mirror of
https://github.com/DrBeef/Raze.git
synced 2025-01-20 16:10:52 +00:00
360aae414f
git-svn-id: https://svn.eduke32.com/eduke32@3821 1a8010ca-5511-0410-912e-c29ae57300e0
187 lines
5.5 KiB
Lua
187 lines
5.5 KiB
Lua
-- Geometry module for Lunatic.
|
|
|
|
local require = require
|
|
local ffi = require("ffi")
|
|
local math = require("math")
|
|
|
|
local type = type
|
|
local error = error
|
|
|
|
|
|
module(...)
|
|
|
|
|
|
-- The integer 3-vector can be useful for calculations expecting integer
|
|
-- values, e.g. geom.ivec3(x, y, z) is a reasonable way to round a vec3. It can
|
|
-- also be used as the RHS to the vec2/vec3 arithmetic methods.
|
|
-- NOTE: We must have a typedef with that exact name, because for Lunatic
|
|
-- (i.e. not stand-alone), the type was already declared in defs_common.lua.
|
|
ffi.cdef "typedef struct { int32_t x, y, z; } vec3_t;"
|
|
local ivec3_t = ffi.typeof("vec3_t")
|
|
|
|
|
|
local dvec2_t = ffi.typeof("struct { double x, y; }")
|
|
local dvec3_t = ffi.typeof("struct { double x, y, z; }")
|
|
|
|
|
|
local vec2_mt = {
|
|
__add = function(a, b) return dvec2_t(a.x+b.x, a.y+b.y) end,
|
|
__sub = function(a, b) return dvec2_t(a.x-b.x, a.y-b.y) end,
|
|
__unm = function(a) return dvec2_t(-a.x, -a.y) end,
|
|
|
|
__mul = function(a,b)
|
|
if (type(a)=="number") then
|
|
return dvec2_t(a*b.x, a*b.y)
|
|
end
|
|
|
|
if (type(b)~="number") then
|
|
error("number expected in vec2 multiplication", 2)
|
|
end
|
|
return dvec2_t(a.x*b, a.y*b)
|
|
end,
|
|
|
|
__div = function(a,b)
|
|
if (type(b)~="number") then
|
|
error("number expected in vec2 division", 2)
|
|
end
|
|
return dvec2_t(a.x/b, a.y/b)
|
|
end,
|
|
|
|
__len = function(a) return math.sqrt(a.x*a.x + a.y*a.y) end,
|
|
|
|
__tostring = function(a) return "vec2("..a.x..", "..a.y..")" end,
|
|
|
|
__index = {
|
|
lensq = function(a) return a.x*a.x + a.y*a.y end,
|
|
|
|
mhlen = function(a) return math.abs(a.x)+math.abs(a.y) end,
|
|
},
|
|
}
|
|
|
|
local arshift = require("bit").arshift
|
|
|
|
-- The vec3 metatable is shared between the integer- and double-based 3-vector
|
|
-- types. However, some operations are slightly different.
|
|
local vec3_mt = {
|
|
-- Arithmetic operations. Note that they always return a dvec3.
|
|
__add = function(a, b) return dvec3_t(a.x+b.x, a.y+b.y, a.z+b.z) end,
|
|
__sub = function(a, b) return dvec3_t(a.x-b.x, a.y-b.y, a.z-b.z) end,
|
|
__unm = function(a) return dvec3_t(-a.x, -a.y, -a.z) end,
|
|
|
|
__mul = function(a,b)
|
|
if (type(a)=="number") then
|
|
return dvec3_t(a*b.x, a*b.y, a*b.z)
|
|
end
|
|
|
|
if (type(b)~="number") then
|
|
error("number expected in vec3 multiplication", 2)
|
|
end
|
|
return dvec3_t(a.x*b, a.y*b, a.z*b)
|
|
end,
|
|
|
|
__div = function(a,b)
|
|
if (type(b)~="number") then
|
|
error("number expected in vec3 division", 2)
|
|
end
|
|
return dvec3_t(a.x/b, a.y/b, a.z/b)
|
|
end,
|
|
|
|
-- '^' is the "translate upwards" operator, returns same-typed vector.
|
|
__pow = function(v, zofs)
|
|
return v(v.x, v.y, v.z-zofs)
|
|
end,
|
|
|
|
-- The # operator returns the Euclidean length.
|
|
-- TODO: REMOVE.
|
|
__len = function(a) return math.sqrt(a.x*a.x + a.y*a.y + a.z*a.z) end,
|
|
|
|
-- INTERNAL: Calling a vector calls the constructor of its type.
|
|
__call = function(v, ...)
|
|
return v:_isi() and ivec3_t(...) or dvec3_t(...)
|
|
end,
|
|
|
|
-- INTERNAL
|
|
__tostring = function(a)
|
|
return (a:_isi() and "i" or "").."vec3("..a.x..", "..a.y..", "..a.z..")"
|
|
end,
|
|
|
|
__index = {
|
|
-- Euclidean 3D length.
|
|
len = function(a) return math.sqrt(a.x*a.x + a.y*a.y + a.z*a.z) end,
|
|
-- Euclidean 3D squared length.
|
|
lensq = function(a) return a.x*a.x + a.y*a.y + a.z*a.z end,
|
|
|
|
-- Euclidean 2D length.
|
|
len2 = function(a) return math.sqrt(a.x*a.x + a.y*a.y) end,
|
|
-- Euclidean 2D squared length.
|
|
len2sq = function(a) return a.x*a.x + a.y*a.y end,
|
|
|
|
-- Manhattan-distance 3D length:
|
|
mhlen = function(a) return math.abs(a.x)+math.abs(a.y)+math.abs(a.z) end,
|
|
|
|
toivec3 = function(v) return ivec3_t(v.x, v.y, v.z) end,
|
|
|
|
-- BUILD-coordinate (z scaled by 16) <-> uniform conversions.
|
|
touniform = function(v)
|
|
return v:_isi()
|
|
and v(v.x, v.y, arshift(v.z, 4))
|
|
or v(v.x, v.y, v.z/4)
|
|
end,
|
|
|
|
tobuild = function(v) return v(v.x, v.y, 16*v.z) end,
|
|
|
|
-- Is <v> integer vec3? INTERNAL.
|
|
_isi = function(v)
|
|
return ffi.istype(ivec3_t, v)
|
|
end,
|
|
},
|
|
}
|
|
|
|
-- VEC2 user data constructor.
|
|
-- * vec2(<table>), <table> should be indexable with "x" and "y"
|
|
-- * vec2(x, y), assuming that x and y are numbers
|
|
vec2 = ffi.metatype(dvec2_t, vec2_mt)
|
|
vec3 = ffi.metatype(dvec3_t, vec3_mt)
|
|
|
|
ivec3 = ffi.metatype("vec3_t", vec3_mt)
|
|
|
|
-- Returns a vec2 from anything indexable with "x" and "y"
|
|
-- (vec2(t) works if t is such a table, but not if it's a vec2 or a cdata of
|
|
-- different type)
|
|
function tovec2(t) return dvec2_t(t.x, t.y) end
|
|
function tovec3(t) return dvec3_t(t.x, t.y, t.z) end
|
|
|
|
|
|
-- Two-element vector cross product.
|
|
-- Anti-commutative, distributive.
|
|
local function cross2(v, w)
|
|
return v.y*w.x - v.x*w.y
|
|
end
|
|
|
|
|
|
-- Finds the intersection point of two lines given by
|
|
-- point a and vector v
|
|
-- and
|
|
-- point b and vector w
|
|
--
|
|
-- Returns:
|
|
-- if <TODO>, nil
|
|
-- if retpoint_p evaluates to a non-true value, coefficients cv and cw such that <TODO>
|
|
-- else, the intersection point
|
|
function intersect(a,v, b,w, retpoint_p)
|
|
local vxw = cross2(v,w)
|
|
|
|
if (vxw ~= 0) then
|
|
local btoa = tovec2(a)-tovec2(b)
|
|
local cv, cw = cross2(w, btoa)/vxw, cross2(v, btoa)/vxw
|
|
|
|
if (retpoint_p) then
|
|
return tovec2(a)+cv*tovec2(v)
|
|
else
|
|
return cv, cw
|
|
end
|
|
end
|
|
|
|
-- return nil if v and w parallel (or either of them is a point), or if
|
|
-- they contain NaNs
|
|
end
|