raze/source/common/rendering/hwrenderer/data/hw_skydome.cpp
2020-05-31 10:32:10 +02:00

482 lines
15 KiB
C++
Raw Blame History

//
//---------------------------------------------------------------------------
//
// Copyright(C) 2003-2018 Christoph Oelckers
// All rights reserved.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see http://www.gnu.org/licenses/
//
//--------------------------------------------------------------------------
//
/*
**
** Draws the sky. Loosely based on the JDoom sky and the ZDoomGL 0.66.2 sky.
**
** for FSkyVertexBuffer::SkyVertex only:
**---------------------------------------------------------------------------
** Copyright 2003 Tim Stump
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include "filesystem.h"
#include "cmdlib.h"
#include "bitmap.h"
#include "skyboxtexture.h"
#include "hw_material.h"
#include "hw_skydome.h"
#include "hw_renderstate.h"
#include "v_video.h"
#include "hwrenderer/data/buffers.h"
// 57 world units roughly represent one sky texel for the glTranslate call.
enum
{
skyoffsetfactor = 57
};
//-----------------------------------------------------------------------------
//
// Shamelessly lifted from Doomsday (written by Jaakko Ker<65>nen)
// also shamelessly lifted from ZDoomGL! ;)
//
//-----------------------------------------------------------------------------
CVAR(Float, skyoffset, 0, 0) // for testing
struct SkyColor
{
FTextureID Texture;
std::pair<PalEntry, PalEntry> Colors;
};
static TArray<SkyColor> SkyColors;
std::pair<PalEntry, PalEntry>& R_GetSkyCapColor(FGameTexture* tex)
{
for (auto& sky : SkyColors)
{
if (sky.Texture == tex->GetID()) return sky.Colors;
}
auto itex = tex->GetTexture();
SkyColor sky;
FBitmap bitmap = itex->GetBgraBitmap(nullptr);
int w = bitmap.GetWidth();
int h = bitmap.GetHeight();
const uint32_t* buffer = (const uint32_t*)bitmap.GetPixels();
if (buffer)
{
sky.Colors.first = averageColor((uint32_t*)buffer, w * MIN(30, h), 0);
if (h > 30)
{
sky.Colors.second = averageColor(((uint32_t*)buffer) + (h - 30) * w, w * 30, 0);
}
else sky.Colors.second = sky.Colors.first;
}
sky.Texture = tex->GetID();
SkyColors.Push(sky);
return SkyColors.Last().Colors;
}
//-----------------------------------------------------------------------------
//
//
//
//-----------------------------------------------------------------------------
FSkyVertexBuffer::FSkyVertexBuffer()
{
CreateDome();
mVertexBuffer = screen->CreateVertexBuffer();
static const FVertexBufferAttribute format[] = {
{ 0, VATTR_VERTEX, VFmt_Float3, (int)myoffsetof(FSkyVertex, x) },
{ 0, VATTR_TEXCOORD, VFmt_Float2, (int)myoffsetof(FSkyVertex, u) },
{ 0, VATTR_COLOR, VFmt_Byte4, (int)myoffsetof(FSkyVertex, color) }
};
mVertexBuffer->SetFormat(1, 3, sizeof(FSkyVertex), format);
mVertexBuffer->SetData(mVertices.Size() * sizeof(FSkyVertex), &mVertices[0], true);
}
FSkyVertexBuffer::~FSkyVertexBuffer()
{
delete mVertexBuffer;
}
//-----------------------------------------------------------------------------
//
//
//
//-----------------------------------------------------------------------------
void FSkyVertexBuffer::SkyVertex(int r, int c, bool zflip)
{
static const FAngle maxSideAngle = 60.f;
static const float scale = 10000.;
FAngle topAngle = (c / (float)mColumns * 360.f);
FAngle sideAngle = maxSideAngle * float(mRows - r) / float(mRows);
float height = sideAngle.Sin();
float realRadius = scale * sideAngle.Cos();
FVector2 pos = topAngle.ToVector(realRadius);
float z = (!zflip) ? scale * height : -scale * height;
FSkyVertex vert;
vert.color = r == 0 ? 0xffffff : 0xffffffff;
// And the texture coordinates.
if (!zflip) // Flipped Y is for the lower hemisphere.
{
vert.u = (-c / (float)mColumns);
vert.v = (r / (float)mRows);
}
else
{
vert.u = (-c / (float)mColumns);
vert.v = 1.0f + ((mRows - r) / (float)mRows);
}
if (r != 4) z += 300;
// And finally the vertex.
vert.x = -pos.X; // Doom mirrors the sky vertically!
vert.y = z - 1.f;
vert.z = pos.Y;
mVertices.Push(vert);
}
//-----------------------------------------------------------------------------
//
//
//
//-----------------------------------------------------------------------------
void FSkyVertexBuffer::CreateSkyHemisphere(int hemi)
{
int r, c;
bool zflip = !!(hemi & SKYHEMI_LOWER);
mPrimStart.Push(mVertices.Size());
for (c = 0; c < mColumns; c++)
{
SkyVertex(1, c, zflip);
}
// The total number of triangles per hemisphere can be calculated
// as follows: rows * columns * 2 + 2 (for the top cap).
for (r = 0; r < mRows; r++)
{
mPrimStart.Push(mVertices.Size());
for (c = 0; c <= mColumns; c++)
{
SkyVertex(r + zflip, c, zflip);
SkyVertex(r + 1 - zflip, c, zflip);
}
}
}
//-----------------------------------------------------------------------------
//
//
//
//-----------------------------------------------------------------------------
void FSkyVertexBuffer::CreateDome()
{
// the first thing we put into the buffer is the fog layer object which is just 4 triangles around the viewpoint.
mVertices.Reserve(12);
mVertices[0].Set(1.0f, 1.0f, -1.0f);
mVertices[1].Set(1.0f, -1.0f, -1.0f);
mVertices[2].Set(-1.0f, 0.0f, -1.0f);
mVertices[3].Set(1.0f, 1.0f, -1.0f);
mVertices[4].Set(1.0f, -1.0f, -1.0f);
mVertices[5].Set(0.0f, 0.0f, 1.0f);
mVertices[6].Set(-1.0f, 0.0f, -1.0f);
mVertices[7].Set(1.0f, 1.0f, -1.0f);
mVertices[8].Set(0.0f, 0.0f, 1.0f);
mVertices[9].Set(1.0f, -1.0f, -1.0f);
mVertices[10].Set(-1.0f, 0.0f, -1.0f);
mVertices[11].Set(0.0f, 0.0f, 1.0f);
mColumns = 128;
mRows = 4;
CreateSkyHemisphere(SKYHEMI_UPPER);
CreateSkyHemisphere(SKYHEMI_LOWER);
mPrimStart.Push(mVertices.Size());
mSideStart = mVertices.Size();
mFaceStart[0] = mSideStart + 10;
mFaceStart[1] = mFaceStart[0] + 4;
mFaceStart[2] = mFaceStart[1] + 4;
mFaceStart[3] = mFaceStart[2] + 4;
mFaceStart[4] = mFaceStart[3] + 4;
mFaceStart[5] = mFaceStart[4] + 4;
mFaceStart[6] = mFaceStart[5] + 4;
mVertices.Reserve(10 + 7*4);
FSkyVertex *ptr = &mVertices[mSideStart];
// all sides
ptr[0].SetXYZ(128.f, 128.f, -128.f, 0, 0);
ptr[1].SetXYZ(128.f, -128.f, -128.f, 0, 1);
ptr[2].SetXYZ(-128.f, 128.f, -128.f, 0.25f, 0);
ptr[3].SetXYZ(-128.f, -128.f, -128.f, 0.25f, 1);
ptr[4].SetXYZ(-128.f, 128.f, 128.f, 0.5f, 0);
ptr[5].SetXYZ(-128.f, -128.f, 128.f, 0.5f, 1);
ptr[6].SetXYZ(128.f, 128.f, 128.f, 0.75f, 0);
ptr[7].SetXYZ(128.f, -128.f, 128.f, 0.75f, 1);
ptr[8].SetXYZ(128.f, 128.f, -128.f, 1, 0);
ptr[9].SetXYZ(128.f, -128.f, -128.f, 1, 1);
// north face
ptr[10].SetXYZ(128.f, 128.f, -128.f, 0, 0);
ptr[11].SetXYZ(-128.f, 128.f, -128.f, 1, 0);
ptr[12].SetXYZ(128.f, -128.f, -128.f, 0, 1);
ptr[13].SetXYZ(-128.f, -128.f, -128.f, 1, 1);
// east face
ptr[14].SetXYZ(-128.f, 128.f, -128.f, 0, 0);
ptr[15].SetXYZ(-128.f, 128.f, 128.f, 1, 0);
ptr[16].SetXYZ(-128.f, -128.f, -128.f, 0, 1);
ptr[17].SetXYZ(-128.f, -128.f, 128.f, 1, 1);
// south face
ptr[18].SetXYZ(-128.f, 128.f, 128.f, 0, 0);
ptr[19].SetXYZ(128.f, 128.f, 128.f, 1, 0);
ptr[20].SetXYZ(-128.f, -128.f, 128.f, 0, 1);
ptr[21].SetXYZ(128.f, -128.f, 128.f, 1, 1);
// west face
ptr[22].SetXYZ(128.f, 128.f, 128.f, 0, 0);
ptr[23].SetXYZ(128.f, 128.f, -128.f, 1, 0);
ptr[24].SetXYZ(128.f, -128.f, 128.f, 0, 1);
ptr[25].SetXYZ(128.f, -128.f, -128.f, 1, 1);
// bottom face
ptr[26].SetXYZ(128.f, -128.f, -128.f, 0, 0);
ptr[27].SetXYZ(-128.f, -128.f, -128.f, 1, 0);
ptr[28].SetXYZ(128.f, -128.f, 128.f, 0, 1);
ptr[29].SetXYZ(-128.f, -128.f, 128.f, 1, 1);
// top face
ptr[30].SetXYZ(128.f, 128.f, -128.f, 0, 0);
ptr[31].SetXYZ(-128.f, 128.f, -128.f, 1, 0);
ptr[32].SetXYZ(128.f, 128.f, 128.f, 0, 1);
ptr[33].SetXYZ(-128.f, 128.f, 128.f, 1, 1);
// top face flipped
ptr[34].SetXYZ(128.f, 128.f, -128.f, 0, 1);
ptr[35].SetXYZ(-128.f, 128.f, -128.f, 1, 1);
ptr[36].SetXYZ(128.f, 128.f, 128.f, 0, 0);
ptr[37].SetXYZ(-128.f, 128.f, 128.f, 1, 0);
}
//-----------------------------------------------------------------------------
//
//
//
//-----------------------------------------------------------------------------
void FSkyVertexBuffer::SetupMatrices(FGameTexture *tex, float x_offset, float y_offset, bool mirror, int mode, VSMatrix &modelMatrix, VSMatrix &textureMatrix, bool tiled)
{
float texw = tex->GetDisplayWidth();
float texh = tex->GetDisplayHeight();
modelMatrix.loadIdentity();
modelMatrix.rotate(-180.0f + x_offset, 0.f, 1.f, 0.f);
float xscale = texw < 1024.f ? floor(1024.f / float(texw)) : 1.f;
float yscale = 1.f;
auto texskyoffset = tex->GetSkyOffset() + skyoffset;
if (texh <= 128 && tiled)
{
modelMatrix.translate(0.f, (-40 + texskyoffset)*skyoffsetfactor, 0.f);
modelMatrix.scale(1.f, 1.2f * 1.17f, 1.f);
yscale = 240.f / texh;
}
else if (texh < 128)
{
// smaller sky textures must be tiled. We restrict it to 128 sky pixels, though
modelMatrix.translate(0.f, -1250.f, 0.f);
modelMatrix.scale(1.f, 128 / 230.f, 1.f);
yscale = float(128 / texh); // intentionally left as integer.
}
else if (texh < 200)
{
modelMatrix.translate(0.f, -1250.f, 0.f);
modelMatrix.scale(1.f, texh / 230.f, 1.f);
}
else if (texh <= 240)
{
modelMatrix.translate(0.f, (200 - texh + texskyoffset)*skyoffsetfactor, 0.f);
modelMatrix.scale(1.f, 1.f + ((texh - 200.f) / 200.f) * 1.17f, 1.f);
}
else
{
modelMatrix.translate(0.f, (-40 + texskyoffset)*skyoffsetfactor, 0.f);
modelMatrix.scale(1.f, 1.2f * 1.17f, 1.f);
yscale = 240.f / texh;
}
textureMatrix.loadIdentity();
textureMatrix.scale(mirror ? -xscale : xscale, yscale, 1.f);
textureMatrix.translate(1.f, y_offset / texh, 1.f);
}
//-----------------------------------------------------------------------------
//
//
//
//-----------------------------------------------------------------------------
void FSkyVertexBuffer::RenderRow(FRenderState& state, EDrawType prim, int row, bool apply)
{
state.Draw(prim, mPrimStart[row], mPrimStart[row + 1] - mPrimStart[row]);
}
//-----------------------------------------------------------------------------
//
//
//
//-----------------------------------------------------------------------------
void FSkyVertexBuffer::RenderDome(FRenderState& state, FGameTexture* tex, float x_offset, float y_offset, bool mirror, int mode, bool tiled)
{
if (tex)
{
state.SetMaterial(tex, UF_Texture, 0, CLAMP_NONE, 0, -1);
state.EnableModelMatrix(true);
state.EnableTextureMatrix(true);
SetupMatrices(tex, x_offset, y_offset, mirror, mode, state.mModelMatrix, state.mTextureMatrix, tiled);
}
int rc = mRows + 1;
// The caps only get drawn for the main layer but not for the overlay.
if (mode == FSkyVertexBuffer::SKYMODE_MAINLAYER && tex != NULL)
{
auto& col = R_GetSkyCapColor(tex);
state.SetObjectColor(col.first);
state.EnableTexture(false);
RenderRow(state, DT_TriangleFan, 0);
state.SetObjectColor(col.second);
RenderRow(state, DT_TriangleFan, rc);
state.EnableTexture(true);
}
state.SetObjectColor(0xffffffff);
for (int i = 1; i <= mRows; i++)
{
RenderRow(state, DT_TriangleStrip, i, i == 1);
RenderRow(state, DT_TriangleStrip, rc + i, false);
}
state.EnableTextureMatrix(false);
state.EnableModelMatrix(false);
}
//-----------------------------------------------------------------------------
//
//
//
//-----------------------------------------------------------------------------
void FSkyVertexBuffer::RenderBox(FRenderState& state, FTextureID texno, FSkyBox* tex, float x_offset, bool sky2, float stretch, const FVector3& skyrotatevector, const FVector3& skyrotatevector2)
{
int faces;
state.EnableModelMatrix(true);
state.mModelMatrix.loadIdentity();
state.mModelMatrix.scale(1, 1 / stretch, 1); // Undo the map's vertical scaling as skyboxes are true cubes.
if (!sky2)
state.mModelMatrix.rotate(-180.0f + x_offset, skyrotatevector.X, skyrotatevector.Z, skyrotatevector.Y);
else
state.mModelMatrix.rotate(-180.0f + x_offset, skyrotatevector2.X, skyrotatevector2.Z, skyrotatevector2.Y);
if (tex->GetSkyFace(5))
{
faces = 4;
// north
state.SetMaterial(tex->GetSkyFace(0), UF_Texture, 0, CLAMP_XY, 0, -1);
state.Draw(DT_TriangleStrip, FaceStart(0), 4);
// east
state.SetMaterial(tex->GetSkyFace(1), UF_Texture, 0, CLAMP_XY, 0, -1);
state.Draw(DT_TriangleStrip, FaceStart(1), 4);
// south
state.SetMaterial(tex->GetSkyFace(2), UF_Texture, 0, CLAMP_XY, 0, -1);
state.Draw(DT_TriangleStrip, FaceStart(2), 4);
// west
state.SetMaterial(tex->GetSkyFace(3), UF_Texture, 0, CLAMP_XY, 0, -1);
state.Draw(DT_TriangleStrip, FaceStart(3), 4);
}
else
{
faces = 1;
state.SetMaterial(tex->GetSkyFace(0), UF_Texture, 0, CLAMP_XY, 0, -1);
state.Draw(DT_TriangleStrip, FaceStart(-1), 10);
}
// top
state.SetMaterial(tex->GetSkyFace(faces), UF_Texture, 0, CLAMP_XY, 0, -1);
state.Draw(DT_TriangleStrip, FaceStart(tex->GetSkyFlip() ? 6 : 5), 4);
// bottom
state.SetMaterial(tex->GetSkyFace(faces + 1), UF_Texture, 0, CLAMP_XY, 0, -1);
state.Draw(DT_TriangleStrip, FaceStart(4), 4);
state.EnableModelMatrix(false);
}