raze/source/core/gamefuncs.cpp
2022-11-15 15:44:33 +01:00

1407 lines
40 KiB
C++

//-------------------------------------------------------------------------
/*
Copyright (C) 2021 Christoph Oelckers & Mitchell Richters
This is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
//-------------------------------------------------------------------------
#include "gamefuncs.h"
#include "gamestruct.h"
#include "intvec.h"
#include "coreactor.h"
#include "interpolate.h"
#include "hw_voxels.h"
IntRect viewport3d;
constexpr double MAXCLIPDISTF = 64;
CVARD(Bool, strict_compatibility, false, CVAR_ARCHIVE | CVAR_GLOBALCONFIG, "Enables stricter compatibility checks in the backend code")
//---------------------------------------------------------------------------
//
// Unified chasecam function for all games.
//
//---------------------------------------------------------------------------
double cameradist, cameraclock;
bool calcChaseCamPos(DVector3& ppos, DCoreActor* act, sectortype** psect, DAngle ang, DAngle horiz, double const interpfrac, double const backamp)
{
if (!*psect) return false;
// Calculate new pos to shoot backwards
DVector3 npos = -DVector3(ang.ToVector() * horiz.Cos(), horiz.Sin()) * backamp;
HitInfoBase hitinfo;
auto bakcstat = act->spr.cstat;
act->spr.cstat &= ~CSTAT_SPRITE_BLOCK_ALL;
updatesectorz(ppos, psect);
hitscan(ppos, *psect, npos, hitinfo, CLIPMASK1);
act->spr.cstat = bakcstat;
auto hpos = hitinfo.hitpos - ppos;
if (!*psect) return false;
// If something is in the way, make cameradist lower if necessary
if (npos.XY().Sum() > hpos.XY().Sum())
{
double DVector3::* c = fabs(npos.X) > fabs(npos.Y) ? &DVector3::X : &DVector3::Y;
if (hitinfo.hitWall != nullptr)
{
// Push you a little bit off the wall
*psect = hitinfo.hitSector;
hpos.*c -= npos.*c * npos.XY().dot(hitinfo.hitWall->delta().Angle().ToVector().Rotated90CW()) * (1. / 1024.);
}
else if (hitinfo.hitActor == nullptr)
{
// Push you off the ceiling/floor
*psect = hitinfo.hitSector;
hpos.*c -= npos.*c * (1. / 32.);
}
else
{
// If you hit a sprite that's not a wall sprite - try again.
if (!(hitinfo.hitActor->spr.cstat & CSTAT_SPRITE_ALIGNMENT_WALL))
{
bakcstat = hitinfo.hitActor->spr.cstat;
hitinfo.hitActor->spr.cstat &= ~(CSTAT_SPRITE_BLOCK | CSTAT_SPRITE_BLOCK_HITSCAN);
calcChaseCamPos(ppos, act, psect, ang, horiz, interpfrac, backamp);
hitinfo.hitActor->spr.cstat = bakcstat;
return false;
}
else
{
// same as wall calculation.
hpos.*c -= npos.*c * npos.XY().dot((act->spr.angle - DAngle90).ToVector().Rotated90CW()) * (1. / 1024.);
}
}
double newdist = hpos.*c / npos.*c;
if (newdist < cameradist) cameradist = newdist;
}
// Actually move you! (camerdist is 1 if nothing is in the way)
ppos += npos * cameradist;
// Calculate clock using GameTicRate so it increases the same rate on all speed computers.
double myclock = PlayClock + 120 / GameTicRate * interpfrac;
if (cameraclock == INT_MIN)
{
// Third person view was just started.
cameraclock = myclock;
}
// Slowly increase cameradist until it reaches 1.
cameradist = min(cameradist + ((myclock - cameraclock) * (1. / 64.)), 1.);
cameraclock = myclock;
// Make sure psectnum is correct.
updatesectorz(ppos, psect);
return true;
}
//==========================================================================
//
// consolidated slope calculation
//
//==========================================================================
void calcSlope(const sectortype* sec, double xpos, double ypos, double* pceilz, double* pflorz)
{
int bits = 0;
if (pceilz)
{
bits |= sec->ceilingstat;
*pceilz = sec->ceilingz;
}
if (pflorz)
{
bits |= sec->floorstat;
*pflorz = sec->floorz;
}
if ((bits & CSTAT_SECTOR_SLOPE) == CSTAT_SECTOR_SLOPE)
{
auto wal = sec->walls.Data();
double len = wal->Length();
if (len != 0)
{
DVector2 wd = DVector2(xpos, ypos) - wal->pos;
double fac = wal->delta().dot(wd.Rotated90CW()) / len * (1. / SLOPEVAL_FACTOR);
if (pceilz && sec->ceilingstat & CSTAT_SECTOR_SLOPE) *pceilz += (sec->ceilingheinum * fac);
if (pflorz && sec->floorstat & CSTAT_SECTOR_SLOPE) *pflorz += (sec->floorheinum * fac);
}
}
}
//==========================================================================
//
//
//
//==========================================================================
int getslopeval(sectortype* sect, const DVector3& pos, double basez)
{
auto wal = sect->walls.Data();
double i = (pos.XY() - wal->pos).dot(wal->delta().Rotated90CCW());
return i == 0? 0 : int(SLOPEVAL_FACTOR * (pos.Z - basez) * wal->Length() / i);
}
//==========================================================================
//
// Calculate the distance to the closest point in the given sector
//
//==========================================================================
double SquareDistToSector(double px, double py, const sectortype* sect, DVector2* point)
{
if (inside(px, py, sect))
{
if (point)
*point = { px, py };
return 0;
}
double bestdist = DBL_MAX;
DVector2 bestpt = { px, py };
for (auto& wal : sect->walls)
{
DVector2 pt;
auto dist = SquareDistToWall(px, py, &wal, &pt);
if (dist < bestdist)
{
bestdist = dist;
bestpt = pt;
}
}
if (point) *point = bestpt;
return bestdist;
}
//==========================================================================
//
// Calculate the position of a wall sprite in the world
//
//==========================================================================
void GetWallSpritePosition(const spritetypebase* spr, const DVector2& pos, DVector2* out, bool render)
{
auto tex = tileGetTexture(spr->picnum);
double width, xoffset;
if (render && hw_hightile && TileFiles.tiledata[spr->picnum].hiofs.xsize)
{
width = TileFiles.tiledata[spr->picnum].hiofs.xsize;
xoffset = (TileFiles.tiledata[spr->picnum].hiofs.xoffs + spr->xoffset);
}
else
{
width = tex->GetDisplayWidth();
xoffset = tex->GetDisplayLeftOffset() + spr->xoffset;
}
auto p = spr->angle.ToVector().Rotated90CW() * spr->scale.X;
if (spr->cstat & CSTAT_SPRITE_XFLIP) xoffset = -xoffset;
double origin = (width * 0.5) + xoffset;
out[0] = pos - p * origin;
out[1] = out[0] + p * width;
}
//==========================================================================
//
// Calculate the position of a floor sprite in the world
//
//==========================================================================
void TGetFlatSpritePosition(const spritetypebase* spr, const DVector2& pos, DVector2* out, double* outz, int heinum, bool render)
{
auto tex = tileGetTexture(spr->picnum);
double width, height, leftofs, topofs;
double sloperatio = sqrt(heinum * heinum + SLOPEVAL_FACTOR * SLOPEVAL_FACTOR) * (1. / SLOPEVAL_FACTOR);
double xrepeat = spr->scale.X;
double yrepeat = spr->scale.Y;
int xo = heinum ? 0 : spr->xoffset;
int yo = heinum ? 0 : spr->yoffset;
if (render && hw_hightile && TileFiles.tiledata[spr->picnum].hiofs.xsize)
{
width = TileFiles.tiledata[spr->picnum].hiofs.xsize * xrepeat;
height = TileFiles.tiledata[spr->picnum].hiofs.ysize * yrepeat;
leftofs = (TileFiles.tiledata[spr->picnum].hiofs.xoffs + xo) * xrepeat;
topofs = (TileFiles.tiledata[spr->picnum].hiofs.yoffs + yo) * yrepeat;
}
else
{
width = (int)tex->GetDisplayWidth() * xrepeat;
height = (int)tex->GetDisplayHeight() * yrepeat;
leftofs = ((int)tex->GetDisplayLeftOffset() + xo) * xrepeat;
topofs = ((int)tex->GetDisplayTopOffset() + yo) * yrepeat;
}
if (spr->cstat & CSTAT_SPRITE_XFLIP) leftofs = -leftofs;
if (spr->cstat & CSTAT_SPRITE_YFLIP) topofs = -topofs;
double sprcenterx = (width * 0.5) + leftofs;
double sprcentery = (height * 0.5) + topofs;
double cosang = spr->angle.Cos();
double sinang = spr->angle.Sin();
double cosangslope = cosang / sloperatio;
double sinangslope = sinang / sloperatio;
out[0].X = pos.X + sinang * sprcenterx + cosangslope * sprcentery;
out[0].Y = pos.Y + sinangslope * sprcentery - cosang * sprcenterx;
out[1].X = out[0].X - sinang * width;
out[1].Y = out[0].Y + cosang * width;
DVector2 sub = { cosangslope * height, sinangslope * height };
out[2] = out[1] - sub;
out[3] = out[0] - sub;
if (outz)
{
if (!heinum) outz[3] = outz[2] = outz[1] = outz[0] = 0;
else
{
for (int i = 0; i < 4; i++)
{
outz[i] = (sinang * (out[i].Y - pos.Y) + cosang * (out[i].X - pos.X)) * heinum * (1. / SLOPEVAL_FACTOR);
}
}
}
}
void GetFlatSpritePosition(DCoreActor* actor, const DVector2& pos, DVector2* out, double* outz, bool render)
{
TGetFlatSpritePosition(&actor->spr, pos, out, outz, spriteGetSlope(actor), render);
}
void GetFlatSpritePosition(const tspritetype* spr, const DVector2& pos, DVector2* out, double* outz, bool render)
{
TGetFlatSpritePosition(spr, pos, out, outz, tspriteGetSlope(spr), render);
}
//==========================================================================
//
// checks if the given point is sufficiently close to the given line segment.
//
//==========================================================================
EClose IsCloseToLine(const DVector2& point, const DVector2& start, const DVector2& end, double maxdist)
{
auto const v1 = start - point;
auto const v2 = end - point;
// trivially outside the box.
if (
((v1.X < -maxdist) && (v2.X < -maxdist)) || // fully to the left
((v1.Y < -maxdist) && (v2.Y < -maxdist)) || // fully below
((v1.X >= maxdist) && (v2.X >= maxdist)) || // fully to the right
((v1.Y >= maxdist) && (v2.Y >= maxdist))) // fully above
return EClose::Outside;
auto waldelta = end - start;
if (waldelta.X * v1.Y <= waldelta.Y * v1.X)
{
// is it in front?
waldelta.X *= waldelta.X > 0 ? v1.Y + maxdist : v1.Y - maxdist;
waldelta.Y *= waldelta.Y > 0 ? v1.X - maxdist : v1.X + maxdist;
return waldelta.X > waldelta.Y ? EClose::InFront : EClose::Outside;
}
else
{
// or behind?
waldelta.X *= waldelta.X > 0 ? v1.Y - maxdist : v1.Y + maxdist;
waldelta.Y *= waldelta.Y > 0 ? v1.X + maxdist : v1.X - maxdist;
return (waldelta.X <= waldelta.Y) ? EClose::Behind : EClose::Outside;
}
}
EClose IsCloseToWall(const DVector2& point, walltype* wal, double maxdist)
{
return IsCloseToLine(point, wal->pos, wal->point2Wall()->pos, maxdist);
}
//==========================================================================
//
// Check if some walls are set to use rotated textures.
// Ideally this should just have been done with texture rotation,
// but the effects on the render code would be too severe due to the alignment mess.
//
//==========================================================================
void checkRotatedWalls()
{
for (auto& w : wall)
{
if (w.cstat & CSTAT_WALL_ROTATE_90)
{
int picnum = w.picnum;
tileUpdatePicnum(&picnum);
auto& tile = RotTile(picnum);
if (tile.newtile == -1 && tile.owner == -1)
{
tile.newtile = TileFiles.tileCreateRotated(picnum);
assert(tile.newtile != -1);
RotTile(tile.newtile).owner = picnum;
}
}
}
}
//==========================================================================
//
// check if two sectors share a wall connection
//
//==========================================================================
bool sectorsConnected(int sect1, int sect2)
{
for (auto& wal : sector[sect1].walls)
{
if (wal.nextsector == sect2) return true;
}
return false;
}
//==========================================================================
//
//
//
//==========================================================================
int64_t checkforinside(double x, double y, const DVector2& pt1, const DVector2& pt2)
{
// Perform the checks here in 48.16 fixed point.
// Doing it directly with floats and multiplications does not work reliably due to underflows.
// Unfortunately, due to the conversions, this is a bit slower. :(
int64_t xs = int64_t(0x10000 * (pt1.X - x));
int64_t ys = int64_t(0x10000 * (pt1.Y - y));
int64_t xe = int64_t(0x10000 * (pt2.X - x));
int64_t ye = int64_t(0x10000 * (pt2.Y - y));
if ((ys ^ ye) < 0)
{
int64_t val;
if ((xs ^ xe) >= 0) val = xs;
else val = ((xs * ye) - xe * ys) ^ ye;
return val;
}
return 0;
}
//==========================================================================
//
//
//
//==========================================================================
int inside(double x, double y, const sectortype* sect)
{
if (sect)
{
int64_t acc = 1;
for (auto& wal : sect->walls)
{
acc ^= checkforinside(x, y, wal.pos, wal.point2Wall()->pos);
}
return acc < 0;
}
return -1;
}
//==========================================================================
//
//
//
//==========================================================================
int insidePoly(double x, double y, const DVector2* points, int count)
{
int64_t acc = 1;
for (int i = 0; i < count; i++)
{
int j = (i + 1) % count;
acc ^= checkforinside(x, y, points[i], points[j]);
}
return acc < 0;
}
//==========================================================================
//
// find the closest neighboring sector plane in the given direction.
// Does not consider slopes, just like the original!
//
//==========================================================================
sectortype* nextsectorneighborzptr(sectortype* sectp, double startz, int flags)
{
double factor = (flags & Find_Up)? -1 : 1;
double bestz = INT_MAX;
sectortype* bestsec = (flags & Find_Safe)? sectp : nullptr;
const auto planez = (flags & Find_Ceiling)? &sectortype::ceilingz : &sectortype::floorz;
startz *= factor;
for(auto& wal : sectp->walls)
{
if (wal.twoSided())
{
auto nextsec = wal.nextSector();
auto nextz = factor * nextsec->*planez;
if (startz < nextz && nextz < bestz)
{
bestz = nextz;
bestsec = nextsec;
}
}
}
return bestsec;
}
//==========================================================================
//
//
//
//==========================================================================
bool cansee(const DVector3& start, sectortype* sect1, const DVector3& end, sectortype* sect2)
{
if (!sect1 || !sect2) return false;
auto delta = end - start;
if (delta.XY().isZero())
return (sect1 == sect2);
BFSSectorSearch search(sect1);
while (auto sec = search.GetNext())
{
for (auto& wal : sec->walls)
{
double factor = InterceptLineSegments(start.X, start.Y, delta.X, delta.Y, wal.pos.X, wal.pos.Y, wal.delta().X, wal.delta().Y, nullptr, true);
if (factor < 0 || factor >= 1) continue;
if (!wal.twoSided() || wal.cstat & CSTAT_WALL_1WAY)
return false;
auto spot = start + delta * factor;
double floorz, ceilz;
for (auto isec : { sec, wal.nextSector() })
{
calcSlope(isec, spot, &ceilz, &floorz);
if (spot.Z <= ceilz || spot.Z >= floorz)
return false;
}
search.Add(wal.nextSector());
}
}
return search.Check(sect2);
}
//---------------------------------------------------------------------------
//
// taken out of SW.
//
//---------------------------------------------------------------------------
int testpointinquad(const DVector2& pt, const DVector2* quad)
{
for (int i = 0; i < 4; i++)
{
double dist = PointOnLineSide(pt.X, pt.Y, quad[i].X, quad[i].Y, quad[(i + 1) & 3].X - quad[i].X, quad[(i + 1) & 3].Y - quad[i].Y);
if (dist > 0) return false;
}
return true;
}
//==========================================================================
//
//
//
//==========================================================================
double intersectSprite(DCoreActor* actor, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor)
{
auto end = start + direction;
if (direction.isZero()) return false;
// get point on trace that is closest to the sprite
double factor = NearestPointOnLineFast(actor->spr.pos.X, actor->spr.pos.Y, start.X, start.Y, end.X, end.Y);
if (factor < 0 || factor > maxfactor) return -1;
auto sprwidth = tileWidth(actor->spr.picnum) * actor->spr.scale.X * 0.5;
auto point = start + direction * factor;
// Using proper distance here, Build originally used the sum of x- and y-distance
if ((point.XY() - actor->spr.pos.XY()).LengthSquared() > sprwidth * sprwidth * 0.5) return -1; // too far away
double siz, hitz = actor->spr.pos.Z + actor->GetOffsetAndHeight(siz);
if (point.Z < hitz - siz || point.Z > hitz)
return -1;
result = point;
return factor;
}
//==========================================================================
//
//
//
//==========================================================================
double intersectWallSprite(DCoreActor* actor, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor, bool checktex)
{
DVector2 points[2];
GetWallSpritePosition(&actor->spr, actor->spr.pos, points, false);
points[1] -= points[0];
if ((actor->spr.cstat & CSTAT_SPRITE_ONE_SIDE)) //check for back side of one way sprite
{
if (PointOnLineSide(start.X, start.Y, points[0].X, points[0].Y, points[1].X, points[1].Y) > 0)
return -1;
}
// the wall factor is needed for doing a texture check.
double factor2, factor = InterceptLineSegments(start.X, start.Y, direction.X, direction.Y, points[0].X, points[0].Y, points[1].X, points[1].Y, &factor2);
if (factor < 0 || factor > maxfactor) return -1;
result = start + factor * direction;
double height, position = actor->spr.pos.Z + actor->GetOffsetAndHeight(height);
if (result.Z <= position - height || result.Z >= position) return -1;
if (checktex)
{
int tilenum = actor->spr.picnum;
tileUpdatePicnum(&tilenum);
if (tileLoad(tilenum))
{
double zfactor = 1. - (position - result.Z) / height;
// all other flags have been taken care of already by GetWallSpritePosition and GetOffsetAndHeight
// - but we have to handle the flip flags here to fetch the correct texel.
if (actor->spr.cstat & CSTAT_SPRITE_XFLIP) factor2 = 1 - factor2;
if (actor->spr.cstat & CSTAT_SPRITE_YFLIP) zfactor = 1 - zfactor;
int xtex = int(factor2 * tileWidth(tilenum));
int ytex = int(zfactor * tileHeight(tilenum));
auto texel = (tilePtr(tilenum) + tileHeight(tilenum) * xtex + ytex);
if (*texel == TRANSPARENT_INDEX)
return -1;
}
}
return factor;
}
//==========================================================================
//
//
//
//==========================================================================
double intersectFloorSprite(DCoreActor* actor, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor)
{
if (actor->spr.cstat & CSTAT_SPRITE_ONE_SIDE)
{
if ((start.Z > actor->spr.pos.Z) == ((actor->spr.cstat & CSTAT_SPRITE_YFLIP) == 0)) return -1;
}
DVector2 points[4];
GetFlatSpritePosition(actor, actor->spr.pos, points, nullptr, false);
double factor = (actor->spr.pos.Z - start.Z) / direction.Z;
if (factor <= 0 || factor > maxfactor) return -1;
result = start + factor * direction;
if (!testpointinquad(result.XY(), points)) return -1;
return factor;
}
//==========================================================================
//
//
//
//==========================================================================
double intersectSlopeSprite(DCoreActor* actor, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor)
{
DVector2 points[4];
double ptz[4];
GetFlatSpritePosition(actor, actor->spr.pos, points, ptz, false);
DVector3 pt1(points[0], ptz[0]);
DVector3 pt2(points[1], ptz[1]);
DVector3 pt3(points[2], ptz[2]);
double factor = LinePlaneIntersect(start, direction, pt1, pt2 - pt1, pt3 - pt1);
if (factor <= 0 || factor > maxfactor) return -1;
result = start + factor * direction;
// we can only do this after calculating the actual intersection spot...
if (actor->spr.cstat & CSTAT_SPRITE_ONE_SIDE)
{
double checkz = spriteGetZOfSlopef(&actor->spr, start.XY(), spriteGetSlope(actor));
if ((start.Z > checkz) == ((actor->spr.cstat & CSTAT_SPRITE_YFLIP) == 0)) return -1;
}
if (!testpointinquad(result.XY(), points)) return -1;
return factor;
}
//==========================================================================
//
//
//
//==========================================================================
double checkWallHit(walltype* wal, EWallFlags flagmask, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor)
{
if (PointOnLineSide(start.XY(), wal) > 0) return -1;
double factor = InterceptLineSegments(start.X, start.Y, direction.X, direction.Y, wal->pos.X, wal->pos.Y, wal->delta().X, wal->delta().Y);
if (factor < 0 || factor > maxfactor) return -1; // did not connect.
result = start + factor * direction;
if (wal->twoSided() && !(wal->cstat & flagmask))
{
// check if the trace passes this wall or hits the upper or lower tier.
double cz, fz;
calcSlope(wal->nextSector(), result, &cz, &fz);
if (result.Z > cz && result.Z < fz) return -2; // trace will pass this wall, i.e. no hit. Return -2 to tell the caller to go on.
}
return factor;
}
//==========================================================================
//
//
//
//==========================================================================
double checkSectorPlaneHit(sectortype* sec, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor)
{
if (sec->walls.Size() < 3) return -1;
auto wal = sec->walls.Data();
double len = wal->Length();
DVector3 pt1, pt2, pt3;
double startcz, startfz;
double p3cz, p3fz;
pt1.XY() = wal->pos;
pt2.XY() = wal->point2Wall()->pos;
pt3.X = pt1.X + pt2.Y - pt1.Y;
pt3.Y = pt1.Y + pt2.X - pt1.X; // somewhere off the first line.
calcSlope(sec, start.X, start.Y, &startcz, &startfz);
calcSlope(sec, pt3.X, pt3.Y, &p3cz, &p3fz);
double factor;
for (int i = 0; i < 2; i++)
{
bool sloped;
if (i == 0)
{
if (start.Z <= startcz) continue;
sloped = (sec->ceilingstat & CSTAT_SECTOR_SLOPE) && len > 0;
pt1.Z = pt2.Z = sec->ceilingz;
pt3.Z = p3cz;
}
else
{
if (start.Z >= startfz) continue;
sloped = (sec->floorstat & CSTAT_SECTOR_SLOPE && len > 0);
pt1.Z = pt2.Z = sec->floorz;
pt3.Z = p3fz;
}
if (sloped)
{
factor = LinePlaneIntersect(start, direction, pt1, pt2 - pt1, pt3 - pt1);
}
else
{
factor = (pt1.Z - start.Z) / direction.Z;
}
if (factor > 0 && factor <= maxfactor)
{
result = start + factor * direction;
return inside(result.X, result.Y, sec) ? factor : -1;
}
}
return -1;
}
//==========================================================================
//
//
//
//==========================================================================
int hitscan(const DVector3& start, const sectortype* startsect, const DVector3& vect, HitInfoBase& hitinfo, unsigned cliptype, double maxrange)
{
double hitfactor = DBL_MAX;
const auto wallflags = EWallFlags::FromInt(cliptype & 65535);
const auto spriteflags = ESpriteFlags::FromInt(cliptype >> 16);
hitinfo.clearObj();
if (startsect == nullptr)
return -1;
if (maxrange > 0)
{
hitfactor = maxrange / vect.Length();
hitinfo.hitpos = start + hitfactor * vect;
}
else hitinfo.hitpos.X = hitinfo.hitpos.Y = DBL_MAX;
BFSSectorSearch search(startsect);
while (auto sec = search.GetNext())
{
DVector3 v;
double hit = checkSectorPlaneHit(sec, start, vect, v, hitfactor);
if (hit > 0)
{
hitfactor = hit;
hitinfo.set(sec, nullptr, nullptr, v);
}
// check all walls in this sector
for (auto& w : sec->walls)
{
hit = checkWallHit(&w, EWallFlags::FromInt(wallflags), start, vect, v, hitfactor);
if (hit > 0)
{
hitfactor = hit;
hitinfo.set(sec, &w, nullptr, v);
}
else if (hit == -2)
search.Add(w.nextSector());
}
if (!spriteflags)
continue;
//Check all sprites in this sector
TSectIterator<DCoreActor> it(sec);
while (auto actor = it.Next())
{
if (actor->spr.cstat2 & CSTAT2_SPRITE_NOFIND)
continue;
if (!(actor->spr.cstat & spriteflags))
continue;
hit = -1;
// we pass hitfactor to the workers because it can shortcut their calculations a lot.
switch (actor->spr.cstat & CSTAT_SPRITE_ALIGNMENT_MASK)
{
case CSTAT_SPRITE_ALIGNMENT_FACING:
hit = intersectSprite(actor, start, vect, v, hitfactor);
break;
case CSTAT_SPRITE_ALIGNMENT_WALL:
hit = intersectWallSprite(actor, start, vect, v, hitfactor, (picanm[actor->spr.picnum].sf & PICANM_TEXHITSCAN_BIT));
break;
case CSTAT_SPRITE_ALIGNMENT_FLOOR:
hit = intersectFloorSprite(actor, start, vect, v, hitfactor);
break;
case CSTAT_SPRITE_ALIGNMENT_SLOPE:
hit = intersectSlopeSprite(actor, start, vect, v, hitfactor);
break;
}
if (hit > 0)
{
hitfactor = hit;
hitinfo.set(sec, nullptr, actor, v);
}
}
}
return 0;
}
//==========================================================================
//
//
//
//==========================================================================
bool checkRangeOfWall(walltype* wal, EWallFlags flagmask, const DVector3& pos, double maxdist, double* theZs)
{
if (!wal->twoSided()) return false;
if (wal->cstat & flagmask) return false;
if (PointOnLineSide(pos.XY(), wal) > 0) return false;
auto nextsect = wal->nextSector();
// Rather pointless sky check that needs to be kept...
if (((nextsect->ceilingstat & CSTAT_SECTOR_SKY) == 0) && (pos.Z <= nextsect->ceilingz + 3)) return false;
if (((nextsect->floorstat & CSTAT_SECTOR_SKY) == 0) && (pos.Z >= nextsect->floorz - 3)) return false;
auto pos1 = wal->pos;
auto pos2 = wal->point2Wall()->pos;
// Checks borrowed from GZDoom.
DVector2 boxtl = pos - DVector2(maxdist, maxdist);
DVector2 boxbr = pos + DVector2(maxdist, maxdist);
if (!BoxInRange(boxtl, boxbr, pos1, pos2)) return false;
if (BoxOnLineSide(boxtl, boxbr, pos1, pos2 - pos1) != -1) return false;
auto closest = pos.XY();
if (enginecompatibility_mode == ENGINECOMPATIBILITY_NONE || !strict_compatibility)
SquareDistToSector(closest.X, closest.Y, nextsect, &closest);
calcSlope(nextsect, closest.X, closest.Y, &theZs[0], &theZs[1]);
return true;
}
//==========================================================================
//
//
//
//==========================================================================
bool checkRangeOfFaceSprite(DCoreActor* itActor, const DVector3& pos, double maxdist, double* theZs)
{
double dist = maxdist + itActor->clipdist;
if (abs(pos.X - itActor->spr.pos.X) > dist || abs(pos.Y - itActor->spr.pos.Y) > dist) return false; // Just like Doom: actors are square...
double h;
theZs[0] = itActor->spr.pos.Z + itActor->GetOffsetAndHeight(h);
theZs[1] = theZs[0] - h;
return true;
}
//==========================================================================
//
//
//
//==========================================================================
bool checkRangeOfWallSprite(DCoreActor* itActor, const DVector3& pos, double maxdist, double* theZs)
{
int t = itActor->time;
if ((t >= 485 && t <= 487) || t == 315)
{
int a = 0;
}
DVector2 verts[2];
GetWallSpritePosition(&itActor->spr, itActor->spr.pos.XY(), verts);
if (IsCloseToLine(pos.XY(), verts[0], verts[1], maxdist) == EClose::Outside) return false;
double h;
theZs[0] = itActor->spr.pos.Z + itActor->GetOffsetAndHeight(h);
theZs[1] = theZs[0] - h;
return true;
}
//==========================================================================
//
//
//
//==========================================================================
bool checkRangeOfFloorSprite(DCoreActor* itActor, const DVector3& pos, double maxdist, double& theZ)
{
int cstat = itActor->spr.cstat;
if ((cstat & (CSTAT_SPRITE_ALIGNMENT_MASK)) < (CSTAT_SPRITE_ALIGNMENT_FLOOR))
return false;
double fdaz = spriteGetZOfSlopef(&itActor->spr, pos.XY(), spriteGetSlope(itActor));
// Only check if sprite's 2-sided or your on the 1-sided side
if (((cstat & CSTAT_SPRITE_ONE_SIDE) != 0) && ((pos.Z > fdaz) == ((cstat & CSTAT_SPRITE_YFLIP) == 0)))
return false;
DVector2 out[4];
GetFlatSpritePosition(itActor, itActor->spr.pos.XY(), out);
// expand the area to cover 'maxdist' units more on each side. (i.e. move the edges out)
auto expand = (itActor->spr.angle - DAngle45).ToVector() * (maxdist + 0.25); // that's surely not accurate but here we must match Build's original value.
out[0] += expand;
out[1] += expand.Rotated90CCW();
out[2] -= expand;
out[3] += expand.Rotated90CW();
if (!insidePoly(pos.X, pos.Y, out, 4)) return false;
theZ = fdaz;
return true;
}
//==========================================================================
//
//
//
//==========================================================================
void getzrange(const DVector3& pos, sectortype* sect, double* ceilz, CollisionBase& ceilhit, double* florz, CollisionBase& florhit, double maxdist, uint32_t cliptype)
{
if (sect == nullptr)
{
*ceilz = -FLT_MAX; ceilhit.setVoid();
*florz = FLT_MAX; florhit.setVoid();
return;
}
const EWallFlags dawalclipmask = EWallFlags::FromInt(cliptype & 65535);
const ESpriteFlags dasprclipmask = ESpriteFlags::FromInt(cliptype >> 16);
auto closest = pos.XY();
if (enginecompatibility_mode == ENGINECOMPATIBILITY_NONE || !strict_compatibility)
SquareDistToSector(closest.X, closest.Y, sect, &closest);
calcSlope(sect, closest, ceilz, florz);
ceilhit.setSector(sect);
florhit.setSector(sect);
double theZs[2];
BFSSectorSearch search(sect);
while (auto sec = search.GetNext())
{
for (auto& wal : sec->walls)
{
if (checkRangeOfWall(&wal, EWallFlags::FromInt(dawalclipmask), pos, maxdist + 1 / 16., theZs))
{
auto nsec = wal.nextSector();
search.Add(nsec);
if (/*(pos.Z > theZs[0]) &&*/ (theZs[0] > *ceilz))
{
*ceilz = theZs[0];
ceilhit.setSector(nsec);
}
if (/*(pos.Z < theZs[1]) &&*/ (theZs[1] < *florz))
{
*florz = theZs[1];
florhit.setSector(nsec);
}
}
else if (checkRangeOfWall(&wal, EWallFlags::FromInt(dawalclipmask), pos, maxdist + 64., theZs))
{
// extend the search distance for neighboring sectors a bit further so that we can find sprites outside the search range extending to our position.
auto nsec = wal.nextSector();
search.Add(nsec);
}
}
}
if (dasprclipmask)
{
search.Rewind();
while (auto sec = search.GetNext())
{
TSectIterator<DCoreActor> it(sec);
while (auto actor = it.Next())
{
const int32_t cstat = actor->spr.cstat;
if (actor->spr.cstat2 & CSTAT2_SPRITE_NOFIND) continue;
if (cstat & dasprclipmask)
{
switch (cstat & CSTAT_SPRITE_ALIGNMENT_MASK)
{
case CSTAT_SPRITE_ALIGNMENT_FACING:
if (!checkRangeOfFaceSprite(actor, pos, maxdist + 1 / 16., theZs)) continue;
break;
case CSTAT_SPRITE_ALIGNMENT_WALL:
if (!checkRangeOfWallSprite(actor, pos, maxdist + 1 / 16., theZs)) continue;
break;
case CSTAT_SPRITE_ALIGNMENT_FLOOR:
case CSTAT_SPRITE_ALIGNMENT_SLOPE:
if (!checkRangeOfFloorSprite(actor, pos, maxdist, theZs[0])) continue;
theZs[1] = theZs[0];
break;
}
// Clipping time!
if ((pos.Z > theZs[0]) && (theZs[0] > *ceilz))
{
*ceilz = theZs[0];
ceilhit.setSprite(actor);
}
if ((pos.Z < theZs[1]) && (theZs[1] < *florz))
{
*florz = theZs[1];
florhit.setSprite(actor);
}
}
}
}
}
}
//==========================================================================
//
//
//
//==========================================================================
void neartag(const DVector3& pos, sectortype* startsect, DAngle angle, HitInfoBase& result, double range, int flags)
{
auto checkTag = [=](const auto* object)
{
return (((flags & NT_Lotag) && object->lotag) || ((flags & NT_Hitag) && object->hitag));
};
auto v = DVector3(angle.ToVector() * range * 1.000001, 0); // extend the range a tiny bit so that we really find everything we need.
result.clearObj();
result.hitpos.X = result.hitpos.Y = 0;
if (!startsect || (flags & (NT_Lotag | NT_Hitag)) == 0)
return;
BFSSectorSearch search(startsect);
while (auto sect = search.GetNext())
{
for (auto& wal : sect->walls)
{
const auto nextsect = wal.nextSector();
if (PointOnLineSide(pos.XY(), &wal) > 0) continue;
double factor = InterceptLineSegments(pos.X, pos.Y, v.X, v.Y, wal.pos.X, wal.pos.Y, wal.delta().X, wal.delta().Y);
if (factor > 0 && factor < 1)
{
bool foundsector = (wal.twoSided() && checkTag(nextsect));
bool foundwall = checkTag(&wal);
#if 0 // does not work if the trace goes right through the vertex between two walls.
if (!wal.twoSided() && !foundwall && !foundsector)
{
// this case was not handled by Build:
// If we hit an untagged one-sided wall it should both shorten the scan trace and clear all hits beyond.
// Otherwise this may cause problems with some weirdly shaped sectors.
result.hitSector = nullptr;
result.hitWall = nullptr;
result.hitpos.X = 0;
v *= factor;
continue;
}
#endif
if (foundsector) result.hitSector = nextsect;
if (foundwall) result.hitWall = &wal;
if (foundwall || foundsector)
{
v *= factor;
result.hitpos.X = v.XY().Length();
}
if (wal.twoSided())
{
search.Add(nextsect);
}
}
}
if (!(flags & NT_NoSpriteCheck))
{
double factor = 1;
TSectIterator<DCoreActor> it(sect);
while (auto actor = it.Next())
{
if (actor->spr.cstat2 & CSTAT2_SPRITE_NOFIND)
continue;
if (checkTag(&actor->spr))
{
DVector3 spot;
double newfactor = intersectSprite(actor, pos, v, spot, factor - 1. / 65536.);
if (newfactor > 0)
{
factor = newfactor;
result.hitActor = actor;
v = spot - pos;
// return distance to sprite in a separate variable because there is
// no means to determine what it is for if both a sprite and wall are found.
// Only SW's NearTagList actually uses it.
result.hitpos.Y = v.XY().Length();
}
}
}
}
}
}
//==========================================================================
//
//
//
//==========================================================================
bool checkOpening(const DVector2& inpos, double z, const sectortype* sec, const sectortype* nextsec, double ceilingdist, double floordist, bool precise)
{
DVector2 pos;
if (precise) SquareDistToSector(inpos.X, inpos.Y, nextsec, &pos);
else pos = inpos;
double c1, c2, f1, f2;
calcSlope(sec, pos.X, pos.Y, &c1, &f1);
calcSlope(nextsec, pos.X, pos.Y, &c2, &f2);
if (precise)
{
double sech = abs(f1 - c1);
double nextsech = abs(f2 - c2);
if (sech > nextsech && nextsech < ceilingdist + 2) return 1;
}
return ((f2 < f1 - 1 && (nextsec->floorstat & CSTAT_SECTOR_SKY) == 0 && z >= f2 - (floordist - zmaptoworld)) ||
(c2 > c1 + 1 && (nextsec->ceilingstat & CSTAT_SECTOR_SKY) == 0 && z <= c2 + (ceilingdist - zmaptoworld)));
}
//==========================================================================
//
//
//
//==========================================================================
int pushmove(DVector3& pos, sectortype** pSect, double walldist, double ceildist, double floordist, unsigned cliptype)
{
auto wallflags = EWallFlags::FromInt(cliptype & 65535);
int maxhitwalls = 0;
bool pushed = true;
for(int direction = 1; pushed; direction = -direction)
{
pushed = false;
if (*pSect == nullptr)
return -1;
BFSSectorSearch search(*pSect);
while (auto sec = search.GetNext())
{
// this must go both forward and backward so we cannot use iterators. Pity
for (unsigned i = 0; i < sec->walls.Size(); i++)
{
auto wal = direction > 0 ? &sec->walls[i] : &sec->walls[sec->walls.Size() - i];
if (IsCloseToWall(pos.XY(), wal, walldist - 0.25) == EClose::InFront)
{
bool blocked = false;
if (!wal->twoSided() || wal->cstat & wallflags) blocked = true;
else
{
auto pvect = NearestPointOnWall(pos.X, pos.Y, wal);
blocked = checkOpening(pvect, pos.Z, sec, wal->nextSector(), ceildist, floordist);
}
if (blocked)
{
auto dv = wal->delta().Rotated90CCW().Unit() * 0.5;
for (int t = 0; t < 16; t++)
{
pos += dv;
if (IsCloseToWall(pos, wal, (walldist - 0.25)) == EClose::Outside) break;
}
pushed = true;
updatesector(pos, pSect);
if (++maxhitwalls >= 32) return -1;
if (*pSect == nullptr) return -1;
}
else
search.Add(wal->nextSector());
}
}
}
if (!pushed) return 0;
}
return -1;
}
//==========================================================================
//
//
//
//==========================================================================
int FindBestSector(const DVector3& pos)
{
int bestnum = 1;
double bestdist = FLT_MAX;
for (int secnum = (int)sector.Size() - 1; secnum >= 0; secnum--)
{
auto sect = &sector[secnum];
if (inside(pos.X, pos.Y, sect))
{
double ceilz, floorz;
calcSlope(sect, pos.X, pos.Y, &ceilz, &floorz);
if (pos.Z < ceilz)
{
// above ceiling
double dist = ceilz - pos.Z;
if (dist < bestdist)
{
bestnum = secnum;
bestdist = dist;
}
}
else if (pos.Z > floorz)
{
// below floor
double dist = pos.Z - floorz;
if (dist < bestdist)
{
bestnum = secnum;
bestdist = dist;
}
}
else
{
// inside sector
return secnum;
}
}
}
return bestnum;
}
//==========================================================================
//
//
//
//==========================================================================
bool isAwayFromWall(DCoreActor* ac, double delta)
{
sectortype* s1;
updatesector(ac->spr.pos + DVector2(delta, delta), &s1);
if (s1 == ac->sector())
{
updatesector(ac->spr.pos - DVector2(delta, delta), &s1);
if (s1 == ac->sector())
{
updatesector(ac->spr.pos + DVector2(delta, -delta), &s1);
if (s1 == ac->sector())
{
updatesector(ac->spr.pos + DVector2(-delta, delta), &s1);
if (s1 == ac->sector())
return true;
}
}
}
return false;
}
//==========================================================================
//
//
//
//==========================================================================
tspritetype* renderAddTsprite(tspriteArray& tsprites, DCoreActor* actor)
{
auto tspr = tsprites.newTSprite();
tspr->pos = actor->spr.pos;
tspr->cstat = actor->spr.cstat;
tspr->picnum = actor->spr.picnum;
tspr->shade = actor->spr.shade;
tspr->pal = actor->spr.pal;
tspr->clipdist = 0;
tspr->blend = actor->spr.blend;
tspr->scale = actor->spr.scale;
tspr->xoffset = actor->spr.xoffset;
tspr->yoffset = actor->spr.yoffset;
tspr->sectp = actor->spr.sectp;
tspr->statnum = actor->spr.statnum;
tspr->angle = actor->spr.angle;
tspr->xint = actor->spr.xint;
tspr->yint = actor->spr.yint;
tspr->inittype = actor->spr.inittype; // not used by tsprites.
tspr->lotag = actor->spr.lotag;
tspr->hitag = actor->spr.hitag;
tspr->extra = actor->spr.extra;
tspr->time = actor->time;
tspr->cstat2 = actor->spr.cstat2;
tspr->ownerActor = actor;
// need to copy the slope sprite flag around because for tsprites the bit combination means 'voxel'.
if ((tspr->cstat & CSTAT_SPRITE_ALIGNMENT_MASK) == CSTAT_SPRITE_ALIGNMENT_SLOPE)
{
tspr->cstat &= ~CSTAT_SPRITE_ALIGNMENT_WALL;
tspr->clipdist |= TSPR_SLOPESPRITE;
}
return tspr;
}
//==========================================================================
//
// vector serializers
//
//==========================================================================
FSerializer& Serialize(FSerializer& arc, const char* key, vec2_t& c, vec2_t* def)
{
if (arc.isWriting() && def && !memcmp(&c, def, sizeof(c))) return arc;
if (arc.BeginObject(key))
{
arc("x", c.X, def ? &def->X : nullptr)
("y", c.Y, def ? &def->Y : nullptr)
.EndObject();
}
return arc;
}
FSerializer& Serialize(FSerializer& arc, const char* key, vec3_t& c, vec3_t* def)
{
if (arc.isWriting() && def && !memcmp(&c, def, sizeof(c))) return arc;
if (arc.BeginObject(key))
{
arc("x", c.X, def ? &def->X : nullptr)
("y", c.Y, def ? &def->Y : nullptr)
("z", c.Z, def ? &def->Z : nullptr)
.EndObject();
}
return arc;
}