raze/source/duke3d/src/lunatic/xmath.lua
hendricks266 1cc9d13ccf The great repository rearrangement of 2017.
Files moved but not modified. Changes to follow in a subsequent commit.

You down with CPP?

git-svn-id: https://svn.eduke32.com/eduke32@6055 1a8010ca-5511-0410-912e-c29ae57300e0
2017-02-01 10:01:11 +00:00

357 lines
8.9 KiB
Lua

-- "Extended" math module for Lunatic.
local ffi = require("ffi")
local bit = require("bit")
local math = require("math")
local arshift = bit.arshift
local abs, sqrt = math.abs, math.sqrt
local assert = assert
local error = error
local type = type
local OUR_REQUIRE_STRING = [[
local _xm=require'xmath'
local _v,_iv=_xm.vec3,_xm.ivec3
]]
local function our_get_require()
return OUR_REQUIRE_STRING
end
module(...)
---=== TRIGONOMETRY ===---
local BANG2RAD = math.pi/1024
local isintab = ffi.new("int16_t [?]", 2048)
local dsintab = ffi.new("double [?]", 2048)
for a=0,511 do
local s = math.sin(a*BANG2RAD)
isintab[a] = 16384*s
dsintab[a] = s
end
isintab[512] = 16384
dsintab[512] = 1
for i=513,1023 do
isintab[i] = isintab[1024-i];
dsintab[i] = dsintab[1024-i];
end
for i=1024,2047 do
isintab[i] = -isintab[i-1024];
dsintab[i] = -dsintab[i-1024];
end
local band = bit.band
local function ksc_common(ang)
ang = band(ang, 2047)
assert(ang >= 0 and ang < 2048) -- might have been passed NaN
return ang
end
-- k{sin,cos}: 16384-scaled output, 2048-based angle input
function ksin(ang)
return isintab[ksc_common(ang)]
end
function kcos(ang)
return isintab[ksc_common(ang+512)]
end
local sin, cos = math.sin, math.cos
-- {sin,cos}b: [-1..1] output, 2048-based angle input
function sinb(ang)
return dsintab[ksc_common(ang)]
end
function cosb(ang)
return dsintab[ksc_common(ang+512)]
end
local cosb, sinb = cosb, sinb
---=== Approximations to 2D and 3D Euclidean distances ===---
-- (also see common.c)
local function dist_common(pos1, pos2)
local x = abs(pos1.x - pos2.x)
local y = abs(pos1.y - pos2.y)
if (x < y) then
x, y = y, x
end
return x, y
end
function ldist(pos1, pos2)
local x, y = dist_common(pos1, pos2)
local t = y + arshift(y,1)
return x - arshift(x,5) - arshift(x,7) + arshift(t,2) + arshift(t,6)
end
function dist(pos1, pos2)
local x, y = dist_common(pos1, pos2)
local z = abs(arshift(pos1.z - pos2.z, 4))
if (x < z) then
x, z = z, x
end
local t = y + z
return x - arshift(x,4) + arshift(t,2) + arshift(t,3)
end
---=== VECTOR TYPES ===---
-- The integer 3-vector can be useful for calculations expecting integer
-- values, e.g. ivec3(x, y, z) is a reasonable way to round a vec3. It can also
-- be used as the RHS to the vec2/vec3 arithmetic methods.
-- NOTE: We must have a typedef with that exact name, because for Lunatic
-- (i.e. not stand-alone), the type was already declared in defs_common.lua.
ffi.cdef "typedef struct { int32_t x, y, z; } vec3_t;"
local ivec3_t = ffi.typeof("vec3_t")
local dvec2_t = ffi.typeof("struct { double x, y; }")
local dvec3_t = ffi.typeof("struct { double x, y, z; }")
local vec2_mt = {
__add = function(a, b) return dvec2_t(a.x+b.x, a.y+b.y) end,
__sub = function(a, b) return dvec2_t(a.x-b.x, a.y-b.y) end,
__unm = function(a) return dvec2_t(-a.x, -a.y) end,
__mul = function(a,b)
if (type(a)=="number") then
return dvec2_t(a*b.x, a*b.y)
end
if (type(b)~="number") then
error("number expected in vec2 multiplication", 2)
end
return dvec2_t(a.x*b, a.y*b)
end,
__div = function(a,b)
if (type(b)~="number") then
error("number expected in vec2 division", 2)
end
return dvec2_t(a.x/b, a.y/b)
end,
__tostring = function(a) return "vec2("..a.x..", "..a.y..")" end,
__index = {
lensq = function(a) return a.x*a.x + a.y*a.y end,
mhlen = function(a) return abs(a.x)+abs(a.y) end,
},
}
local l_rotate -- fwd-decl (XXX: could be the other way around)
-- The vec3 metatable is shared between the integer- and double-based 3-vector
-- types. However, some operations are slightly different.
local vec3_mt = {
-- Arithmetic operations. Note that they always return a dvec3.
__add = function(a, b) return dvec3_t(a.x+b.x, a.y+b.y, a.z+b.z) end,
__sub = function(a, b) return dvec3_t(a.x-b.x, a.y-b.y, a.z-b.z) end,
__unm = function(a) return dvec3_t(-a.x, -a.y, -a.z) end,
__mul = function(a,b)
if (type(a)=="number") then
return dvec3_t(a*b.x, a*b.y, a*b.z)
end
if (type(b)~="number") then
error("number expected in vec3 multiplication", 2)
end
return dvec3_t(a.x*b, a.y*b, a.z*b)
end,
__div = function(a,b)
if (type(b)~="number") then
error("number expected in vec3 division", 2)
end
return dvec3_t(a.x/b, a.y/b, a.z/b)
end,
-- '^' is the "translate upwards" operator, returns same-typed vector.
__pow = function(v, zofs)
return v:_ctor(v.x, v.y, v.z-zofs)
end,
-- Convenience for human-readable display.
__tostring = function(a)
return (a:_isi() and "i" or "").."vec3("..a.x..", "..a.y..", "..a.z..")"
end,
__index = {
-- Euclidean 3D length.
len = function(a) return sqrt(a.x*a.x + a.y*a.y + a.z*a.z) end,
-- Euclidean 3D squared length.
lensq = function(a) return a.x*a.x + a.y*a.y + a.z*a.z end,
-- Euclidean 2D length.
len2 = function(a) return sqrt(a.x*a.x + a.y*a.y) end,
-- Euclidean 2D squared length.
len2sq = function(a) return a.x*a.x + a.y*a.y end,
-- Manhattan-distance 3D length:
mhlen = function(a) return abs(a.x)+abs(a.y)+abs(a.z) end,
toivec3 = function(v) return ivec3_t(v.x, v.y, v.z) end,
-- BUILD-coordinate (z scaled by 16) <-> uniform conversions.
touniform = function(v)
return v:_isi()
and v:_ctor(v.x, v.y, arshift(v.z, 4))
or v:_ctor(v.x, v.y, v.z/16)
end,
tobuild = function(v) return v:_ctor(v.x, v.y, 16*v.z) end,
rotate = function(v, ang, pivot) return l_rotate(v, ang, pivot) end,
-- PRIVATE methods --
-- Get the type constructor for this vector.
_ctor = function(v, ...)
return v:_isi() and ivec3_t(...) or dvec3_t(...)
end,
-- Is <v> integer vec3? INTERNAL.
_isi = function(v)
return ffi.istype(ivec3_t, v)
end,
--- Serialization ---
_get_require = our_get_require,
_serialize = function(v)
return (v:_isi() and "_iv" or "_v").."("..v.x..","..v.y..","..v.z..")"
end,
},
}
ffi.metatype(dvec2_t, vec2_mt)
ffi.metatype(dvec3_t, vec3_mt)
ffi.metatype(ivec3_t, vec3_mt)
-- VEC2 user data constructor.
-- * vec2([x [, y]]), assuming that x and y are numbers. Vacant positions are
-- assumed to be 0.
-- * vec2(<compound>), <compound> can be anything indexable with "x" and "y"
function vec2(...)
local x, y = ...
if (type(x)=="number" or x==nil) then
return dvec2_t(...)
else
return dvec2_t(x.x, x.y)
end
end
-- VEC3 user data constructor.
-- Analogous to VEC2.
function vec3(...)
local x, y, z = ...
if (type(x)=="number" or x==nil) then
return dvec3_t(...)
else
return dvec3_t(x.x, x.y, x.z)
end
end
-- IVEC3 user data constructor.
function ivec3(...)
local x, y, z = ...
if (type(x)=="number" or x==nil) then
return ivec3_t(...)
else
return ivec3_t(x.x, x.y, x.z)
end
end
local vec2, vec3 = vec2, vec3
---=== MISCELLANEOUS MATH ===---
local intarg = ffi.new("int32_t [1]")
function bangvec(bang)
intarg[0] = bang -- round towards zero
return dvec3_t(cosb(intarg[0]), sinb(intarg[0]))
end
function kangvec(bang, z)
intarg[0] = bang -- round towards zero
return ivec3_t(kcos(intarg[0]), ksin(intarg[0]), z or 0)
end
function angvec(ang)
return dvec3_t(cos(ang), sin(ang))
end
local zerovec = vec3()
-- Point rotation. Note the different order of arguments from engine function.
-- XXX: passing mixed vec2/vec3 is problematic. Get rid of vec2?
-- <ang>: BUILD angle (0-2047 based)
function rotate(pos, ang, pivot)
pivot = pivot or zerovec
local p = vec3(pos)-pivot
local c, s = cosb(ang), sinb(ang)
local x, y = p.x, p.y
p.x = pivot.x + (c*x - s*y)
p.y = pivot.y + (c*y + s*x)
return p
end
l_rotate = rotate
-- Two-element vector cross product.
-- Anti-commutative, distributive.
local function cross2(v, w)
return v.y*w.x - v.x*w.y
end
-- Finds the intersection point of two lines given by
-- point a and vector v
-- and
-- point b and vector w
--
-- Returns:
-- if <TODO>, nil
-- if retpoint_p evaluates to a non-true value, coefficients cv and cw such that <TODO>
-- else, the intersection point
function intersect(a,v, b,w, retpoint_p)
local vxw = cross2(v,w)
if (vxw ~= 0) then
local btoa = vec2(a) - vec2(b)
local cv, cw = cross2(w, btoa)/vxw, cross2(v, btoa)/vxw
if (retpoint_p) then
return vec2(a) + cv*vec2(v)
else
return cv, cw
end
end
-- return nil if v and w parallel (or either of them is a point), or if
-- they contain NaNs
end