mirror of
https://github.com/DrBeef/Raze.git
synced 2024-12-16 07:31:04 +00:00
718112a8fe
Currently none of these is being used, but eventually they will, once more code gets ported over. So it's better to have them right away and avoid editing the project file too much, only to revert that later.
5240 lines
180 KiB
C
5240 lines
180 KiB
C
/*
|
|
* jidctint.c
|
|
*
|
|
* Copyright (C) 1991-1998, Thomas G. Lane.
|
|
* Modification developed 2002-2016 by Guido Vollbeding.
|
|
* This file is part of the Independent JPEG Group's software.
|
|
* For conditions of distribution and use, see the accompanying README file.
|
|
*
|
|
* This file contains a slow-but-accurate integer implementation of the
|
|
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
|
* must also perform dequantization of the input coefficients.
|
|
*
|
|
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
|
* on each row (or vice versa, but it's more convenient to emit a row at
|
|
* a time). Direct algorithms are also available, but they are much more
|
|
* complex and seem not to be any faster when reduced to code.
|
|
*
|
|
* This implementation is based on an algorithm described in
|
|
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
|
|
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
|
|
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
|
|
* The primary algorithm described there uses 11 multiplies and 29 adds.
|
|
* We use their alternate method with 12 multiplies and 32 adds.
|
|
* The advantage of this method is that no data path contains more than one
|
|
* multiplication; this allows a very simple and accurate implementation in
|
|
* scaled fixed-point arithmetic, with a minimal number of shifts.
|
|
*
|
|
* We also provide IDCT routines with various output sample block sizes for
|
|
* direct resolution reduction or enlargement and for direct resolving the
|
|
* common 2x1 and 1x2 subsampling cases without additional resampling: NxN
|
|
* (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 input DCT block.
|
|
*
|
|
* For N<8 we simply take the corresponding low-frequency coefficients of
|
|
* the 8x8 input DCT block and apply an NxN point IDCT on the sub-block
|
|
* to yield the downscaled outputs.
|
|
* This can be seen as direct low-pass downsampling from the DCT domain
|
|
* point of view rather than the usual spatial domain point of view,
|
|
* yielding significant computational savings and results at least
|
|
* as good as common bilinear (averaging) spatial downsampling.
|
|
*
|
|
* For N>8 we apply a partial NxN IDCT on the 8 input coefficients as
|
|
* lower frequencies and higher frequencies assumed to be zero.
|
|
* It turns out that the computational effort is similar to the 8x8 IDCT
|
|
* regarding the output size.
|
|
* Furthermore, the scaling and descaling is the same for all IDCT sizes.
|
|
*
|
|
* CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
|
|
* since there would be too many additional constants to pre-calculate.
|
|
*/
|
|
|
|
#define JPEG_INTERNALS
|
|
#include "jinclude.h"
|
|
#include "jpeglib.h"
|
|
#include "jdct.h" /* Private declarations for DCT subsystem */
|
|
|
|
#ifdef DCT_ISLOW_SUPPORTED
|
|
|
|
|
|
/*
|
|
* This module is specialized to the case DCTSIZE = 8.
|
|
*/
|
|
|
|
#if DCTSIZE != 8
|
|
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
|
|
#endif
|
|
|
|
|
|
/*
|
|
* The poop on this scaling stuff is as follows:
|
|
*
|
|
* Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
|
|
* larger than the true IDCT outputs. The final outputs are therefore
|
|
* a factor of N larger than desired; since N=8 this can be cured by
|
|
* a simple right shift at the end of the algorithm. The advantage of
|
|
* this arrangement is that we save two multiplications per 1-D IDCT,
|
|
* because the y0 and y4 inputs need not be divided by sqrt(N).
|
|
*
|
|
* We have to do addition and subtraction of the integer inputs, which
|
|
* is no problem, and multiplication by fractional constants, which is
|
|
* a problem to do in integer arithmetic. We multiply all the constants
|
|
* by CONST_SCALE and convert them to integer constants (thus retaining
|
|
* CONST_BITS bits of precision in the constants). After doing a
|
|
* multiplication we have to divide the product by CONST_SCALE, with proper
|
|
* rounding, to produce the correct output. This division can be done
|
|
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
|
|
* as long as possible so that partial sums can be added together with
|
|
* full fractional precision.
|
|
*
|
|
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
|
|
* they are represented to better-than-integral precision. These outputs
|
|
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
|
|
* with the recommended scaling. (To scale up 12-bit sample data further, an
|
|
* intermediate INT32 array would be needed.)
|
|
*
|
|
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
|
|
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
|
|
* shows that the values given below are the most effective.
|
|
*/
|
|
|
|
#if BITS_IN_JSAMPLE == 8
|
|
#define CONST_BITS 13
|
|
#define PASS1_BITS 2
|
|
#else
|
|
#define CONST_BITS 13
|
|
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
|
#endif
|
|
|
|
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
|
* causing a lot of useless floating-point operations at run time.
|
|
* To get around this we use the following pre-calculated constants.
|
|
* If you change CONST_BITS you may want to add appropriate values.
|
|
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
|
*/
|
|
|
|
#if CONST_BITS == 13
|
|
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
|
|
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
|
|
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
|
|
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
|
|
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
|
|
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
|
|
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
|
|
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
|
|
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
|
|
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
|
|
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
|
|
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
|
|
#else
|
|
#define FIX_0_298631336 FIX(0.298631336)
|
|
#define FIX_0_390180644 FIX(0.390180644)
|
|
#define FIX_0_541196100 FIX(0.541196100)
|
|
#define FIX_0_765366865 FIX(0.765366865)
|
|
#define FIX_0_899976223 FIX(0.899976223)
|
|
#define FIX_1_175875602 FIX(1.175875602)
|
|
#define FIX_1_501321110 FIX(1.501321110)
|
|
#define FIX_1_847759065 FIX(1.847759065)
|
|
#define FIX_1_961570560 FIX(1.961570560)
|
|
#define FIX_2_053119869 FIX(2.053119869)
|
|
#define FIX_2_562915447 FIX(2.562915447)
|
|
#define FIX_3_072711026 FIX(3.072711026)
|
|
#endif
|
|
|
|
|
|
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
|
|
* For 8-bit samples with the recommended scaling, all the variable
|
|
* and constant values involved are no more than 16 bits wide, so a
|
|
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
|
|
* For 12-bit samples, a full 32-bit multiplication will be needed.
|
|
*/
|
|
|
|
#if BITS_IN_JSAMPLE == 8
|
|
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
|
|
#else
|
|
#define MULTIPLY(var,const) ((var) * (const))
|
|
#endif
|
|
|
|
|
|
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
|
* entry; produce an int result. In this module, both inputs and result
|
|
* are 16 bits or less, so either int or short multiply will work.
|
|
*/
|
|
|
|
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients.
|
|
*
|
|
* Optimized algorithm with 12 multiplications in the 1-D kernel.
|
|
* cK represents sqrt(2) * cos(K*pi/16).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp1, tmp2, tmp3;
|
|
INT32 tmp10, tmp11, tmp12, tmp13;
|
|
INT32 z1, z2, z3;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[DCTSIZE2]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array.
|
|
* Note results are scaled up by sqrt(8) compared to a true IDCT;
|
|
* furthermore, we scale the results by 2**PASS1_BITS.
|
|
*/
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
|
/* Due to quantization, we will usually find that many of the input
|
|
* coefficients are zero, especially the AC terms. We can exploit this
|
|
* by short-circuiting the IDCT calculation for any column in which all
|
|
* the AC terms are zero. In that case each output is equal to the
|
|
* DC coefficient (with scale factor as needed).
|
|
* With typical images and quantization tables, half or more of the
|
|
* column DCT calculations can be simplified this way.
|
|
*/
|
|
|
|
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
|
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
|
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
|
inptr[DCTSIZE*7] == 0) {
|
|
/* AC terms all zero */
|
|
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
|
|
|
wsptr[DCTSIZE*0] = dcval;
|
|
wsptr[DCTSIZE*1] = dcval;
|
|
wsptr[DCTSIZE*2] = dcval;
|
|
wsptr[DCTSIZE*3] = dcval;
|
|
wsptr[DCTSIZE*4] = dcval;
|
|
wsptr[DCTSIZE*5] = dcval;
|
|
wsptr[DCTSIZE*6] = dcval;
|
|
wsptr[DCTSIZE*7] = dcval;
|
|
|
|
inptr++; /* advance pointers to next column */
|
|
quantptr++;
|
|
wsptr++;
|
|
continue;
|
|
}
|
|
|
|
/* Even part: reverse the even part of the forward DCT.
|
|
* The rotator is c(-6).
|
|
*/
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z2 <<= CONST_BITS;
|
|
z3 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
z2 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
|
|
tmp0 = z2 + z3;
|
|
tmp1 = z2 - z3;
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
|
|
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
|
|
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
|
|
|
|
tmp10 = tmp0 + tmp2;
|
|
tmp13 = tmp0 - tmp2;
|
|
tmp11 = tmp1 + tmp3;
|
|
tmp12 = tmp1 - tmp3;
|
|
|
|
/* Odd part per figure 8; the matrix is unitary and hence its
|
|
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
|
*/
|
|
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
|
|
z2 = tmp0 + tmp2;
|
|
z3 = tmp1 + tmp3;
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
|
|
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
|
|
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
|
|
z2 += z1;
|
|
z3 += z1;
|
|
|
|
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
|
|
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
|
|
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
|
|
tmp0 += z1 + z2;
|
|
tmp3 += z1 + z3;
|
|
|
|
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
|
|
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
|
|
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
|
|
tmp1 += z1 + z3;
|
|
tmp2 += z1 + z2;
|
|
|
|
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
|
|
|
wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
|
|
wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
|
|
wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
|
|
|
|
inptr++; /* advance pointers to next column */
|
|
quantptr++;
|
|
wsptr++;
|
|
}
|
|
|
|
/* Pass 2: process rows from work array, store into output array.
|
|
* Note that we must descale the results by a factor of 8 == 2**3,
|
|
* and also undo the PASS1_BITS scaling.
|
|
*/
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
z2 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
|
|
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
|
* However, the column calculation has created many nonzero AC terms, so
|
|
* the simplification applies less often (typically 5% to 10% of the time).
|
|
* On machines with very fast multiplication, it's possible that the
|
|
* test takes more time than it's worth. In that case this section
|
|
* may be commented out.
|
|
*/
|
|
|
|
#ifndef NO_ZERO_ROW_TEST
|
|
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
|
|
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
|
|
/* AC terms all zero */
|
|
JSAMPLE dcval = range_limit[(int) RIGHT_SHIFT(z2, PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
outptr[0] = dcval;
|
|
outptr[1] = dcval;
|
|
outptr[2] = dcval;
|
|
outptr[3] = dcval;
|
|
outptr[4] = dcval;
|
|
outptr[5] = dcval;
|
|
outptr[6] = dcval;
|
|
outptr[7] = dcval;
|
|
|
|
wsptr += DCTSIZE; /* advance pointer to next row */
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
/* Even part: reverse the even part of the forward DCT.
|
|
* The rotator is c(-6).
|
|
*/
|
|
|
|
z3 = (INT32) wsptr[4];
|
|
|
|
tmp0 = (z2 + z3) << CONST_BITS;
|
|
tmp1 = (z2 - z3) << CONST_BITS;
|
|
|
|
z2 = (INT32) wsptr[2];
|
|
z3 = (INT32) wsptr[6];
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
|
|
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
|
|
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
|
|
|
|
tmp10 = tmp0 + tmp2;
|
|
tmp13 = tmp0 - tmp2;
|
|
tmp11 = tmp1 + tmp3;
|
|
tmp12 = tmp1 - tmp3;
|
|
|
|
/* Odd part per figure 8; the matrix is unitary and hence its
|
|
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
|
*/
|
|
|
|
tmp0 = (INT32) wsptr[7];
|
|
tmp1 = (INT32) wsptr[5];
|
|
tmp2 = (INT32) wsptr[3];
|
|
tmp3 = (INT32) wsptr[1];
|
|
|
|
z2 = tmp0 + tmp2;
|
|
z3 = tmp1 + tmp3;
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
|
|
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
|
|
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
|
|
z2 += z1;
|
|
z3 += z1;
|
|
|
|
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
|
|
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
|
|
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
|
|
tmp0 += z1 + z2;
|
|
tmp3 += z1 + z3;
|
|
|
|
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
|
|
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
|
|
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
|
|
tmp1 += z1 + z3;
|
|
tmp2 += z1 + z2;
|
|
|
|
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += DCTSIZE; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
#ifdef IDCT_SCALING_SUPPORTED
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a reduced-size 7x7 output block.
|
|
*
|
|
* Optimized algorithm with 12 multiplications in the 1-D kernel.
|
|
* cK represents sqrt(2) * cos(K*pi/14).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_7x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12, tmp13;
|
|
INT32 z1, z2, z3;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[7*7]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array. */
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp13 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp13 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
tmp13 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
|
|
tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
|
|
tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
|
|
tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
|
|
tmp0 = z1 + z3;
|
|
z2 -= tmp0;
|
|
tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
|
|
tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
|
|
tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
|
|
tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
|
|
tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
|
|
tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
|
|
tmp0 = tmp1 - tmp2;
|
|
tmp1 += tmp2;
|
|
tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
|
|
tmp1 += tmp2;
|
|
z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
|
|
tmp0 += z2;
|
|
tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[7*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*6] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*5] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*4] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*3] = (int) RIGHT_SHIFT(tmp13, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 7 rows from work array, store into output array. */
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 7; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp13 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp13 <<= CONST_BITS;
|
|
|
|
z1 = (INT32) wsptr[2];
|
|
z2 = (INT32) wsptr[4];
|
|
z3 = (INT32) wsptr[6];
|
|
|
|
tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
|
|
tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
|
|
tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
|
|
tmp0 = z1 + z3;
|
|
z2 -= tmp0;
|
|
tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */
|
|
tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
|
|
tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
|
|
tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
|
|
tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
|
|
tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
|
|
tmp0 = tmp1 - tmp2;
|
|
tmp1 += tmp2;
|
|
tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
|
|
tmp1 += tmp2;
|
|
z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
|
|
tmp0 += z2;
|
|
tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 7; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a reduced-size 6x6 output block.
|
|
*
|
|
* Optimized algorithm with 3 multiplications in the 1-D kernel.
|
|
* cK represents sqrt(2) * cos(K*pi/12).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
|
|
INT32 z1, z2, z3;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[6*6]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array. */
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp0 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
|
|
tmp1 = tmp0 + tmp10;
|
|
tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS);
|
|
tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
|
|
tmp10 = tmp1 + tmp0;
|
|
tmp12 = tmp1 - tmp0;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
|
|
tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
|
|
tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
|
|
tmp1 = (z1 - z2 - z3) << PASS1_BITS;
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*1] = (int) (tmp11 + tmp1);
|
|
wsptr[6*4] = (int) (tmp11 - tmp1);
|
|
wsptr[6*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 6 rows from work array, store into output array. */
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 6; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp0 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp0 <<= CONST_BITS;
|
|
tmp2 = (INT32) wsptr[4];
|
|
tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
|
|
tmp1 = tmp0 + tmp10;
|
|
tmp11 = tmp0 - tmp10 - tmp10;
|
|
tmp10 = (INT32) wsptr[2];
|
|
tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
|
|
tmp10 = tmp1 + tmp0;
|
|
tmp12 = tmp1 - tmp0;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
|
|
tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
|
|
tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
|
|
tmp1 = (z1 - z2 - z3) << CONST_BITS;
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 6; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a reduced-size 5x5 output block.
|
|
*
|
|
* Optimized algorithm with 5 multiplications in the 1-D kernel.
|
|
* cK represents sqrt(2) * cos(K*pi/10).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_5x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp1, tmp10, tmp11, tmp12;
|
|
INT32 z1, z2, z3;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[5*5]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array. */
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp12 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
tmp12 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
tmp1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
|
|
z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
|
|
z3 = tmp12 + z2;
|
|
tmp10 = z3 + z1;
|
|
tmp11 = z3 - z1;
|
|
tmp12 -= z2 << 2;
|
|
|
|
/* Odd part */
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
|
|
tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
|
|
tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[5*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[5*4] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[5*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[5*3] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[5*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 5 rows from work array, store into output array. */
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 5; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp12 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp12 <<= CONST_BITS;
|
|
tmp0 = (INT32) wsptr[2];
|
|
tmp1 = (INT32) wsptr[4];
|
|
z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */
|
|
z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */
|
|
z3 = tmp12 + z2;
|
|
tmp10 = z3 + z1;
|
|
tmp11 = z3 - z1;
|
|
tmp12 -= z2 << 2;
|
|
|
|
/* Odd part */
|
|
|
|
z2 = (INT32) wsptr[1];
|
|
z3 = (INT32) wsptr[3];
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
|
|
tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
|
|
tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 5; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a reduced-size 4x4 output block.
|
|
*
|
|
* Optimized algorithm with 3 multiplications in the 1-D kernel.
|
|
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp2, tmp10, tmp12;
|
|
INT32 z1, z2, z3;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[4*4]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array. */
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
|
|
tmp10 = (tmp0 + tmp2) << PASS1_BITS;
|
|
tmp12 = (tmp0 - tmp2) << PASS1_BITS;
|
|
|
|
/* Odd part */
|
|
/* Same rotation as in the even part of the 8x8 LL&M IDCT */
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
|
|
/* Add fudge factor here for final descale. */
|
|
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */
|
|
CONST_BITS-PASS1_BITS);
|
|
tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */
|
|
CONST_BITS-PASS1_BITS);
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[4*0] = (int) (tmp10 + tmp0);
|
|
wsptr[4*3] = (int) (tmp10 - tmp0);
|
|
wsptr[4*1] = (int) (tmp12 + tmp2);
|
|
wsptr[4*2] = (int) (tmp12 - tmp2);
|
|
}
|
|
|
|
/* Pass 2: process 4 rows from work array, store into output array. */
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 4; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp0 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp2 = (INT32) wsptr[2];
|
|
|
|
tmp10 = (tmp0 + tmp2) << CONST_BITS;
|
|
tmp12 = (tmp0 - tmp2) << CONST_BITS;
|
|
|
|
/* Odd part */
|
|
/* Same rotation as in the even part of the 8x8 LL&M IDCT */
|
|
|
|
z2 = (INT32) wsptr[1];
|
|
z3 = (INT32) wsptr[3];
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
|
|
tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
|
|
tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 4; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a reduced-size 3x3 output block.
|
|
*
|
|
* Optimized algorithm with 2 multiplications in the 1-D kernel.
|
|
* cK represents sqrt(2) * cos(K*pi/6).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_3x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp2, tmp10, tmp12;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[3*3]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array. */
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp0 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
|
|
tmp10 = tmp0 + tmp12;
|
|
tmp2 = tmp0 - tmp12 - tmp12;
|
|
|
|
/* Odd part */
|
|
|
|
tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[3*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[3*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 3 rows from work array, store into output array. */
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 3; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp0 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp0 <<= CONST_BITS;
|
|
tmp2 = (INT32) wsptr[2];
|
|
tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
|
|
tmp10 = tmp0 + tmp12;
|
|
tmp2 = tmp0 - tmp12 - tmp12;
|
|
|
|
/* Odd part */
|
|
|
|
tmp12 = (INT32) wsptr[1];
|
|
tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 3; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a reduced-size 2x2 output block.
|
|
*
|
|
* Multiplication-less algorithm.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
ISHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input. */
|
|
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
|
|
/* Column 0 */
|
|
tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp4 += (((DCTELEM) RANGE_CENTER) << 3) + (1 << 2);
|
|
|
|
tmp0 = tmp4 + tmp5;
|
|
tmp2 = tmp4 - tmp5;
|
|
|
|
/* Column 1 */
|
|
tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0+1], quantptr[DCTSIZE*0+1]);
|
|
tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1+1], quantptr[DCTSIZE*1+1]);
|
|
|
|
tmp1 = tmp4 + tmp5;
|
|
tmp3 = tmp4 - tmp5;
|
|
|
|
/* Pass 2: process 2 rows, store into output array. */
|
|
|
|
/* Row 0 */
|
|
outptr = output_buf[0] + output_col;
|
|
|
|
outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK];
|
|
outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK];
|
|
|
|
/* Row 1 */
|
|
outptr = output_buf[1] + output_col;
|
|
|
|
outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp2 + tmp3, 3) & RANGE_MASK];
|
|
outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp2 - tmp3, 3) & RANGE_MASK];
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a reduced-size 1x1 output block.
|
|
*
|
|
* We hardly need an inverse DCT routine for this: just take the
|
|
* average pixel value, which is one-eighth of the DC coefficient.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
DCTELEM dcval;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
ISHIFT_TEMPS
|
|
|
|
/* 1x1 is trivial: just take the DC coefficient divided by 8. */
|
|
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
|
|
dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
|
|
/* Add range center and fudge factor for descale and range-limit. */
|
|
dcval += (((DCTELEM) RANGE_CENTER) << 3) + (1 << 2);
|
|
|
|
output_buf[0][output_col] =
|
|
range_limit[(int) IRIGHT_SHIFT(dcval, 3) & RANGE_MASK];
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 9x9 output block.
|
|
*
|
|
* Optimized algorithm with 10 multiplications in the 1-D kernel.
|
|
* cK represents sqrt(2) * cos(K*pi/18).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_9x9 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13, tmp14;
|
|
INT32 z1, z2, z3, z4;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[8*9]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array. */
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp0 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
|
|
tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */
|
|
tmp1 = tmp0 + tmp3;
|
|
tmp2 = tmp0 - tmp3 - tmp3;
|
|
|
|
tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
|
|
tmp11 = tmp2 + tmp0;
|
|
tmp14 = tmp2 - tmp0 - tmp0;
|
|
|
|
tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
|
|
tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */
|
|
tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */
|
|
|
|
tmp10 = tmp1 + tmp0 - tmp3;
|
|
tmp12 = tmp1 - tmp0 + tmp2;
|
|
tmp13 = tmp1 - tmp2 + tmp3;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
|
|
z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */
|
|
|
|
tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */
|
|
tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */
|
|
tmp0 = tmp2 + tmp3 - z2;
|
|
tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */
|
|
tmp2 += z2 - tmp1;
|
|
tmp3 += z2 + tmp1;
|
|
tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*8] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*7] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*6] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*3] = (int) RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*5] = (int) RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*4] = (int) RIGHT_SHIFT(tmp14, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 9 rows from work array, store into output array. */
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 9; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp0 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp0 <<= CONST_BITS;
|
|
|
|
z1 = (INT32) wsptr[2];
|
|
z2 = (INT32) wsptr[4];
|
|
z3 = (INT32) wsptr[6];
|
|
|
|
tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */
|
|
tmp1 = tmp0 + tmp3;
|
|
tmp2 = tmp0 - tmp3 - tmp3;
|
|
|
|
tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */
|
|
tmp11 = tmp2 + tmp0;
|
|
tmp14 = tmp2 - tmp0 - tmp0;
|
|
|
|
tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */
|
|
tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */
|
|
tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */
|
|
|
|
tmp10 = tmp1 + tmp0 - tmp3;
|
|
tmp12 = tmp1 - tmp0 + tmp2;
|
|
tmp13 = tmp1 - tmp2 + tmp3;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
z4 = (INT32) wsptr[7];
|
|
|
|
z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */
|
|
|
|
tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */
|
|
tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */
|
|
tmp0 = tmp2 + tmp3 - z2;
|
|
tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */
|
|
tmp2 += z2 - tmp1;
|
|
tmp3 += z2 + tmp1;
|
|
tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp3,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp3,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 8; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 10x10 output block.
|
|
*
|
|
* Optimized algorithm with 12 multiplications in the 1-D kernel.
|
|
* cK represents sqrt(2) * cos(K*pi/20).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_10x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
|
|
INT32 z1, z2, z3, z4, z5;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[8*10]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array. */
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
z3 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
z3 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
|
|
z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
|
|
tmp10 = z3 + z1;
|
|
tmp11 = z3 - z2;
|
|
|
|
tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */
|
|
CONST_BITS-PASS1_BITS);
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
|
|
tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
|
|
tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
|
|
|
|
tmp20 = tmp10 + tmp12;
|
|
tmp24 = tmp10 - tmp12;
|
|
tmp21 = tmp11 + tmp13;
|
|
tmp23 = tmp11 - tmp13;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
|
|
tmp11 = z2 + z4;
|
|
tmp13 = z2 - z4;
|
|
|
|
tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
|
|
z5 = z3 << CONST_BITS;
|
|
|
|
z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
|
|
z4 = z5 + tmp12;
|
|
|
|
tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
|
|
tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
|
|
|
|
z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
|
|
z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1));
|
|
|
|
tmp12 = (z1 - tmp13 - z3) << PASS1_BITS;
|
|
|
|
tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
|
|
tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*2] = (int) (tmp22 + tmp12);
|
|
wsptr[8*7] = (int) (tmp22 - tmp12);
|
|
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 10 rows from work array, store into output array. */
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 10; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
z3 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
z3 <<= CONST_BITS;
|
|
z4 = (INT32) wsptr[4];
|
|
z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
|
|
z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
|
|
tmp10 = z3 + z1;
|
|
tmp11 = z3 - z2;
|
|
|
|
tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */
|
|
|
|
z2 = (INT32) wsptr[2];
|
|
z3 = (INT32) wsptr[6];
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
|
|
tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
|
|
tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
|
|
|
|
tmp20 = tmp10 + tmp12;
|
|
tmp24 = tmp10 - tmp12;
|
|
tmp21 = tmp11 + tmp13;
|
|
tmp23 = tmp11 - tmp13;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
z3 <<= CONST_BITS;
|
|
z4 = (INT32) wsptr[7];
|
|
|
|
tmp11 = z2 + z4;
|
|
tmp13 = z2 - z4;
|
|
|
|
tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
|
|
|
|
z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
|
|
z4 = z3 + tmp12;
|
|
|
|
tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
|
|
tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
|
|
|
|
z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
|
|
z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1));
|
|
|
|
tmp12 = ((z1 - tmp13) << CONST_BITS) - z3;
|
|
|
|
tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
|
|
tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 8; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 11x11 output block.
|
|
*
|
|
* Optimized algorithm with 24 multiplications in the 1-D kernel.
|
|
* cK represents sqrt(2) * cos(K*pi/22).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_11x11 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
|
|
INT32 z1, z2, z3, z4;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[8*11]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array. */
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp10 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
tmp10 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
|
|
tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */
|
|
tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */
|
|
z4 = z1 + z3;
|
|
tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */
|
|
z4 -= z2;
|
|
tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */
|
|
tmp21 = tmp20 + tmp23 + tmp25 -
|
|
MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */
|
|
tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
|
|
tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
|
|
tmp24 += tmp25;
|
|
tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */
|
|
tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */
|
|
MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */
|
|
tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
|
|
tmp11 = z1 + z2;
|
|
tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
|
|
tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */
|
|
tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */
|
|
tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
|
|
tmp10 = tmp11 + tmp12 + tmp13 -
|
|
MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */
|
|
z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
|
|
tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */
|
|
tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */
|
|
z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */
|
|
tmp11 += z1;
|
|
tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */
|
|
tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */
|
|
MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */
|
|
MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*10] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*9] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*8] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*7] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*6] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*5] = (int) RIGHT_SHIFT(tmp25, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 11 rows from work array, store into output array. */
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 11; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp10 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp10 <<= CONST_BITS;
|
|
|
|
z1 = (INT32) wsptr[2];
|
|
z2 = (INT32) wsptr[4];
|
|
z3 = (INT32) wsptr[6];
|
|
|
|
tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */
|
|
tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */
|
|
z4 = z1 + z3;
|
|
tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */
|
|
z4 -= z2;
|
|
tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */
|
|
tmp21 = tmp20 + tmp23 + tmp25 -
|
|
MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */
|
|
tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */
|
|
tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */
|
|
tmp24 += tmp25;
|
|
tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */
|
|
tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */
|
|
MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */
|
|
tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
z4 = (INT32) wsptr[7];
|
|
|
|
tmp11 = z1 + z2;
|
|
tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */
|
|
tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */
|
|
tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */
|
|
tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */
|
|
tmp10 = tmp11 + tmp12 + tmp13 -
|
|
MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */
|
|
z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */
|
|
tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */
|
|
tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */
|
|
z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */
|
|
tmp11 += z1;
|
|
tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */
|
|
tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */
|
|
MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */
|
|
MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 8; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 12x12 output block.
|
|
*
|
|
* Optimized algorithm with 15 multiplications in the 1-D kernel.
|
|
* cK represents sqrt(2) * cos(K*pi/24).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
|
|
INT32 z1, z2, z3, z4;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[8*12]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array. */
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
z3 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
z3 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
|
|
|
|
tmp10 = z3 + z4;
|
|
tmp11 = z3 - z4;
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
|
|
z1 <<= CONST_BITS;
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
z2 <<= CONST_BITS;
|
|
|
|
tmp12 = z1 - z2;
|
|
|
|
tmp21 = z3 + tmp12;
|
|
tmp24 = z3 - tmp12;
|
|
|
|
tmp12 = z4 + z2;
|
|
|
|
tmp20 = tmp10 + tmp12;
|
|
tmp25 = tmp10 - tmp12;
|
|
|
|
tmp12 = z4 - z1 - z2;
|
|
|
|
tmp22 = tmp11 + tmp12;
|
|
tmp23 = tmp11 - tmp12;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
|
|
tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
|
|
tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
|
|
|
|
tmp10 = z1 + z3;
|
|
tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
|
|
tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
|
|
tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
|
|
tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
|
|
tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
|
|
tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
|
|
tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
|
|
MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
|
|
|
|
z1 -= z4;
|
|
z2 -= z3;
|
|
z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
|
|
tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
|
|
tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 12 rows from work array, store into output array. */
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 12; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
z3 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
z3 <<= CONST_BITS;
|
|
|
|
z4 = (INT32) wsptr[4];
|
|
z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
|
|
|
|
tmp10 = z3 + z4;
|
|
tmp11 = z3 - z4;
|
|
|
|
z1 = (INT32) wsptr[2];
|
|
z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
|
|
z1 <<= CONST_BITS;
|
|
z2 = (INT32) wsptr[6];
|
|
z2 <<= CONST_BITS;
|
|
|
|
tmp12 = z1 - z2;
|
|
|
|
tmp21 = z3 + tmp12;
|
|
tmp24 = z3 - tmp12;
|
|
|
|
tmp12 = z4 + z2;
|
|
|
|
tmp20 = tmp10 + tmp12;
|
|
tmp25 = tmp10 - tmp12;
|
|
|
|
tmp12 = z4 - z1 - z2;
|
|
|
|
tmp22 = tmp11 + tmp12;
|
|
tmp23 = tmp11 - tmp12;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
z4 = (INT32) wsptr[7];
|
|
|
|
tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
|
|
tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
|
|
|
|
tmp10 = z1 + z3;
|
|
tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
|
|
tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
|
|
tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
|
|
tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
|
|
tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
|
|
tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
|
|
tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
|
|
MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
|
|
|
|
z1 -= z4;
|
|
z2 -= z3;
|
|
z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
|
|
tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
|
|
tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 8; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 13x13 output block.
|
|
*
|
|
* Optimized algorithm with 29 multiplications in the 1-D kernel.
|
|
* cK represents sqrt(2) * cos(K*pi/26).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_13x13 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
|
|
INT32 z1, z2, z3, z4;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[8*13]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array. */
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
z1 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
|
|
tmp10 = z3 + z4;
|
|
tmp11 = z3 - z4;
|
|
|
|
tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */
|
|
tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */
|
|
|
|
tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */
|
|
tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */
|
|
|
|
tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */
|
|
tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */
|
|
|
|
tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */
|
|
tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */
|
|
|
|
tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */
|
|
tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */
|
|
|
|
tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */
|
|
tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */
|
|
|
|
tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
|
|
tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */
|
|
tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */
|
|
tmp15 = z1 + z4;
|
|
tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */
|
|
tmp10 = tmp11 + tmp12 + tmp13 -
|
|
MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */
|
|
tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */
|
|
tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
|
|
tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
|
|
tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */
|
|
tmp11 += tmp14;
|
|
tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
|
|
tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */
|
|
tmp12 += tmp14;
|
|
tmp13 += tmp14;
|
|
tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */
|
|
tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
|
|
MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */
|
|
z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */
|
|
tmp14 += z1;
|
|
tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */
|
|
MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*12] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*11] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*10] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*9] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*8] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*7] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*6] = (int) RIGHT_SHIFT(tmp26, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 13 rows from work array, store into output array. */
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 13; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
z1 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
z1 <<= CONST_BITS;
|
|
|
|
z2 = (INT32) wsptr[2];
|
|
z3 = (INT32) wsptr[4];
|
|
z4 = (INT32) wsptr[6];
|
|
|
|
tmp10 = z3 + z4;
|
|
tmp11 = z3 - z4;
|
|
|
|
tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */
|
|
tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */
|
|
|
|
tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */
|
|
tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */
|
|
|
|
tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */
|
|
tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */
|
|
|
|
tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */
|
|
tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */
|
|
|
|
tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */
|
|
tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */
|
|
|
|
tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */
|
|
tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */
|
|
|
|
tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
z4 = (INT32) wsptr[7];
|
|
|
|
tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */
|
|
tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */
|
|
tmp15 = z1 + z4;
|
|
tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */
|
|
tmp10 = tmp11 + tmp12 + tmp13 -
|
|
MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */
|
|
tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */
|
|
tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */
|
|
tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */
|
|
tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */
|
|
tmp11 += tmp14;
|
|
tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */
|
|
tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */
|
|
tmp12 += tmp14;
|
|
tmp13 += tmp14;
|
|
tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */
|
|
tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */
|
|
MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */
|
|
z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */
|
|
tmp14 += z1;
|
|
tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */
|
|
MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 8; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 14x14 output block.
|
|
*
|
|
* Optimized algorithm with 20 multiplications in the 1-D kernel.
|
|
* cK represents sqrt(2) * cos(K*pi/28).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_14x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
|
|
INT32 z1, z2, z3, z4;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[8*14]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array. */
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
z1 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
|
|
z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
|
|
z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
|
|
|
|
tmp10 = z1 + z2;
|
|
tmp11 = z1 + z3;
|
|
tmp12 = z1 - z4;
|
|
|
|
tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */
|
|
CONST_BITS-PASS1_BITS);
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
|
|
z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
|
|
|
|
tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
|
|
tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
|
|
tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
|
|
MULTIPLY(z2, FIX(1.378756276)); /* c2 */
|
|
|
|
tmp20 = tmp10 + tmp13;
|
|
tmp26 = tmp10 - tmp13;
|
|
tmp21 = tmp11 + tmp14;
|
|
tmp25 = tmp11 - tmp14;
|
|
tmp22 = tmp12 + tmp15;
|
|
tmp24 = tmp12 - tmp15;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
tmp13 = z4 << CONST_BITS;
|
|
|
|
tmp14 = z1 + z3;
|
|
tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
|
|
tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
|
|
tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
|
|
tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
|
|
tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
|
|
z1 -= z2;
|
|
tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */
|
|
tmp16 += tmp15;
|
|
z1 += z4;
|
|
z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */
|
|
tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
|
|
tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
|
|
z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
|
|
tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
|
|
tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
|
|
|
|
tmp13 = (z1 - z3) << PASS1_BITS;
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*3] = (int) (tmp23 + tmp13);
|
|
wsptr[8*10] = (int) (tmp23 - tmp13);
|
|
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 14 rows from work array, store into output array. */
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 14; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
z1 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
z1 <<= CONST_BITS;
|
|
z4 = (INT32) wsptr[4];
|
|
z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
|
|
z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
|
|
z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
|
|
|
|
tmp10 = z1 + z2;
|
|
tmp11 = z1 + z3;
|
|
tmp12 = z1 - z4;
|
|
|
|
tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */
|
|
|
|
z1 = (INT32) wsptr[2];
|
|
z2 = (INT32) wsptr[6];
|
|
|
|
z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
|
|
|
|
tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
|
|
tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
|
|
tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
|
|
MULTIPLY(z2, FIX(1.378756276)); /* c2 */
|
|
|
|
tmp20 = tmp10 + tmp13;
|
|
tmp26 = tmp10 - tmp13;
|
|
tmp21 = tmp11 + tmp14;
|
|
tmp25 = tmp11 - tmp14;
|
|
tmp22 = tmp12 + tmp15;
|
|
tmp24 = tmp12 - tmp15;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
z4 = (INT32) wsptr[7];
|
|
z4 <<= CONST_BITS;
|
|
|
|
tmp14 = z1 + z3;
|
|
tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
|
|
tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
|
|
tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
|
|
tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
|
|
tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
|
|
z1 -= z2;
|
|
tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */
|
|
tmp16 += tmp15;
|
|
tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */
|
|
tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
|
|
tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
|
|
tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
|
|
tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
|
|
tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
|
|
|
|
tmp13 = ((z1 - z3) << CONST_BITS) + z4;
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 8; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 15x15 output block.
|
|
*
|
|
* Optimized algorithm with 22 multiplications in the 1-D kernel.
|
|
* cK represents sqrt(2) * cos(K*pi/30).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_15x15 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
|
|
INT32 z1, z2, z3, z4;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[8*15]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array. */
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
z1 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
|
|
tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
|
|
tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
|
|
|
|
tmp12 = z1 - tmp10;
|
|
tmp13 = z1 + tmp11;
|
|
z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */
|
|
|
|
z4 = z2 - z3;
|
|
z3 += z2;
|
|
tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
|
|
tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
|
|
z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */
|
|
|
|
tmp20 = tmp13 + tmp10 + tmp11;
|
|
tmp23 = tmp12 - tmp10 + tmp11 + z2;
|
|
|
|
tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
|
|
tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
|
|
|
|
tmp25 = tmp13 - tmp10 - tmp11;
|
|
tmp26 = tmp12 + tmp10 - tmp11 - z2;
|
|
|
|
tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
|
|
tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
|
|
|
|
tmp21 = tmp12 + tmp10 + tmp11;
|
|
tmp24 = tmp13 - tmp10 + tmp11;
|
|
tmp11 += tmp11;
|
|
tmp22 = z1 + tmp11; /* c10 = c6-c12 */
|
|
tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
|
|
tmp13 = z2 - z4;
|
|
tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */
|
|
tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */
|
|
tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */
|
|
|
|
tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */
|
|
tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */
|
|
z2 = z1 - z4;
|
|
tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */
|
|
|
|
tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
|
|
tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
|
|
tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */
|
|
z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */
|
|
tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */
|
|
tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*14] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*13] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*12] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*11] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*10] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*9] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*8] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*7] = (int) RIGHT_SHIFT(tmp27, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 15 rows from work array, store into output array. */
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 15; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
z1 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
z1 <<= CONST_BITS;
|
|
|
|
z2 = (INT32) wsptr[2];
|
|
z3 = (INT32) wsptr[4];
|
|
z4 = (INT32) wsptr[6];
|
|
|
|
tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */
|
|
tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */
|
|
|
|
tmp12 = z1 - tmp10;
|
|
tmp13 = z1 + tmp11;
|
|
z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */
|
|
|
|
z4 = z2 - z3;
|
|
z3 += z2;
|
|
tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */
|
|
tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */
|
|
z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */
|
|
|
|
tmp20 = tmp13 + tmp10 + tmp11;
|
|
tmp23 = tmp12 - tmp10 + tmp11 + z2;
|
|
|
|
tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */
|
|
tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */
|
|
|
|
tmp25 = tmp13 - tmp10 - tmp11;
|
|
tmp26 = tmp12 + tmp10 - tmp11 - z2;
|
|
|
|
tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */
|
|
tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */
|
|
|
|
tmp21 = tmp12 + tmp10 + tmp11;
|
|
tmp24 = tmp13 - tmp10 + tmp11;
|
|
tmp11 += tmp11;
|
|
tmp22 = z1 + tmp11; /* c10 = c6-c12 */
|
|
tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z4 = (INT32) wsptr[5];
|
|
z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */
|
|
z4 = (INT32) wsptr[7];
|
|
|
|
tmp13 = z2 - z4;
|
|
tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */
|
|
tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */
|
|
tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */
|
|
|
|
tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */
|
|
tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */
|
|
z2 = z1 - z4;
|
|
tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */
|
|
|
|
tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */
|
|
tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */
|
|
tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */
|
|
z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */
|
|
tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */
|
|
tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 8; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 16x16 output block.
|
|
*
|
|
* Optimized algorithm with 28 multiplications in the 1-D kernel.
|
|
* cK represents sqrt(2) * cos(K*pi/32).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_16x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
|
|
INT32 z1, z2, z3, z4;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[8*16]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array. */
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp0 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
|
|
tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
|
|
|
|
tmp10 = tmp0 + tmp1;
|
|
tmp11 = tmp0 - tmp1;
|
|
tmp12 = tmp0 + tmp2;
|
|
tmp13 = tmp0 - tmp2;
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
z3 = z1 - z2;
|
|
z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
|
|
z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
|
|
|
|
tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
|
|
tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
|
|
tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
|
|
tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
|
|
|
|
tmp20 = tmp10 + tmp0;
|
|
tmp27 = tmp10 - tmp0;
|
|
tmp21 = tmp12 + tmp1;
|
|
tmp26 = tmp12 - tmp1;
|
|
tmp22 = tmp13 + tmp2;
|
|
tmp25 = tmp13 - tmp2;
|
|
tmp23 = tmp11 + tmp3;
|
|
tmp24 = tmp11 - tmp3;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
|
|
tmp11 = z1 + z3;
|
|
|
|
tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
|
|
tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
|
|
tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
|
|
tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
|
|
tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
|
|
tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
|
|
tmp0 = tmp1 + tmp2 + tmp3 -
|
|
MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
|
|
tmp13 = tmp10 + tmp11 + tmp12 -
|
|
MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
|
|
z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
|
|
tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
|
|
tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
|
|
z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
|
|
tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
|
|
tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
|
|
z2 += z4;
|
|
z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
|
|
tmp1 += z1;
|
|
tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
|
|
z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
|
|
tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
|
|
tmp12 += z2;
|
|
z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
|
|
tmp2 += z2;
|
|
tmp3 += z2;
|
|
z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
|
|
tmp10 += z2;
|
|
tmp11 += z2;
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 16 rows from work array, store into output array. */
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 16; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp0 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp0 <<= CONST_BITS;
|
|
|
|
z1 = (INT32) wsptr[4];
|
|
tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
|
|
tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
|
|
|
|
tmp10 = tmp0 + tmp1;
|
|
tmp11 = tmp0 - tmp1;
|
|
tmp12 = tmp0 + tmp2;
|
|
tmp13 = tmp0 - tmp2;
|
|
|
|
z1 = (INT32) wsptr[2];
|
|
z2 = (INT32) wsptr[6];
|
|
z3 = z1 - z2;
|
|
z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
|
|
z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
|
|
|
|
tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
|
|
tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
|
|
tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
|
|
tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
|
|
|
|
tmp20 = tmp10 + tmp0;
|
|
tmp27 = tmp10 - tmp0;
|
|
tmp21 = tmp12 + tmp1;
|
|
tmp26 = tmp12 - tmp1;
|
|
tmp22 = tmp13 + tmp2;
|
|
tmp25 = tmp13 - tmp2;
|
|
tmp23 = tmp11 + tmp3;
|
|
tmp24 = tmp11 - tmp3;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
z4 = (INT32) wsptr[7];
|
|
|
|
tmp11 = z1 + z3;
|
|
|
|
tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
|
|
tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
|
|
tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
|
|
tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
|
|
tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
|
|
tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
|
|
tmp0 = tmp1 + tmp2 + tmp3 -
|
|
MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
|
|
tmp13 = tmp10 + tmp11 + tmp12 -
|
|
MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
|
|
z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
|
|
tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
|
|
tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
|
|
z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
|
|
tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
|
|
tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
|
|
z2 += z4;
|
|
z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
|
|
tmp1 += z1;
|
|
tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
|
|
z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
|
|
tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
|
|
tmp12 += z2;
|
|
z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
|
|
tmp2 += z2;
|
|
tmp3 += z2;
|
|
z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
|
|
tmp10 += z2;
|
|
tmp11 += z2;
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 8; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 16x8 output block.
|
|
*
|
|
* 8-point IDCT in pass 1 (columns), 16-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
|
|
INT32 z1, z2, z3, z4;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[8*8]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array.
|
|
* Note results are scaled up by sqrt(8) compared to a true IDCT;
|
|
* furthermore, we scale the results by 2**PASS1_BITS.
|
|
* 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
|
|
*/
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
|
/* Due to quantization, we will usually find that many of the input
|
|
* coefficients are zero, especially the AC terms. We can exploit this
|
|
* by short-circuiting the IDCT calculation for any column in which all
|
|
* the AC terms are zero. In that case each output is equal to the
|
|
* DC coefficient (with scale factor as needed).
|
|
* With typical images and quantization tables, half or more of the
|
|
* column DCT calculations can be simplified this way.
|
|
*/
|
|
|
|
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
|
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
|
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
|
inptr[DCTSIZE*7] == 0) {
|
|
/* AC terms all zero */
|
|
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
|
|
|
wsptr[DCTSIZE*0] = dcval;
|
|
wsptr[DCTSIZE*1] = dcval;
|
|
wsptr[DCTSIZE*2] = dcval;
|
|
wsptr[DCTSIZE*3] = dcval;
|
|
wsptr[DCTSIZE*4] = dcval;
|
|
wsptr[DCTSIZE*5] = dcval;
|
|
wsptr[DCTSIZE*6] = dcval;
|
|
wsptr[DCTSIZE*7] = dcval;
|
|
|
|
inptr++; /* advance pointers to next column */
|
|
quantptr++;
|
|
wsptr++;
|
|
continue;
|
|
}
|
|
|
|
/* Even part: reverse the even part of the forward DCT.
|
|
* The rotator is c(-6).
|
|
*/
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z2 <<= CONST_BITS;
|
|
z3 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
z2 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
|
|
tmp0 = z2 + z3;
|
|
tmp1 = z2 - z3;
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
|
|
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
|
|
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
|
|
|
|
tmp10 = tmp0 + tmp2;
|
|
tmp13 = tmp0 - tmp2;
|
|
tmp11 = tmp1 + tmp3;
|
|
tmp12 = tmp1 - tmp3;
|
|
|
|
/* Odd part per figure 8; the matrix is unitary and hence its
|
|
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
|
*/
|
|
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
|
|
z2 = tmp0 + tmp2;
|
|
z3 = tmp1 + tmp3;
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
|
|
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
|
|
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
|
|
z2 += z1;
|
|
z3 += z1;
|
|
|
|
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
|
|
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
|
|
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
|
|
tmp0 += z1 + z2;
|
|
tmp3 += z1 + z3;
|
|
|
|
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
|
|
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
|
|
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
|
|
tmp1 += z1 + z3;
|
|
tmp2 += z1 + z2;
|
|
|
|
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
|
|
|
wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
|
|
wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
|
|
wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
|
|
|
|
inptr++; /* advance pointers to next column */
|
|
quantptr++;
|
|
wsptr++;
|
|
}
|
|
|
|
/* Pass 2: process 8 rows from work array, store into output array.
|
|
* 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
|
|
*/
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp0 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp0 <<= CONST_BITS;
|
|
|
|
z1 = (INT32) wsptr[4];
|
|
tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
|
|
tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
|
|
|
|
tmp10 = tmp0 + tmp1;
|
|
tmp11 = tmp0 - tmp1;
|
|
tmp12 = tmp0 + tmp2;
|
|
tmp13 = tmp0 - tmp2;
|
|
|
|
z1 = (INT32) wsptr[2];
|
|
z2 = (INT32) wsptr[6];
|
|
z3 = z1 - z2;
|
|
z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
|
|
z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
|
|
|
|
tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
|
|
tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
|
|
tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
|
|
tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
|
|
|
|
tmp20 = tmp10 + tmp0;
|
|
tmp27 = tmp10 - tmp0;
|
|
tmp21 = tmp12 + tmp1;
|
|
tmp26 = tmp12 - tmp1;
|
|
tmp22 = tmp13 + tmp2;
|
|
tmp25 = tmp13 - tmp2;
|
|
tmp23 = tmp11 + tmp3;
|
|
tmp24 = tmp11 - tmp3;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
z4 = (INT32) wsptr[7];
|
|
|
|
tmp11 = z1 + z3;
|
|
|
|
tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
|
|
tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
|
|
tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
|
|
tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
|
|
tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
|
|
tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
|
|
tmp0 = tmp1 + tmp2 + tmp3 -
|
|
MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
|
|
tmp13 = tmp10 + tmp11 + tmp12 -
|
|
MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
|
|
z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
|
|
tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
|
|
tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
|
|
z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
|
|
tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
|
|
tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
|
|
z2 += z4;
|
|
z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
|
|
tmp1 += z1;
|
|
tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
|
|
z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
|
|
tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
|
|
tmp12 += z2;
|
|
z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
|
|
tmp2 += z2;
|
|
tmp3 += z2;
|
|
z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
|
|
tmp10 += z2;
|
|
tmp11 += z2;
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 8; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 14x7 output block.
|
|
*
|
|
* 7-point IDCT in pass 1 (columns), 14-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_14x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
|
|
INT32 z1, z2, z3, z4;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[8*7]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array.
|
|
* 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14).
|
|
*/
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp23 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp23 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
tmp23 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
|
|
tmp20 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
|
|
tmp22 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
|
|
tmp21 = tmp20 + tmp22 + tmp23 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
|
|
tmp10 = z1 + z3;
|
|
z2 -= tmp10;
|
|
tmp10 = MULTIPLY(tmp10, FIX(1.274162392)) + tmp23; /* c2 */
|
|
tmp20 += tmp10 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
|
|
tmp22 += tmp10 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
|
|
tmp23 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
|
|
tmp11 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
|
|
tmp12 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
|
|
tmp10 = tmp11 - tmp12;
|
|
tmp11 += tmp12;
|
|
tmp12 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
|
|
tmp11 += tmp12;
|
|
z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
|
|
tmp10 += z2;
|
|
tmp12 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*6] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*5] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*4] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 7 rows from work array, store into output array.
|
|
* 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28).
|
|
*/
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 7; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
z1 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
z1 <<= CONST_BITS;
|
|
z4 = (INT32) wsptr[4];
|
|
z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
|
|
z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
|
|
z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
|
|
|
|
tmp10 = z1 + z2;
|
|
tmp11 = z1 + z3;
|
|
tmp12 = z1 - z4;
|
|
|
|
tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */
|
|
|
|
z1 = (INT32) wsptr[2];
|
|
z2 = (INT32) wsptr[6];
|
|
|
|
z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
|
|
|
|
tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
|
|
tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
|
|
tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
|
|
MULTIPLY(z2, FIX(1.378756276)); /* c2 */
|
|
|
|
tmp20 = tmp10 + tmp13;
|
|
tmp26 = tmp10 - tmp13;
|
|
tmp21 = tmp11 + tmp14;
|
|
tmp25 = tmp11 - tmp14;
|
|
tmp22 = tmp12 + tmp15;
|
|
tmp24 = tmp12 - tmp15;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
z4 = (INT32) wsptr[7];
|
|
z4 <<= CONST_BITS;
|
|
|
|
tmp14 = z1 + z3;
|
|
tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
|
|
tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
|
|
tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
|
|
tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
|
|
tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
|
|
z1 -= z2;
|
|
tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */
|
|
tmp16 += tmp15;
|
|
tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */
|
|
tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
|
|
tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
|
|
tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
|
|
tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
|
|
tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
|
|
|
|
tmp13 = ((z1 - z3) << CONST_BITS) + z4;
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 8; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 12x6 output block.
|
|
*
|
|
* 6-point IDCT in pass 1 (columns), 12-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_12x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
|
|
INT32 z1, z2, z3, z4;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[8*6]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array.
|
|
* 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
|
|
*/
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp10 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
tmp10 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
tmp12 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
tmp20 = MULTIPLY(tmp12, FIX(0.707106781)); /* c4 */
|
|
tmp11 = tmp10 + tmp20;
|
|
tmp21 = RIGHT_SHIFT(tmp10 - tmp20 - tmp20, CONST_BITS-PASS1_BITS);
|
|
tmp20 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
tmp10 = MULTIPLY(tmp20, FIX(1.224744871)); /* c2 */
|
|
tmp20 = tmp11 + tmp10;
|
|
tmp22 = tmp11 - tmp10;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
tmp11 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
|
|
tmp10 = tmp11 + ((z1 + z2) << CONST_BITS);
|
|
tmp12 = tmp11 + ((z3 - z2) << CONST_BITS);
|
|
tmp11 = (z1 - z2 - z3) << PASS1_BITS;
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*5] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*1] = (int) (tmp21 + tmp11);
|
|
wsptr[8*4] = (int) (tmp21 - tmp11);
|
|
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*3] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 6 rows from work array, store into output array.
|
|
* 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24).
|
|
*/
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 6; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
z3 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
z3 <<= CONST_BITS;
|
|
|
|
z4 = (INT32) wsptr[4];
|
|
z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
|
|
|
|
tmp10 = z3 + z4;
|
|
tmp11 = z3 - z4;
|
|
|
|
z1 = (INT32) wsptr[2];
|
|
z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
|
|
z1 <<= CONST_BITS;
|
|
z2 = (INT32) wsptr[6];
|
|
z2 <<= CONST_BITS;
|
|
|
|
tmp12 = z1 - z2;
|
|
|
|
tmp21 = z3 + tmp12;
|
|
tmp24 = z3 - tmp12;
|
|
|
|
tmp12 = z4 + z2;
|
|
|
|
tmp20 = tmp10 + tmp12;
|
|
tmp25 = tmp10 - tmp12;
|
|
|
|
tmp12 = z4 - z1 - z2;
|
|
|
|
tmp22 = tmp11 + tmp12;
|
|
tmp23 = tmp11 - tmp12;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
z4 = (INT32) wsptr[7];
|
|
|
|
tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
|
|
tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
|
|
|
|
tmp10 = z1 + z3;
|
|
tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
|
|
tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
|
|
tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
|
|
tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
|
|
tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
|
|
tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
|
|
tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
|
|
MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
|
|
|
|
z1 -= z4;
|
|
z2 -= z3;
|
|
z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
|
|
tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
|
|
tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 8; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 10x5 output block.
|
|
*
|
|
* 5-point IDCT in pass 1 (columns), 10-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_10x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
|
|
INT32 z1, z2, z3, z4;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[8*5]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array.
|
|
* 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10).
|
|
*/
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp12 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
tmp12 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
tmp13 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
tmp14 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z1 = MULTIPLY(tmp13 + tmp14, FIX(0.790569415)); /* (c2+c4)/2 */
|
|
z2 = MULTIPLY(tmp13 - tmp14, FIX(0.353553391)); /* (c2-c4)/2 */
|
|
z3 = tmp12 + z2;
|
|
tmp10 = z3 + z1;
|
|
tmp11 = z3 - z1;
|
|
tmp12 -= z2 << 2;
|
|
|
|
/* Odd part */
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
|
|
tmp13 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
|
|
tmp14 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*4] = (int) RIGHT_SHIFT(tmp10 - tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*3] = (int) RIGHT_SHIFT(tmp11 - tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 5 rows from work array, store into output array.
|
|
* 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20).
|
|
*/
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 5; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
z3 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
z3 <<= CONST_BITS;
|
|
z4 = (INT32) wsptr[4];
|
|
z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
|
|
z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
|
|
tmp10 = z3 + z1;
|
|
tmp11 = z3 - z2;
|
|
|
|
tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */
|
|
|
|
z2 = (INT32) wsptr[2];
|
|
z3 = (INT32) wsptr[6];
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
|
|
tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
|
|
tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
|
|
|
|
tmp20 = tmp10 + tmp12;
|
|
tmp24 = tmp10 - tmp12;
|
|
tmp21 = tmp11 + tmp13;
|
|
tmp23 = tmp11 - tmp13;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
z3 <<= CONST_BITS;
|
|
z4 = (INT32) wsptr[7];
|
|
|
|
tmp11 = z2 + z4;
|
|
tmp13 = z2 - z4;
|
|
|
|
tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
|
|
|
|
z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
|
|
z4 = z3 + tmp12;
|
|
|
|
tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
|
|
tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
|
|
|
|
z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
|
|
z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1));
|
|
|
|
tmp12 = ((z1 - tmp13) << CONST_BITS) - z3;
|
|
|
|
tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
|
|
tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 8; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 8x4 output block.
|
|
*
|
|
* 4-point IDCT in pass 1 (columns), 8-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_8x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp1, tmp2, tmp3;
|
|
INT32 tmp10, tmp11, tmp12, tmp13;
|
|
INT32 z1, z2, z3;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[8*4]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array.
|
|
* 4-point IDCT kernel,
|
|
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
|
|
*/
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
|
|
tmp10 = (tmp0 + tmp2) << PASS1_BITS;
|
|
tmp12 = (tmp0 - tmp2) << PASS1_BITS;
|
|
|
|
/* Odd part */
|
|
/* Same rotation as in the even part of the 8x8 LL&M IDCT */
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
|
|
/* Add fudge factor here for final descale. */
|
|
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */
|
|
CONST_BITS-PASS1_BITS);
|
|
tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */
|
|
CONST_BITS-PASS1_BITS);
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[8*0] = (int) (tmp10 + tmp0);
|
|
wsptr[8*3] = (int) (tmp10 - tmp0);
|
|
wsptr[8*1] = (int) (tmp12 + tmp2);
|
|
wsptr[8*2] = (int) (tmp12 - tmp2);
|
|
}
|
|
|
|
/* Pass 2: process rows from work array, store into output array.
|
|
* Note that we must descale the results by a factor of 8 == 2**3,
|
|
* and also undo the PASS1_BITS scaling.
|
|
* 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
|
|
*/
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 4; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part: reverse the even part of the forward DCT.
|
|
* The rotator is c(-6).
|
|
*/
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
z2 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
z3 = (INT32) wsptr[4];
|
|
|
|
tmp0 = (z2 + z3) << CONST_BITS;
|
|
tmp1 = (z2 - z3) << CONST_BITS;
|
|
|
|
z2 = (INT32) wsptr[2];
|
|
z3 = (INT32) wsptr[6];
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
|
|
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
|
|
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
|
|
|
|
tmp10 = tmp0 + tmp2;
|
|
tmp13 = tmp0 - tmp2;
|
|
tmp11 = tmp1 + tmp3;
|
|
tmp12 = tmp1 - tmp3;
|
|
|
|
/* Odd part per figure 8; the matrix is unitary and hence its
|
|
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
|
*/
|
|
|
|
tmp0 = (INT32) wsptr[7];
|
|
tmp1 = (INT32) wsptr[5];
|
|
tmp2 = (INT32) wsptr[3];
|
|
tmp3 = (INT32) wsptr[1];
|
|
|
|
z2 = tmp0 + tmp2;
|
|
z3 = tmp1 + tmp3;
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
|
|
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
|
|
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
|
|
z2 += z1;
|
|
z3 += z1;
|
|
|
|
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
|
|
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
|
|
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
|
|
tmp0 += z1 + z2;
|
|
tmp3 += z1 + z3;
|
|
|
|
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
|
|
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
|
|
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
|
|
tmp1 += z1 + z3;
|
|
tmp2 += z1 + z2;
|
|
|
|
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += DCTSIZE; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a reduced-size 6x3 output block.
|
|
*
|
|
* 3-point IDCT in pass 1 (columns), 6-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_6x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
|
|
INT32 z1, z2, z3;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[6*3]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array.
|
|
* 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6).
|
|
*/
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp0 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
|
|
tmp10 = tmp0 + tmp12;
|
|
tmp2 = tmp0 - tmp12 - tmp12;
|
|
|
|
/* Odd part */
|
|
|
|
tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 3 rows from work array, store into output array.
|
|
* 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
|
|
*/
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 3; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp0 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp0 <<= CONST_BITS;
|
|
tmp2 = (INT32) wsptr[4];
|
|
tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
|
|
tmp1 = tmp0 + tmp10;
|
|
tmp11 = tmp0 - tmp10 - tmp10;
|
|
tmp10 = (INT32) wsptr[2];
|
|
tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
|
|
tmp10 = tmp1 + tmp0;
|
|
tmp12 = tmp1 - tmp0;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
|
|
tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
|
|
tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
|
|
tmp1 = (z1 - z2 - z3) << CONST_BITS;
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 6; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 4x2 output block.
|
|
*
|
|
* 2-point IDCT in pass 1 (columns), 4-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_4x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp2, tmp10, tmp12;
|
|
INT32 z1, z2, z3;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
INT32 * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
INT32 workspace[4*2]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array. */
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
|
|
/* Odd part */
|
|
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[4*0] = tmp10 + tmp0;
|
|
wsptr[4*1] = tmp10 - tmp0;
|
|
}
|
|
|
|
/* Pass 2: process 2 rows from work array, store into output array.
|
|
* 4-point IDCT kernel,
|
|
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
|
|
*/
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 2; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp0 = wsptr[0] + ((((INT32) RANGE_CENTER) << 3) + (ONE << 2));
|
|
tmp2 = wsptr[2];
|
|
|
|
tmp10 = (tmp0 + tmp2) << CONST_BITS;
|
|
tmp12 = (tmp0 - tmp2) << CONST_BITS;
|
|
|
|
/* Odd part */
|
|
/* Same rotation as in the even part of the 8x8 LL&M IDCT */
|
|
|
|
z2 = wsptr[1];
|
|
z3 = wsptr[3];
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
|
|
tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
|
|
tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
|
|
CONST_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
|
|
CONST_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
|
|
CONST_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
|
|
CONST_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 4; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 2x1 output block.
|
|
*
|
|
* 1-point IDCT in pass 1 (columns), 2-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_2x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
DCTELEM tmp0, tmp1;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
ISHIFT_TEMPS
|
|
|
|
/* Pass 1: empty. */
|
|
|
|
/* Pass 2: process 1 row from input, store into output array. */
|
|
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
outptr = output_buf[0] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
tmp0 = DEQUANTIZE(coef_block[0], quantptr[0]);
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp0 += (((DCTELEM) RANGE_CENTER) << 3) + (1 << 2);
|
|
|
|
/* Odd part */
|
|
|
|
tmp1 = DEQUANTIZE(coef_block[1], quantptr[1]);
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK];
|
|
outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK];
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 8x16 output block.
|
|
*
|
|
* 16-point IDCT in pass 1 (columns), 8-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_8x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27;
|
|
INT32 z1, z2, z3, z4;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[8*16]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array.
|
|
* 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
|
|
*/
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp0 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */
|
|
tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */
|
|
|
|
tmp10 = tmp0 + tmp1;
|
|
tmp11 = tmp0 - tmp1;
|
|
tmp12 = tmp0 + tmp2;
|
|
tmp13 = tmp0 - tmp2;
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
z3 = z1 - z2;
|
|
z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */
|
|
z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */
|
|
|
|
tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */
|
|
tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */
|
|
tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */
|
|
tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */
|
|
|
|
tmp20 = tmp10 + tmp0;
|
|
tmp27 = tmp10 - tmp0;
|
|
tmp21 = tmp12 + tmp1;
|
|
tmp26 = tmp12 - tmp1;
|
|
tmp22 = tmp13 + tmp2;
|
|
tmp25 = tmp13 - tmp2;
|
|
tmp23 = tmp11 + tmp3;
|
|
tmp24 = tmp11 - tmp3;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
|
|
tmp11 = z1 + z3;
|
|
|
|
tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */
|
|
tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */
|
|
tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */
|
|
tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */
|
|
tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */
|
|
tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */
|
|
tmp0 = tmp1 + tmp2 + tmp3 -
|
|
MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */
|
|
tmp13 = tmp10 + tmp11 + tmp12 -
|
|
MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */
|
|
z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */
|
|
tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */
|
|
tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */
|
|
z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */
|
|
tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */
|
|
tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */
|
|
z2 += z4;
|
|
z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */
|
|
tmp1 += z1;
|
|
tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */
|
|
z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */
|
|
tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */
|
|
tmp12 += z2;
|
|
z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */
|
|
tmp2 += z2;
|
|
tmp3 += z2;
|
|
z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */
|
|
tmp10 += z2;
|
|
tmp11 += z2;
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process rows from work array, store into output array.
|
|
* Note that we must descale the results by a factor of 8 == 2**3,
|
|
* and also undo the PASS1_BITS scaling.
|
|
* 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
|
|
*/
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 16; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part: reverse the even part of the forward DCT.
|
|
* The rotator is c(-6).
|
|
*/
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
z2 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
z3 = (INT32) wsptr[4];
|
|
|
|
tmp0 = (z2 + z3) << CONST_BITS;
|
|
tmp1 = (z2 - z3) << CONST_BITS;
|
|
|
|
z2 = (INT32) wsptr[2];
|
|
z3 = (INT32) wsptr[6];
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
|
|
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
|
|
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
|
|
|
|
tmp10 = tmp0 + tmp2;
|
|
tmp13 = tmp0 - tmp2;
|
|
tmp11 = tmp1 + tmp3;
|
|
tmp12 = tmp1 - tmp3;
|
|
|
|
/* Odd part per figure 8; the matrix is unitary and hence its
|
|
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
|
*/
|
|
|
|
tmp0 = (INT32) wsptr[7];
|
|
tmp1 = (INT32) wsptr[5];
|
|
tmp2 = (INT32) wsptr[3];
|
|
tmp3 = (INT32) wsptr[1];
|
|
|
|
z2 = tmp0 + tmp2;
|
|
z3 = tmp1 + tmp3;
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
|
|
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
|
|
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
|
|
z2 += z1;
|
|
z3 += z1;
|
|
|
|
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
|
|
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
|
|
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
|
|
tmp0 += z1 + z2;
|
|
tmp3 += z1 + z3;
|
|
|
|
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
|
|
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
|
|
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
|
|
tmp1 += z1 + z3;
|
|
tmp2 += z1 + z2;
|
|
|
|
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += DCTSIZE; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 7x14 output block.
|
|
*
|
|
* 14-point IDCT in pass 1 (columns), 7-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_7x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26;
|
|
INT32 z1, z2, z3, z4;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[7*14]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array.
|
|
* 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28).
|
|
*/
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
z1 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */
|
|
z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */
|
|
z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */
|
|
|
|
tmp10 = z1 + z2;
|
|
tmp11 = z1 + z3;
|
|
tmp12 = z1 - z4;
|
|
|
|
tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */
|
|
CONST_BITS-PASS1_BITS);
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
|
|
z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */
|
|
|
|
tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */
|
|
tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */
|
|
tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */
|
|
MULTIPLY(z2, FIX(1.378756276)); /* c2 */
|
|
|
|
tmp20 = tmp10 + tmp13;
|
|
tmp26 = tmp10 - tmp13;
|
|
tmp21 = tmp11 + tmp14;
|
|
tmp25 = tmp11 - tmp14;
|
|
tmp22 = tmp12 + tmp15;
|
|
tmp24 = tmp12 - tmp15;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
tmp13 = z4 << CONST_BITS;
|
|
|
|
tmp14 = z1 + z3;
|
|
tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */
|
|
tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */
|
|
tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */
|
|
tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */
|
|
tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */
|
|
z1 -= z2;
|
|
tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */
|
|
tmp16 += tmp15;
|
|
z1 += z4;
|
|
z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */
|
|
tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */
|
|
tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */
|
|
z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */
|
|
tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */
|
|
tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */
|
|
|
|
tmp13 = (z1 - z3) << PASS1_BITS;
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[7*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*3] = (int) (tmp23 + tmp13);
|
|
wsptr[7*10] = (int) (tmp23 - tmp13);
|
|
wsptr[7*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS);
|
|
wsptr[7*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 14 rows from work array, store into output array.
|
|
* 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14).
|
|
*/
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 14; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp23 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp23 <<= CONST_BITS;
|
|
|
|
z1 = (INT32) wsptr[2];
|
|
z2 = (INT32) wsptr[4];
|
|
z3 = (INT32) wsptr[6];
|
|
|
|
tmp20 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */
|
|
tmp22 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */
|
|
tmp21 = tmp20 + tmp22 + tmp23 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */
|
|
tmp10 = z1 + z3;
|
|
z2 -= tmp10;
|
|
tmp10 = MULTIPLY(tmp10, FIX(1.274162392)) + tmp23; /* c2 */
|
|
tmp20 += tmp10 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */
|
|
tmp22 += tmp10 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */
|
|
tmp23 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
|
|
tmp11 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */
|
|
tmp12 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */
|
|
tmp10 = tmp11 - tmp12;
|
|
tmp11 += tmp12;
|
|
tmp12 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */
|
|
tmp11 += tmp12;
|
|
z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */
|
|
tmp10 += z2;
|
|
tmp12 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 7; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 6x12 output block.
|
|
*
|
|
* 12-point IDCT in pass 1 (columns), 6-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_6x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25;
|
|
INT32 z1, z2, z3, z4;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[6*12]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array.
|
|
* 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24).
|
|
*/
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
z3 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
z3 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */
|
|
|
|
tmp10 = z3 + z4;
|
|
tmp11 = z3 - z4;
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */
|
|
z1 <<= CONST_BITS;
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
z2 <<= CONST_BITS;
|
|
|
|
tmp12 = z1 - z2;
|
|
|
|
tmp21 = z3 + tmp12;
|
|
tmp24 = z3 - tmp12;
|
|
|
|
tmp12 = z4 + z2;
|
|
|
|
tmp20 = tmp10 + tmp12;
|
|
tmp25 = tmp10 - tmp12;
|
|
|
|
tmp12 = z4 - z1 - z2;
|
|
|
|
tmp22 = tmp11 + tmp12;
|
|
tmp23 = tmp11 - tmp12;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
|
|
tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */
|
|
tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */
|
|
|
|
tmp10 = z1 + z3;
|
|
tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */
|
|
tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */
|
|
tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */
|
|
tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */
|
|
tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */
|
|
tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */
|
|
tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */
|
|
MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */
|
|
|
|
z1 -= z4;
|
|
z2 -= z3;
|
|
z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */
|
|
tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */
|
|
tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[6*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS);
|
|
wsptr[6*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 12 rows from work array, store into output array.
|
|
* 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
|
|
*/
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 12; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp10 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp10 <<= CONST_BITS;
|
|
tmp12 = (INT32) wsptr[4];
|
|
tmp20 = MULTIPLY(tmp12, FIX(0.707106781)); /* c4 */
|
|
tmp11 = tmp10 + tmp20;
|
|
tmp21 = tmp10 - tmp20 - tmp20;
|
|
tmp20 = (INT32) wsptr[2];
|
|
tmp10 = MULTIPLY(tmp20, FIX(1.224744871)); /* c2 */
|
|
tmp20 = tmp11 + tmp10;
|
|
tmp22 = tmp11 - tmp10;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = (INT32) wsptr[1];
|
|
z2 = (INT32) wsptr[3];
|
|
z3 = (INT32) wsptr[5];
|
|
tmp11 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
|
|
tmp10 = tmp11 + ((z1 + z2) << CONST_BITS);
|
|
tmp12 = tmp11 + ((z3 - z2) << CONST_BITS);
|
|
tmp11 = (z1 - z2 - z3) << CONST_BITS;
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 6; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 5x10 output block.
|
|
*
|
|
* 10-point IDCT in pass 1 (columns), 5-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_5x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
|
|
INT32 tmp20, tmp21, tmp22, tmp23, tmp24;
|
|
INT32 z1, z2, z3, z4, z5;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[5*10]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array.
|
|
* 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20).
|
|
*/
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
z3 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
z3 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */
|
|
z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */
|
|
tmp10 = z3 + z1;
|
|
tmp11 = z3 - z2;
|
|
|
|
tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */
|
|
CONST_BITS-PASS1_BITS);
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */
|
|
tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */
|
|
tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */
|
|
|
|
tmp20 = tmp10 + tmp12;
|
|
tmp24 = tmp10 - tmp12;
|
|
tmp21 = tmp11 + tmp13;
|
|
tmp23 = tmp11 - tmp13;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
|
|
tmp11 = z2 + z4;
|
|
tmp13 = z2 - z4;
|
|
|
|
tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */
|
|
z5 = z3 << CONST_BITS;
|
|
|
|
z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */
|
|
z4 = z5 + tmp12;
|
|
|
|
tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */
|
|
tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */
|
|
|
|
z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */
|
|
z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1));
|
|
|
|
tmp12 = (z1 - tmp13 - z3) << PASS1_BITS;
|
|
|
|
tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */
|
|
tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[5*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[5*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS);
|
|
wsptr[5*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[5*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS);
|
|
wsptr[5*2] = (int) (tmp22 + tmp12);
|
|
wsptr[5*7] = (int) (tmp22 - tmp12);
|
|
wsptr[5*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[5*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS);
|
|
wsptr[5*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS);
|
|
wsptr[5*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 10 rows from work array, store into output array.
|
|
* 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10).
|
|
*/
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 10; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp12 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp12 <<= CONST_BITS;
|
|
tmp13 = (INT32) wsptr[2];
|
|
tmp14 = (INT32) wsptr[4];
|
|
z1 = MULTIPLY(tmp13 + tmp14, FIX(0.790569415)); /* (c2+c4)/2 */
|
|
z2 = MULTIPLY(tmp13 - tmp14, FIX(0.353553391)); /* (c2-c4)/2 */
|
|
z3 = tmp12 + z2;
|
|
tmp10 = z3 + z1;
|
|
tmp11 = z3 - z1;
|
|
tmp12 -= z2 << 2;
|
|
|
|
/* Odd part */
|
|
|
|
z2 = (INT32) wsptr[1];
|
|
z3 = (INT32) wsptr[3];
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */
|
|
tmp13 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */
|
|
tmp14 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp13,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp14,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 5; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 4x8 output block.
|
|
*
|
|
* 8-point IDCT in pass 1 (columns), 4-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp1, tmp2, tmp3;
|
|
INT32 tmp10, tmp11, tmp12, tmp13;
|
|
INT32 z1, z2, z3;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[4*8]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array.
|
|
* Note results are scaled up by sqrt(8) compared to a true IDCT;
|
|
* furthermore, we scale the results by 2**PASS1_BITS.
|
|
* 8-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
|
|
*/
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 4; ctr > 0; ctr--) {
|
|
/* Due to quantization, we will usually find that many of the input
|
|
* coefficients are zero, especially the AC terms. We can exploit this
|
|
* by short-circuiting the IDCT calculation for any column in which all
|
|
* the AC terms are zero. In that case each output is equal to the
|
|
* DC coefficient (with scale factor as needed).
|
|
* With typical images and quantization tables, half or more of the
|
|
* column DCT calculations can be simplified this way.
|
|
*/
|
|
|
|
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
|
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
|
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
|
inptr[DCTSIZE*7] == 0) {
|
|
/* AC terms all zero */
|
|
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
|
|
|
|
wsptr[4*0] = dcval;
|
|
wsptr[4*1] = dcval;
|
|
wsptr[4*2] = dcval;
|
|
wsptr[4*3] = dcval;
|
|
wsptr[4*4] = dcval;
|
|
wsptr[4*5] = dcval;
|
|
wsptr[4*6] = dcval;
|
|
wsptr[4*7] = dcval;
|
|
|
|
inptr++; /* advance pointers to next column */
|
|
quantptr++;
|
|
wsptr++;
|
|
continue;
|
|
}
|
|
|
|
/* Even part: reverse the even part of the forward DCT.
|
|
* The rotator is c(-6).
|
|
*/
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
z2 <<= CONST_BITS;
|
|
z3 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
z2 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
|
|
tmp0 = z2 + z3;
|
|
tmp1 = z2 - z3;
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
|
|
tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
|
|
tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
|
|
|
|
tmp10 = tmp0 + tmp2;
|
|
tmp13 = tmp0 - tmp2;
|
|
tmp11 = tmp1 + tmp3;
|
|
tmp12 = tmp1 - tmp3;
|
|
|
|
/* Odd part per figure 8; the matrix is unitary and hence its
|
|
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
|
|
*/
|
|
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
|
|
z2 = tmp0 + tmp2;
|
|
z3 = tmp1 + tmp3;
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* c3 */
|
|
z2 = MULTIPLY(z2, - FIX_1_961570560); /* -c3-c5 */
|
|
z3 = MULTIPLY(z3, - FIX_0_390180644); /* -c3+c5 */
|
|
z2 += z1;
|
|
z3 += z1;
|
|
|
|
z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */
|
|
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* -c1+c3+c5-c7 */
|
|
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* c1+c3-c5-c7 */
|
|
tmp0 += z1 + z2;
|
|
tmp3 += z1 + z3;
|
|
|
|
z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */
|
|
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* c1+c3-c5+c7 */
|
|
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* c1+c3+c5-c7 */
|
|
tmp1 += z1 + z3;
|
|
tmp2 += z1 + z2;
|
|
|
|
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
|
|
|
|
wsptr[4*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
|
|
wsptr[4*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
|
|
wsptr[4*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[4*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[4*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[4*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
|
|
wsptr[4*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[4*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
|
|
|
|
inptr++; /* advance pointers to next column */
|
|
quantptr++;
|
|
wsptr++;
|
|
}
|
|
|
|
/* Pass 2: process 8 rows from work array, store into output array.
|
|
* 4-point IDCT kernel,
|
|
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
|
|
*/
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 8; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp0 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp2 = (INT32) wsptr[2];
|
|
|
|
tmp10 = (tmp0 + tmp2) << CONST_BITS;
|
|
tmp12 = (tmp0 - tmp2) << CONST_BITS;
|
|
|
|
/* Odd part */
|
|
/* Same rotation as in the even part of the 8x8 LL&M IDCT */
|
|
|
|
z2 = (INT32) wsptr[1];
|
|
z3 = (INT32) wsptr[3];
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
|
|
tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
|
|
tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 4; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a reduced-size 3x6 output block.
|
|
*
|
|
* 6-point IDCT in pass 1 (columns), 3-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_3x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12;
|
|
INT32 z1, z2, z3;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
int * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
int workspace[3*6]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array.
|
|
* 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12).
|
|
*/
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp0 <<= CONST_BITS;
|
|
/* Add fudge factor here for final descale. */
|
|
tmp0 += ONE << (CONST_BITS-PASS1_BITS-1);
|
|
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */
|
|
tmp1 = tmp0 + tmp10;
|
|
tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS);
|
|
tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */
|
|
tmp10 = tmp1 + tmp0;
|
|
tmp12 = tmp1 - tmp0;
|
|
|
|
/* Odd part */
|
|
|
|
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */
|
|
tmp0 = tmp1 + ((z1 + z2) << CONST_BITS);
|
|
tmp2 = tmp1 + ((z3 - z2) << CONST_BITS);
|
|
tmp1 = (z1 - z2 - z3) << PASS1_BITS;
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[3*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS);
|
|
wsptr[3*1] = (int) (tmp11 + tmp1);
|
|
wsptr[3*4] = (int) (tmp11 - tmp1);
|
|
wsptr[3*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS);
|
|
wsptr[3*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS);
|
|
}
|
|
|
|
/* Pass 2: process 6 rows from work array, store into output array.
|
|
* 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6).
|
|
*/
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 6; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp0 = (INT32) wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (PASS1_BITS+3)) +
|
|
(ONE << (PASS1_BITS+2)));
|
|
tmp0 <<= CONST_BITS;
|
|
tmp2 = (INT32) wsptr[2];
|
|
tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */
|
|
tmp10 = tmp0 + tmp12;
|
|
tmp2 = tmp0 - tmp12 - tmp12;
|
|
|
|
/* Odd part */
|
|
|
|
tmp12 = (INT32) wsptr[1];
|
|
tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2,
|
|
CONST_BITS+PASS1_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 3; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 2x4 output block.
|
|
*
|
|
* 4-point IDCT in pass 1 (columns), 2-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_2x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
INT32 tmp0, tmp2, tmp10, tmp12;
|
|
INT32 z1, z2, z3;
|
|
JCOEFPTR inptr;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
INT32 * wsptr;
|
|
JSAMPROW outptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
int ctr;
|
|
INT32 workspace[2*4]; /* buffers data between passes */
|
|
SHIFT_TEMPS
|
|
|
|
/* Pass 1: process columns from input, store into work array.
|
|
* 4-point IDCT kernel,
|
|
* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT].
|
|
*/
|
|
|
|
inptr = coef_block;
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 2; ctr++, inptr++, quantptr++, wsptr++) {
|
|
/* Even part */
|
|
|
|
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
|
|
tmp10 = (tmp0 + tmp2) << CONST_BITS;
|
|
tmp12 = (tmp0 - tmp2) << CONST_BITS;
|
|
|
|
/* Odd part */
|
|
/* Same rotation as in the even part of the 8x8 LL&M IDCT */
|
|
|
|
z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
|
|
z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */
|
|
tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */
|
|
tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */
|
|
|
|
/* Final output stage */
|
|
|
|
wsptr[2*0] = tmp10 + tmp0;
|
|
wsptr[2*3] = tmp10 - tmp0;
|
|
wsptr[2*1] = tmp12 + tmp2;
|
|
wsptr[2*2] = tmp12 - tmp2;
|
|
}
|
|
|
|
/* Pass 2: process 4 rows from work array, store into output array. */
|
|
|
|
wsptr = workspace;
|
|
for (ctr = 0; ctr < 4; ctr++) {
|
|
outptr = output_buf[ctr] + output_col;
|
|
|
|
/* Even part */
|
|
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp10 = wsptr[0] +
|
|
((((INT32) RANGE_CENTER) << (CONST_BITS+3)) +
|
|
(ONE << (CONST_BITS+2)));
|
|
|
|
/* Odd part */
|
|
|
|
tmp0 = wsptr[1];
|
|
|
|
/* Final output stage */
|
|
|
|
outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS+3)
|
|
& RANGE_MASK];
|
|
outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS+3)
|
|
& RANGE_MASK];
|
|
|
|
wsptr += 2; /* advance pointer to next row */
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform dequantization and inverse DCT on one block of coefficients,
|
|
* producing a 1x2 output block.
|
|
*
|
|
* 2-point IDCT in pass 1 (columns), 1-point in pass 2 (rows).
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jpeg_idct_1x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
JCOEFPTR coef_block,
|
|
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
{
|
|
DCTELEM tmp0, tmp1;
|
|
ISLOW_MULT_TYPE * quantptr;
|
|
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
ISHIFT_TEMPS
|
|
|
|
/* Process 1 column from input, store into output array. */
|
|
|
|
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
|
|
|
|
/* Even part */
|
|
|
|
tmp0 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
/* Add range center and fudge factor for final descale and range-limit. */
|
|
tmp0 += (((DCTELEM) RANGE_CENTER) << 3) + (1 << 2);
|
|
|
|
/* Odd part */
|
|
|
|
tmp1 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
|
|
/* Final output stage */
|
|
|
|
output_buf[0][output_col] =
|
|
range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK];
|
|
output_buf[1][output_col] =
|
|
range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK];
|
|
}
|
|
|
|
#endif /* IDCT_SCALING_SUPPORTED */
|
|
#endif /* DCT_ISLOW_SUPPORTED */
|