raze/source/thirdparty/include/intrusive_list.h
Christoph Oelckers 737291ce5f - added stripped down version of EASTL's intrusive list.
This needed some editing and cleanup to get it to work without half of the rest of EASTL for mostly useless things.
This assumes C++17 and removes the sort function which was the main culprit for making the thing non self-contained.
2021-12-30 09:53:11 +01:00

1160 lines
36 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Copyright (c) Electronic Arts Inc. All rights reserved.
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// The intrusive list container is similar to a list, with the primary
// different being that intrusive lists allow you to control memory
// allocation.
//
// * Intrusive lists store the nodes directly in the data items. This
// is done by deriving the object from intrusive_list_node.
//
// * The container does no memory allocation -- it works entirely with
// the submitted nodes. This does mean that it is the client's job to
// free the nodes in an intrusive list, though.
//
// * Valid node pointers can be converted back to iterators in O(1).
// This is because objects in the list are also nodes in the list.
//
// * intrusive_list does not support copy construction or assignment;
// the push, pop, and insert operations take ownership of the
// passed object.
//
// Usage notes:
//
// * You can use an intrusive_list directly with the standard nodes
// if you have some other way of converting the node pointer back
// to your data pointer.
//
// * Remember that the list destructor doesn't deallocate nodes -- it can't.
//
// * The size is not cached; this makes size() linear time but splice() is
// constant time. This does mean that you can remove() an element without
// having to figure out which list it is in, however.
//
// * You can insert a node into multiple intrusive_lists. One way to do so
// is to (ab)use inheritance:
//
// struct NodeA : public intrusive_list_node {};
// struct NodeB : public intrusive_list_node {};
// struct Object : public NodeA, nodeB {};
//
// intrusive_list<NodeA> listA;
// intrusive_list<NodeB> listB;
//
// listA.push_back(obj);
// listB.push_back(obj);
//
// * find() vs. locate()
// The find(v) algorithm returns an iterator p such that *p == v; intrusive_list::locate(v)
// returns an iterator p such that &*p == &v. intrusive_list<> doesn't have find() mainly
// because list<> doesn't have it either, but there's no reason it couldn't. intrusive_list
// uses the name 'find' because:
// - So as not to confuse the member function with the well-defined free function from algorithm.h.
// - Because it is not API-compatible with eastl::find().
// - Because it simply locates an object within the list based on its node entry and doesn't perform before any value-based searches or comparisons.
//
// Differences between intrusive_list and std::list:
//
// Issue std::list intrusive_list
// --------------------------------------------------------------
// Automatic node ctor/dtor Yes No
// Can memmove() container Maybe* No
// Same item in list twice Yes(copy/byref) No
// Can store non-copyable items No Yes
// size() O(1) or O(n) O(n)
// clear() O(n) O(1)
// erase(range) O(n) O(1)
// splice(range) O(1) or O(n) O(1)
// Convert reference to iterator No O(1)
// Remove without container No O(1)
// Nodes in mixed allocators No Yes
//
// *) Not required by standard but can be done with some STL implementations.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef EASTL_INTRUSIVE_LIST_H
#define EASTL_INTRUSIVE_LIST_H
//#include <EASTL/internal/config.h>
//#include <EASTL/iterator.h>
//#include <EASTL/algorithm.h>
#if defined(EA_PRAGMA_ONCE_SUPPORTED)
#pragma once // Some compilers (e.g. VC++) benefit significantly from using this. We've measured 3-4% build speed improvements in apps as a result.
#endif
namespace eastl
{
/// intrusive_list_node
///
/// By design this must be a POD, as user structs will be inheriting from
/// it and they may wish to remain POD themselves. However, if the
/// EASTL_VALIDATE_INTRUSIVE_LIST option is enabled
///
struct intrusive_list_node
{
intrusive_list_node* mpNext;
intrusive_list_node* mpPrev;
};
/// intrusive_list_iterator
///
template <typename T, typename Pointer, typename Reference>
class intrusive_list_iterator
{
public:
typedef intrusive_list_iterator<T, Pointer, Reference> this_type;
typedef intrusive_list_iterator<T, T*, T&> iterator;
typedef intrusive_list_iterator<T, const T*, const T&> const_iterator;
typedef T value_type;
typedef T node_type;
typedef ptrdiff_t difference_type;
typedef Pointer pointer;
typedef Reference reference;
typedef std::bidirectional_iterator_tag iterator_category;
public:
pointer mpNode; // Needs to be public for operator==() to work
public:
intrusive_list_iterator();
explicit intrusive_list_iterator(pointer pNode); // Note that you can also construct an iterator from T via this, since value_type == node_type.
intrusive_list_iterator(const iterator& x);
intrusive_list_iterator& operator=(const iterator& x);
reference operator*() const;
pointer operator->() const;
intrusive_list_iterator& operator++();
intrusive_list_iterator& operator--();
intrusive_list_iterator operator++(int);
intrusive_list_iterator operator--(int);
}; // class intrusive_list_iterator
/// intrusive_list_base
///
class intrusive_list_base
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
protected:
intrusive_list_node mAnchor; ///< Sentinel node (end). All data nodes are linked in a ring from this node.
public:
intrusive_list_base();
~intrusive_list_base();
bool empty() const noexcept;
size_t size() const noexcept; ///< Returns the number of elements in the list; O(n).
void clear() noexcept; ///< Clears the list; O(1). No deallocation occurs.
void pop_front(); ///< Removes an element from the front of the list; O(1). The element must exist, but is not deallocated.
void pop_back(); ///< Removes an element from the back of the list; O(1). The element must exist, but is not deallocated.
void reverse() noexcept; ///< Reverses a list so that front and back are swapped; O(n).
bool validate() const; ///< Scans a list for linkage inconsistencies; O(n) time, O(1) space. Returns false if errors are detected, such as loops or branching.
}; // class intrusive_list_base
/// intrusive_list
///
/// Example usage:
/// struct IntNode : public eastl::intrusive_list_node {
/// int mX;
/// IntNode(int x) : mX(x) { }
/// };
///
/// IntNode nodeA(0);
/// IntNode nodeB(1);
///
/// intrusive_list<IntNode> intList;
/// intList.push_back(nodeA);
/// intList.push_back(nodeB);
/// intList.remove(nodeA);
///
template <typename T = intrusive_list_node>
class intrusive_list : public intrusive_list_base
{
public:
typedef intrusive_list<T> this_type;
typedef intrusive_list_base base_type;
typedef T node_type;
typedef T value_type;
typedef typename base_type::size_type size_type;
typedef typename base_type::difference_type difference_type;
typedef T& reference;
typedef const T& const_reference;
typedef T* pointer;
typedef const T* const_pointer;
typedef intrusive_list_iterator<T, T*, T&> iterator;
typedef intrusive_list_iterator<T, const T*, const T&> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
public:
intrusive_list(); ///< Creates an empty list.
intrusive_list(const this_type& x); ///< Creates an empty list; ignores the argument.
//intrusive_list(std::initializer_list<value_type> ilist); To consider: Is this feasible, given how initializer_list works by creating a temporary array? Even if it is feasible, is it a good idea?
this_type& operator=(const this_type& x); ///< Clears the list; ignores the argument.
void swap(this_type&); ///< Swaps the contents of two intrusive lists; O(1).
iterator begin() noexcept; ///< Returns an iterator pointing to the first element in the list.
const_iterator begin() const noexcept; ///< Returns a const_iterator pointing to the first element in the list.
const_iterator cbegin() const noexcept; ///< Returns a const_iterator pointing to the first element in the list.
iterator end() noexcept; ///< Returns an iterator pointing one-after the last element in the list.
const_iterator end() const noexcept; ///< Returns a const_iterator pointing one-after the last element in the list.
const_iterator cend() const noexcept; ///< Returns a const_iterator pointing one-after the last element in the list.
reverse_iterator rbegin() noexcept; ///< Returns a reverse_iterator pointing at the end of the list (start of the reverse sequence).
const_reverse_iterator rbegin() const noexcept; ///< Returns a const_reverse_iterator pointing at the end of the list (start of the reverse sequence).
const_reverse_iterator crbegin() const noexcept; ///< Returns a const_reverse_iterator pointing at the end of the list (start of the reverse sequence).
reverse_iterator rend() noexcept; ///< Returns a reverse_iterator pointing at the start of the list (end of the reverse sequence).
const_reverse_iterator rend() const noexcept; ///< Returns a const_reverse_iterator pointing at the start of the list (end of the reverse sequence).
const_reverse_iterator crend() const noexcept; ///< Returns a const_reverse_iterator pointing at the start of the list (end of the reverse sequence).
reference front(); ///< Returns a reference to the first element. The list must be non-empty.
const_reference front() const; ///< Returns a const reference to the first element. The list must be non-empty.
reference back(); ///< Returns a reference to the last element. The list must be non-empty.
const_reference back() const; ///< Returns a const reference to the last element. The list must be non-empty.
void push_front(value_type& x); ///< Adds an element to the front of the list; O(1). The element is not copied. The element must not be in any other list.
void push_back(value_type& x); ///< Adds an element to the back of the list; O(1). The element is not copied. The element must not be in any other list.
bool contains(const value_type& x) const; ///< Returns true if the given element is in the list; O(n). Equivalent to (locate(x) != end()).
iterator locate(value_type& x); ///< Converts a reference to an object in the list back to an iterator, or returns end() if it is not part of the list. O(n)
const_iterator locate(const value_type& x) const; ///< Converts a const reference to an object in the list back to a const iterator, or returns end() if it is not part of the list. O(n)
iterator insert(const_iterator pos, value_type& x); ///< Inserts an element before the element pointed to by the iterator. O(1)
iterator erase(const_iterator pos); ///< Erases the element pointed to by the iterator. O(1)
iterator erase(const_iterator pos, const_iterator last); ///< Erases elements within the iterator range [pos, last). O(1)
reverse_iterator erase(const_reverse_iterator pos);
reverse_iterator erase(const_reverse_iterator pos, const_reverse_iterator last);
static void remove(value_type& value); ///< Erases an element from a list; O(1). Note that this is static so you don't need to know which list the element, although it must be in some list.
void splice(const_iterator pos, value_type& x);
///< Moves the given element into this list before the element pointed to by pos; O(1).
///< Required: x must be in some list or have first/next pointers that point it itself.
void splice(const_iterator pos, intrusive_list& x);
///< Moves the contents of a list into this list before the element pointed to by pos; O(1).
///< Required: &x != this (same as std::list).
void splice(const_iterator pos, intrusive_list& x, const_iterator i);
///< Moves the given element pointed to i within the list x into the current list before
///< the element pointed to by pos; O(1).
void splice(const_iterator pos, intrusive_list& x, const_iterator first, const_iterator last);
///< Moves the range of elements [first, last) from list x into the current list before
///< the element pointed to by pos; O(1).
///< Required: pos must not be in [first, last). (same as std::list).
public:
// Sorting functionality
// This is independent of the global sort algorithms, as lists are
// linked nodes and can be sorted more efficiently by moving nodes
// around in ways that global sort algorithms aren't privy to.
void merge(this_type& x);
template <typename Compare>
void merge(this_type& x, Compare compare);
void unique();
template <typename BinaryPredicate>
void unique(BinaryPredicate);
void sort();
template<typename Compare>
void sort(Compare compare);
public:
}; // intrusive_list
///////////////////////////////////////////////////////////////////////
// intrusive_list_node
///////////////////////////////////////////////////////////////////////
// Moved to be inline within the class because the may-alias attribute is
// triggering what appears to be a bug in GCC that effectively requires
// may-alias structs to implement inline member functions within the class
// declaration. We don't have a .cpp file for
// #if EASTL_VALIDATE_INTRUSIVE_LIST
// inline intrusive_list_node::intrusive_list_node()
// {
// mpNext = mpPrev = NULL;
// }
//
// inline intrusive_list_node::~intrusive_list_node()
// {
// #if EASTL_ASSERT_ENABLED
// if(mpNext || mpPrev)
// EASTL_FAIL_MSG("~intrusive_list_node(): List is non-empty.");
// #endif
// }
// #endif
///////////////////////////////////////////////////////////////////////
// intrusive_list_iterator
///////////////////////////////////////////////////////////////////////
template <typename T, typename Pointer, typename Reference>
inline intrusive_list_iterator<T, Pointer, Reference>::intrusive_list_iterator()
{
#if EASTL_DEBUG
mpNode = NULL;
#endif
}
template <typename T, typename Pointer, typename Reference>
inline intrusive_list_iterator<T, Pointer, Reference>::intrusive_list_iterator(pointer pNode)
: mpNode(pNode)
{
// Empty
}
template <typename T, typename Pointer, typename Reference>
inline intrusive_list_iterator<T, Pointer, Reference>::intrusive_list_iterator(const iterator& x)
: mpNode(x.mpNode)
{
// Empty
}
template <typename T, typename Pointer, typename Reference>
inline typename intrusive_list_iterator<T, Pointer, Reference>::this_type&
intrusive_list_iterator<T, Pointer, Reference>::operator=(const iterator& x)
{
mpNode = x.mpNode;
return *this;
}
template <typename T, typename Pointer, typename Reference>
inline typename intrusive_list_iterator<T, Pointer, Reference>::reference
intrusive_list_iterator<T, Pointer, Reference>::operator*() const
{
return *mpNode;
}
template <typename T, typename Pointer, typename Reference>
inline typename intrusive_list_iterator<T, Pointer, Reference>::pointer
intrusive_list_iterator<T, Pointer, Reference>::operator->() const
{
return mpNode;
}
template <typename T, typename Pointer, typename Reference>
inline typename intrusive_list_iterator<T, Pointer, Reference>::this_type&
intrusive_list_iterator<T, Pointer, Reference>::operator++()
{
mpNode = static_cast<node_type*>(mpNode->mpNext);
return *this;
}
template <typename T, typename Pointer, typename Reference>
inline typename intrusive_list_iterator<T, Pointer, Reference>::this_type
intrusive_list_iterator<T, Pointer, Reference>::operator++(int)
{
intrusive_list_iterator it(*this);
mpNode = static_cast<node_type*>(mpNode->mpNext);
return it;
}
template <typename T, typename Pointer, typename Reference>
inline typename intrusive_list_iterator<T, Pointer, Reference>::this_type&
intrusive_list_iterator<T, Pointer, Reference>::operator--()
{
mpNode = static_cast<node_type*>(mpNode->mpPrev);
return *this;
}
template <typename T, typename Pointer, typename Reference>
inline typename intrusive_list_iterator<T, Pointer, Reference>::this_type
intrusive_list_iterator<T, Pointer, Reference>::operator--(int)
{
intrusive_list_iterator it(*this);
mpNode = static_cast<node_type*>(mpNode->mpPrev);
return it;
}
// The C++ defect report #179 requires that we support comparisons between const and non-const iterators.
// Thus we provide additional template paremeters here to support this. The defect report does not
// require us to support comparisons between reverse_iterators and const_reverse_iterators.
template <typename T, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB>
inline bool operator==(const intrusive_list_iterator<T, PointerA, ReferenceA>& a,
const intrusive_list_iterator<T, PointerB, ReferenceB>& b)
{
return a.mpNode == b.mpNode;
}
template <typename T, typename PointerA, typename ReferenceA, typename PointerB, typename ReferenceB>
inline bool operator!=(const intrusive_list_iterator<T, PointerA, ReferenceA>& a,
const intrusive_list_iterator<T, PointerB, ReferenceB>& b)
{
return a.mpNode != b.mpNode;
}
// We provide a version of operator!= for the case where the iterators are of the
// same type. This helps prevent ambiguity errors in the presence of rel_ops.
template <typename T, typename Pointer, typename Reference>
inline bool operator!=(const intrusive_list_iterator<T, Pointer, Reference>& a,
const intrusive_list_iterator<T, Pointer, Reference>& b)
{
return a.mpNode != b.mpNode;
}
///////////////////////////////////////////////////////////////////////
// intrusive_list_base
///////////////////////////////////////////////////////////////////////
inline intrusive_list_base::intrusive_list_base()
{
mAnchor.mpNext = mAnchor.mpPrev = &mAnchor;
}
inline intrusive_list_base::~intrusive_list_base()
{
#if EASTL_VALIDATE_INTRUSIVE_LIST
clear();
mAnchor.mpNext = mAnchor.mpPrev = NULL;
#endif
}
inline bool intrusive_list_base::empty() const noexcept
{
return mAnchor.mpPrev == &mAnchor;
}
inline intrusive_list_base::size_type intrusive_list_base::size() const noexcept
{
const intrusive_list_node* p = &mAnchor;
size_type n = (size_type)-1;
do {
++n;
p = p->mpNext;
} while(p != &mAnchor);
return n;
}
inline void intrusive_list_base::clear() noexcept
{
#if EASTL_VALIDATE_INTRUSIVE_LIST
// Need to clear out all the next/prev pointers in the elements;
// this makes this operation O(n) instead of O(1).
intrusive_list_node* pNode = mAnchor.mpNext;
while(pNode != &mAnchor)
{
intrusive_list_node* const pNextNode = pNode->mpNext;
pNode->mpNext = pNode->mpPrev = NULL;
pNode = pNextNode;
}
#endif
mAnchor.mpNext = mAnchor.mpPrev = &mAnchor;
}
inline void intrusive_list_base::pop_front()
{
#if EASTL_VALIDATE_INTRUSIVE_LIST
intrusive_list_node* const pNode = mAnchor.mpNext;
#endif
mAnchor.mpNext->mpNext->mpPrev = &mAnchor;
mAnchor.mpNext = mAnchor.mpNext->mpNext;
#if EASTL_VALIDATE_INTRUSIVE_LIST
if(pNode != &mAnchor)
pNode->mpNext = pNode->mpPrev = NULL;
#if EASTL_ASSERT_ENABLED
else
EASTL_FAIL_MSG("intrusive_list::pop_front(): empty list.");
#endif
#endif
}
inline void intrusive_list_base::pop_back()
{
#if EASTL_VALIDATE_INTRUSIVE_LIST
intrusive_list_node* const pNode = mAnchor.mpPrev;
#endif
mAnchor.mpPrev->mpPrev->mpNext = &mAnchor;
mAnchor.mpPrev = mAnchor.mpPrev->mpPrev;
#if EASTL_VALIDATE_INTRUSIVE_LIST
if(pNode != &mAnchor)
pNode->mpNext = pNode->mpPrev = NULL;
#if EASTL_ASSERT_ENABLED
else
EASTL_FAIL_MSG("intrusive_list::pop_back(): empty list.");
#endif
#endif
}
///////////////////////////////////////////////////////////////////////
// intrusive_list
///////////////////////////////////////////////////////////////////////
template <typename T>
inline intrusive_list<T>::intrusive_list()
{
}
template <typename T>
inline intrusive_list<T>::intrusive_list(const this_type& /*x*/)
: intrusive_list_base()
{
// We intentionally ignore argument x.
// To consider: Shouldn't this function simply not exist? Is there a useful purpose for having this function?
// There should be a comment here about it, though my first guess is that this exists to quell VC++ level 4/-Wall compiler warnings.
}
template <typename T>
inline typename intrusive_list<T>::this_type& intrusive_list<T>::operator=(const this_type& /*x*/)
{
// We intentionally ignore argument x.
// See notes above in the copy constructor about questioning the existence of this function.
return *this;
}
template <typename T>
inline typename intrusive_list<T>::iterator intrusive_list<T>::begin() noexcept
{
return iterator(static_cast<T*>(mAnchor.mpNext));
}
template <typename T>
inline typename intrusive_list<T>::const_iterator intrusive_list<T>::begin() const noexcept
{
return const_iterator(static_cast<T*>(mAnchor.mpNext));
}
template <typename T>
inline typename intrusive_list<T>::const_iterator intrusive_list<T>::cbegin() const noexcept
{
return const_iterator(static_cast<T*>(mAnchor.mpNext));
}
template <typename T>
inline typename intrusive_list<T>::iterator intrusive_list<T>::end() noexcept
{
return iterator(static_cast<T*>(&mAnchor));
}
template <typename T>
inline typename intrusive_list<T>::const_iterator intrusive_list<T>::end() const noexcept
{
return const_iterator(static_cast<const T*>(&mAnchor));
}
template <typename T>
inline typename intrusive_list<T>::const_iterator intrusive_list<T>::cend() const noexcept
{
return const_iterator(static_cast<const T*>(&mAnchor));
}
template <typename T>
inline typename intrusive_list<T>::reverse_iterator intrusive_list<T>::rbegin() noexcept
{
return reverse_iterator(iterator(static_cast<T*>(&mAnchor)));
}
template <typename T>
inline typename intrusive_list<T>::const_reverse_iterator intrusive_list<T>::rbegin() const noexcept
{
return const_reverse_iterator(const_iterator(static_cast<const T*>(&mAnchor)));
}
template <typename T>
inline typename intrusive_list<T>::const_reverse_iterator intrusive_list<T>::crbegin() const noexcept
{
return const_reverse_iterator(const_iterator(static_cast<const T*>(&mAnchor)));
}
template <typename T>
inline typename intrusive_list<T>::reverse_iterator intrusive_list<T>::rend() noexcept
{
return reverse_iterator(iterator(static_cast<T*>(mAnchor.mpNext)));
}
template <typename T>
inline typename intrusive_list<T>::const_reverse_iterator intrusive_list<T>::rend() const noexcept
{
return const_reverse_iterator(const_iterator(static_cast<const T*>(mAnchor.mpNext)));
}
template <typename T>
inline typename intrusive_list<T>::const_reverse_iterator intrusive_list<T>::crend() const noexcept
{
return const_reverse_iterator(const_iterator(static_cast<const T*>(mAnchor.mpNext)));
}
template <typename T>
inline typename intrusive_list<T>::reference intrusive_list<T>::front()
{
#if EASTL_VALIDATE_INTRUSIVE_LIST && EASTL_ASSERT_ENABLED
if(mAnchor.mpNext == &mAnchor)
EASTL_FAIL_MSG("intrusive_list::front(): empty list.");
#endif
return *static_cast<T*>(mAnchor.mpNext);
}
template <typename T>
inline typename intrusive_list<T>::const_reference intrusive_list<T>::front() const
{
#if EASTL_VALIDATE_INTRUSIVE_LIST && EASTL_ASSERT_ENABLED
if(mAnchor.mpNext == &mAnchor)
EASTL_FAIL_MSG("intrusive_list::front(): empty list.");
#endif
return *static_cast<const T*>(mAnchor.mpNext);
}
template <typename T>
inline typename intrusive_list<T>::reference intrusive_list<T>::back()
{
#if EASTL_VALIDATE_INTRUSIVE_LIST && EASTL_ASSERT_ENABLED
if(mAnchor.mpNext == &mAnchor)
EASTL_FAIL_MSG("intrusive_list::back(): empty list.");
#endif
return *static_cast<T*>(mAnchor.mpPrev);
}
template <typename T>
inline typename intrusive_list<T>::const_reference intrusive_list<T>::back() const
{
#if EASTL_VALIDATE_INTRUSIVE_LIST && EASTL_ASSERT_ENABLED
if(mAnchor.mpNext == &mAnchor)
EASTL_FAIL_MSG("intrusive_list::back(): empty list.");
#endif
return *static_cast<const T*>(mAnchor.mpPrev);
}
template <typename T>
inline void intrusive_list<T>::push_front(value_type& x)
{
#if EASTL_VALIDATE_INTRUSIVE_LIST && EASTL_ASSERT_ENABLED
if(x.mpNext || x.mpPrev)
EASTL_FAIL_MSG("intrusive_list::push_front(): element already on a list.");
#endif
x.mpNext = mAnchor.mpNext;
x.mpPrev = &mAnchor;
mAnchor.mpNext = &x;
x.mpNext->mpPrev = &x;
}
template <typename T>
inline void intrusive_list<T>::push_back(value_type& x)
{
#if EASTL_VALIDATE_INTRUSIVE_LIST && EASTL_ASSERT_ENABLED
if(x.mpNext || x.mpPrev)
EASTL_FAIL_MSG("intrusive_list::push_back(): element already on a list.");
#endif
x.mpPrev = mAnchor.mpPrev;
x.mpNext = &mAnchor;
mAnchor.mpPrev = &x;
x.mpPrev->mpNext = &x;
}
template <typename T>
inline bool intrusive_list<T>::contains(const value_type& x) const
{
for(const intrusive_list_node* p = mAnchor.mpNext; p != &mAnchor; p = p->mpNext)
{
if(p == &x)
return true;
}
return false;
}
template <typename T>
inline typename intrusive_list<T>::iterator intrusive_list<T>::locate(value_type& x)
{
for(intrusive_list_node* p = (T*)mAnchor.mpNext; p != &mAnchor; p = p->mpNext)
{
if(p == &x)
return iterator(static_cast<T*>(p));
}
return iterator((T*)&mAnchor);
}
template <typename T>
inline typename intrusive_list<T>::const_iterator intrusive_list<T>::locate(const value_type& x) const
{
for(const intrusive_list_node* p = mAnchor.mpNext; p != &mAnchor; p = p->mpNext)
{
if(p == &x)
return const_iterator(static_cast<const T*>(p));
}
return const_iterator((T*)&mAnchor);
}
template <typename T>
inline typename intrusive_list<T>::iterator intrusive_list<T>::insert(const_iterator pos, value_type& x)
{
#if EASTL_VALIDATE_INTRUSIVE_LIST && EASTL_ASSERT_ENABLED
if(x.mpNext || x.mpPrev)
EASTL_FAIL_MSG("intrusive_list::insert(): element already on a list.");
#endif
intrusive_list_node& next = *const_cast<node_type*>(pos.mpNode);
intrusive_list_node& prev = *static_cast<node_type*>(next.mpPrev);
prev.mpNext = next.mpPrev = &x;
x.mpPrev = &prev;
x.mpNext = &next;
return iterator(&x);
}
template <typename T>
inline typename intrusive_list<T>::iterator
intrusive_list<T>::erase(const_iterator pos)
{
intrusive_list_node& prev = *static_cast<node_type*>(pos.mpNode->mpPrev);
intrusive_list_node& next = *static_cast<node_type*>(pos.mpNode->mpNext);
prev.mpNext = &next;
next.mpPrev = &prev;
#if EASTL_VALIDATE_INTRUSIVE_LIST
iterator ii(const_cast<node_type*>(pos.mpNode));
ii.mpNode->mpPrev = ii.mpNode->mpNext = NULL;
#endif
return iterator(static_cast<node_type*>(&next));
}
template <typename T>
inline typename intrusive_list<T>::iterator
intrusive_list<T>::erase(const_iterator first, const_iterator last)
{
intrusive_list_node& prev = *static_cast<node_type*>(first.mpNode->mpPrev);
intrusive_list_node& next = *const_cast<node_type*>(last.mpNode);
#if EASTL_VALIDATE_INTRUSIVE_LIST
// need to clear out all the next/prev pointers in the elements;
// this makes this operation O(n) instead of O(1), sadly, although
// it's technically amortized O(1) since you could count yourself
// as paying this cost with each insert.
intrusive_list_node* pCur = const_cast<node_type*>(first.mpNode);
while(pCur != &next)
{
intrusive_list_node* const pCurNext = pCur->mpNext;
pCur->mpPrev = pCur->mpNext = NULL;
pCur = pCurNext;
}
#endif
prev.mpNext = &next;
next.mpPrev = &prev;
return iterator(const_cast<node_type*>(last.mpNode));
}
template <typename T>
inline typename intrusive_list<T>::reverse_iterator
intrusive_list<T>::erase(const_reverse_iterator position)
{
return reverse_iterator(erase((++position).base()));
}
template <typename T>
inline typename intrusive_list<T>::reverse_iterator
intrusive_list<T>::erase(const_reverse_iterator first, const_reverse_iterator last)
{
// Version which erases in order from first to last.
// difference_type i(first.base() - last.base());
// while(i--)
// first = erase(first);
// return first;
// Version which erases in order from last to first, but is slightly more efficient:
return reverse_iterator(erase((++last).base(), (++first).base()));
}
template <typename T>
void intrusive_list<T>::swap(intrusive_list& x)
{
// swap anchors
intrusive_list_node temp(mAnchor);
mAnchor = x.mAnchor;
x.mAnchor = temp;
// Fixup node pointers into the anchor, since the addresses of
// the anchors must stay the same with each list.
if(mAnchor.mpNext == &x.mAnchor)
mAnchor.mpNext = mAnchor.mpPrev = &mAnchor;
else
mAnchor.mpNext->mpPrev = mAnchor.mpPrev->mpNext = &mAnchor;
if(x.mAnchor.mpNext == &mAnchor)
x.mAnchor.mpNext = x.mAnchor.mpPrev = &x.mAnchor;
else
x.mAnchor.mpNext->mpPrev = x.mAnchor.mpPrev->mpNext = &x.mAnchor;
#if EASTL_VALIDATE_INTRUSIVE_LIST
temp.mpPrev = temp.mpNext = NULL;
#endif
}
template <typename T>
void intrusive_list<T>::splice(const_iterator pos, value_type& value)
{
// Note that splice(pos, x, pos) and splice(pos+1, x, pos)
// are valid and need to be handled correctly.
if(pos.mpNode != &value)
{
// Unlink item from old list.
intrusive_list_node& oldNext = *value.mpNext;
intrusive_list_node& oldPrev = *value.mpPrev;
oldNext.mpPrev = &oldPrev;
oldPrev.mpNext = &oldNext;
// Relink item into new list.
intrusive_list_node& newNext = *const_cast<node_type*>(pos.mpNode);
intrusive_list_node& newPrev = *newNext.mpPrev;
newPrev.mpNext = &value;
newNext.mpPrev = &value;
value.mpPrev = &newPrev;
value.mpNext = &newNext;
}
}
template <typename T>
void intrusive_list<T>::splice(const_iterator pos, intrusive_list& x)
{
// Note: &x == this is prohibited, so self-insertion is not a problem.
if(x.mAnchor.mpNext != &x.mAnchor) // If the list 'x' isn't empty...
{
intrusive_list_node& next = *const_cast<node_type*>(pos.mpNode);
intrusive_list_node& prev = *static_cast<node_type*>(next.mpPrev);
intrusive_list_node& insertPrev = *static_cast<node_type*>(x.mAnchor.mpNext);
intrusive_list_node& insertNext = *static_cast<node_type*>(x.mAnchor.mpPrev);
prev.mpNext = &insertPrev;
insertPrev.mpPrev = &prev;
insertNext.mpNext = &next;
next.mpPrev = &insertNext;
x.mAnchor.mpPrev = x.mAnchor.mpNext = &x.mAnchor;
}
}
template <typename T>
void intrusive_list<T>::splice(const_iterator pos, intrusive_list& /*x*/, const_iterator i)
{
// Note: &x == this is prohibited, so self-insertion is not a problem.
// Note that splice(pos, x, pos) and splice(pos + 1, x, pos)
// are valid and need to be handled correctly.
// We don't need to check if the source list is empty, because
// this function expects a valid iterator from the source list,
// and thus the list cannot be empty in such a situation.
iterator ii(const_cast<node_type*>(i.mpNode)); // Make a temporary non-const version.
if(pos != ii)
{
// Unlink item from old list.
intrusive_list_node& oldNext = *ii.mpNode->mpNext;
intrusive_list_node& oldPrev = *ii.mpNode->mpPrev;
oldNext.mpPrev = &oldPrev;
oldPrev.mpNext = &oldNext;
// Relink item into new list.
intrusive_list_node& newNext = *const_cast<node_type*>(pos.mpNode);
intrusive_list_node& newPrev = *newNext.mpPrev;
newPrev.mpNext = ii.mpNode;
newNext.mpPrev = ii.mpNode;
ii.mpNode->mpPrev = &newPrev;
ii.mpNode->mpNext = &newNext;
}
}
template <typename T>
void intrusive_list<T>::splice(const_iterator pos, intrusive_list& /*x*/, const_iterator first, const_iterator last)
{
// Note: &x == this is prohibited, so self-insertion is not a problem.
if(first != last)
{
intrusive_list_node& insertPrev = *const_cast<node_type*>(first.mpNode);
intrusive_list_node& insertNext = *static_cast<node_type*>(last.mpNode->mpPrev);
// remove from old list
insertNext.mpNext->mpPrev = insertPrev.mpPrev;
insertPrev.mpPrev->mpNext = insertNext.mpNext;
// insert into this list
intrusive_list_node& next = *const_cast<node_type*>(pos.mpNode);
intrusive_list_node& prev = *static_cast<node_type*>(next.mpPrev);
prev.mpNext = &insertPrev;
insertPrev.mpPrev = &prev;
insertNext.mpNext = &next;
next.mpPrev = &insertNext;
}
}
template <typename T>
inline void intrusive_list<T>::remove(value_type& value)
{
intrusive_list_node& prev = *value.mpPrev;
intrusive_list_node& next = *value.mpNext;
prev.mpNext = &next;
next.mpPrev = &prev;
#if EASTL_VALIDATE_INTRUSIVE_LIST
value.mpPrev = value.mpNext = NULL;
#endif
}
template <typename T>
void intrusive_list<T>::merge(this_type& x)
{
if(this != &x)
{
iterator first(begin());
iterator firstX(x.begin());
const iterator last(end());
const iterator lastX(x.end());
while((first != last) && (firstX != lastX))
{
if(*firstX < *first)
{
iterator next(firstX);
splice(first, x, firstX, ++next);
firstX = next;
}
else
++first;
}
if(firstX != lastX)
splice(last, x, firstX, lastX);
}
}
template <typename T>
template <typename Compare>
void intrusive_list<T>::merge(this_type& x, Compare compare)
{
if(this != &x)
{
iterator first(begin());
iterator firstX(x.begin());
const iterator last(end());
const iterator lastX(x.end());
while((first != last) && (firstX != lastX))
{
if(compare(*firstX, *first))
{
iterator next(firstX);
splice(first, x, firstX, ++next);
firstX = next;
}
else
++first;
}
if(firstX != lastX)
splice(last, x, firstX, lastX);
}
}
template <typename T>
void intrusive_list<T>::unique()
{
iterator first(begin());
const iterator last(end());
if(first != last)
{
iterator next(first);
while(++next != last)
{
if(*first == *next)
erase(next);
else
first = next;
next = first;
}
}
}
template <typename T>
template <typename BinaryPredicate>
void intrusive_list<T>::unique(BinaryPredicate predicate)
{
iterator first(begin());
const iterator last(end());
if(first != last)
{
iterator next(first);
while(++next != last)
{
if(predicate(*first, *next))
erase(next);
else
first = next;
next = first;
}
}
}
///////////////////////////////////////////////////////////////////////
// global operators
///////////////////////////////////////////////////////////////////////
template <typename T>
bool operator==(const intrusive_list<T>& a, const intrusive_list<T>& b)
{
// If we store an mSize member for intrusive_list, we want to take advantage of it here.
typename intrusive_list<T>::const_iterator ia = a.begin();
typename intrusive_list<T>::const_iterator ib = b.begin();
typename intrusive_list<T>::const_iterator enda = a.end();
typename intrusive_list<T>::const_iterator endb = b.end();
while((ia != enda) && (ib != endb) && (*ia == *ib))
{
++ia;
++ib;
}
return (ia == enda) && (ib == endb);
}
template <typename T>
void swap(intrusive_list<T>& a, intrusive_list<T>& b)
{
a.swap(b);
}
} // namespace eastl
#endif // Header include guard