raze/source/common/utility/i_time.cpp
Mitch Richters e491d15ff9 - Move InputScale() out of inputstate.cpp and into i_time.cpp as I_GetInputFrac() to make it available to GZDoom for potential future requirements.
* As part of this, feed the output of `I_GetInputFrac()` to `gi->GetInput()` instead of having each game's virtual override calling it locally.
2021-11-29 00:55:01 +01:00

234 lines
6.5 KiB
C++

/*
** i_time.cpp
** Implements the timer
**
**---------------------------------------------------------------------------
** Copyright 1998-2016 Randy Heit
** Copyright 2017 Magnus Norddahl
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include <chrono>
#include <thread>
#include "i_time.h"
//==========================================================================
//
// Tick time functions
//
//==========================================================================
static uint64_t FirstFrameStartTime;
static uint64_t CurrentFrameStartTime;
static uint64_t FreezeTime;
static double lastinputtime;
int GameTicRate = 35; // make sure it is not 0, even if the client doesn't set it.
double TimeScale = 1.0;
static uint64_t GetClockTimeNS()
{
using namespace std::chrono;
if (TimeScale == 1.0) return (uint64_t)(duration_cast<nanoseconds>(steady_clock::now().time_since_epoch()).count());
else return (uint64_t)((duration_cast<microseconds>(steady_clock::now().time_since_epoch()).count()) * (uint64_t)(TimeScale * 1000));
}
static uint64_t MSToNS(unsigned int ms)
{
return static_cast<uint64_t>(ms) * 1'000'000;
}
static uint64_t NSToMS(uint64_t ns)
{
return static_cast<uint64_t>(ns / 1'000'000);
}
static int NSToTic(uint64_t ns, double const ticrate)
{
return static_cast<int>(ns * ticrate / 1'000'000'000);
}
static uint64_t TicToNS(double tic, double const ticrate)
{
return static_cast<uint64_t>(tic * 1'000'000'000 / ticrate);
}
void I_SetFrameTime()
{
// Must only be called once per frame/swapbuffers.
//
// Caches all timing information for the current rendered frame so that any
// calls to I_GetTime or I_GetTimeFrac will return
// the same time.
if (FreezeTime == 0)
{
CurrentFrameStartTime = GetClockTimeNS();
if (FirstFrameStartTime == 0)
FirstFrameStartTime = CurrentFrameStartTime;
}
}
void I_WaitVBL(int count)
{
// I_WaitVBL is never used to actually synchronize to the vertical blank.
// Instead, it's used for delay purposes. Doom used a 70 Hz display mode,
// so that's what we use to determine how long to wait for.
std::this_thread::sleep_for(std::chrono::milliseconds(1000 * count / 70));
I_SetFrameTime();
}
int I_WaitForTic(int prevtic, double const ticrate)
{
// Waits until the current tic is greater than prevtic. Time must not be frozen.
int time;
while ((time = I_GetTime(ticrate)) <= prevtic)
{
// Windows-specific note:
// The minimum amount of time a thread can sleep is controlled by timeBeginPeriod.
// We set this to 1 ms in DoMain.
const uint64_t next = FirstFrameStartTime + TicToNS(prevtic + 1, ticrate);
const uint64_t now = I_nsTime();
if (next > now)
{
const uint64_t sleepTime = NSToMS(next - now);
if (sleepTime > 2)
{
std::this_thread::sleep_for(std::chrono::milliseconds(sleepTime - 2));
}
}
I_SetFrameTime();
}
return time;
}
uint64_t I_nsTime()
{
return GetClockTimeNS();
}
uint64_t I_msTime()
{
return NSToMS(I_nsTime());
}
double I_msTimeF(void)
{
return I_nsTime() / 1'000'000.;
}
uint64_t I_msTimeFS() // from "start"
{
return (FirstFrameStartTime == 0) ? 0 : NSToMS(I_nsTime() - FirstFrameStartTime);
}
uint64_t I_GetTimeNS()
{
return CurrentFrameStartTime - FirstFrameStartTime;
}
int I_GetTime(double const ticrate)
{
return NSToTic(CurrentFrameStartTime - FirstFrameStartTime, ticrate);
}
double I_GetTimeFrac(double const ticrate)
{
int currentTic = NSToTic(CurrentFrameStartTime - FirstFrameStartTime, ticrate);
uint64_t ticStartTime = FirstFrameStartTime + TicToNS(currentTic, ticrate);
uint64_t ticNextTime = FirstFrameStartTime + TicToNS(currentTic + 1, ticrate);
return (CurrentFrameStartTime - ticStartTime) / (double)(ticNextTime - ticStartTime);
}
void I_FreezeTime(bool frozen)
{
if (frozen)
{
assert(FreezeTime == 0);
FreezeTime = GetClockTimeNS();
}
else
{
assert(FreezeTime != 0);
if (FirstFrameStartTime != 0) FirstFrameStartTime += GetClockTimeNS() - FreezeTime;
FreezeTime = 0;
I_SetFrameTime();
}
}
void I_ResetFrameTime()
{
// Reset the starting point of the current frame to now. For use after lengthy operations that should not result in tic accumulation.
auto ft = CurrentFrameStartTime;
I_SetFrameTime();
FirstFrameStartTime += (CurrentFrameStartTime - ft);
}
double I_GetInputFrac(bool const synchronised, double const ticrate)
{
if (!synchronised)
{
const double max = 1000. / ticrate;
const double now = I_msTimeF();
const double elapsedInputTicks = std::min(now - lastinputtime, max);
lastinputtime = now;
if (elapsedInputTicks < max)
{
// Calculate an amplification to apply to the result before returning,
// factoring in the game's ticrate and the value of the result.
// This rectifies a deviation of 100+ ms or more depending on the length
// of the operation to be within 1-2 ms of synchronised input
// from 60 fps to at least 1000 fps at ticrates of 30 and 40 Hz.
const double result = elapsedInputTicks * ticrate / 1000.;
return result * (1. + 0.35 * (1. - ticrate / 50.) * (1. - result));
}
else
{
return 1;
}
}
else
{
return 1;
}
}
void I_ResetInputTime()
{
// Reset lastinputtime to current time.
lastinputtime = I_msTimeF();
}