]);
const uint8_t *attrColor = reinterpret_cast<const uint8_t*>(vertex + mOffsets[VATTR_COLOR]);
const uint32_t* attrNormal = reinterpret_cast<const uint32_t*>(vertex + mOffsets[VATTR_NORMAL]);
const uint32_t* attrNormal2 = reinterpret_cast<const uint32_t*>(vertex + mOffsets[VATTR_NORMAL2]);
// [GEC] Apply the formula for model interpolation
float newVertex[3];
float t = thread->mainVertexShader.Data.uInterpolationFactor;
float invt = 1.0f - t;
newVertex[0] = (invt * attrVertex[0]) + (t * attrVertex2[0]);
newVertex[1] = (invt * attrVertex[1]) + (t * attrVertex2[1]);
newVertex[2] = (invt * attrVertex[2]) + (t * attrVertex2[2]);
thread->mainVertexShader.aPosition = { newVertex[0], newVertex[1], newVertex[2], 1.0f };
thread->mainVertexShader.aTexCoord = { attrTexcoord[0], attrTexcoord[1] };
if ((UseVertexData & 1) == 0)
{
const auto &c = thread->mainVertexShader.Data.uVertexColor;
thread->mainVertexShader.aColor.X = c.X;
thread->mainVertexShader.aColor.Y = c.Y;
thread->mainVertexShader.aColor.Z = c.Z;
thread->mainVertexShader.aColor.W = c.W;
}
else
{
thread->mainVertexShader.aColor.X = attrColor[0] * (1.0f / 255.0f);
thread->mainVertexShader.aColor.Y = attrColor[1] * (1.0f / 255.0f);
thread->mainVertexShader.aColor.Z = attrColor[2] * (1.0f / 255.0f);
thread->mainVertexShader.aColor.W = attrColor[3] * (1.0f / 255.0f);
}
if ((UseVertexData & 2) == 0)
{
const auto &n = thread->mainVertexShader.Data.uVertexNormal;
thread->mainVertexShader.aNormal = FVector4(n.X, n.Y, n.Z, 1.0);
thread->mainVertexShader.aNormal2 = thread->mainVertexShader.aNormal;
}
else
{
int n = *attrNormal;
int n2 = *attrNormal2;
float x = ((n << 22) >> 22) / 512.0f;
float y = ((n << 12) >> 22) / 512.0f;
float z = ((n << 2) >> 22) / 512.0f;
float x2 = ((n2 << 22) >> 22) / 512.0f;
float y2 = ((n2 << 12) >> 22) / 512.0f;
float z2 = ((n2 << 2) >> 22) / 512.0f;
thread->mainVertexShader.aNormal = FVector4(x, y, z, 0.0f);
thread->mainVertexShader.aNormal2 = FVector4(x2, y2, z2, 0.0f);
}
}
/////////////////////////////////////////////////////////////////////////////
void PolyDataBuffer::BindRange(FRenderState *state, size_t start, size_t length)
{
static_cast<PolyRenderState*>(state)->Bind(this, (uint32_t)start, (uint32_t)length);
}