raze/source/common/utility/quaternion.h

353 lines
8 KiB
C
Raw Normal View History

#pragma once
#include "vectors.h"
template<typename vec_t>
class TQuaternion
{
public:
typedef TVector2<vec_t> Vector2;
typedef TVector3<vec_t> Vector3;
vec_t X, Y, Z, W;
TQuaternion() = default;
TQuaternion(vec_t x, vec_t y, vec_t z, vec_t w)
: X(x), Y(y), Z(z), W(w)
{
}
TQuaternion(vec_t *o)
: X(o[0]), Y(o[1]), Z(o[2]), W(o[3])
{
}
TQuaternion(const TQuaternion &other) = default;
TQuaternion(const Vector3 &v, vec_t s)
: X(v.X), Y(v.Y), Z(v.Z), W(s)
{
}
TQuaternion(const vec_t v[4])
: TQuaternion(v[0], v[1], v[2], v[3])
{
}
void Zero()
{
Z = Y = X = W = 0;
}
bool isZero() const
{
return X == 0 && Y == 0 && Z == 0 && W == 0;
}
TQuaternion &operator= (const TQuaternion &other) = default;
// Access X and Y and Z as an array
vec_t &operator[] (int index)
{
return (&X)[index];
}
const vec_t &operator[] (int index) const
{
return (&X)[index];
}
// Test for equality
bool operator== (const TQuaternion &other) const
{
return X == other.X && Y == other.Y && Z == other.Z && W == other.W;
}
// Test for inequality
bool operator!= (const TQuaternion &other) const
{
return X != other.X || Y != other.Y || Z != other.Z || W != other.W;
}
// returns the XY fields as a 2D-vector.
const Vector2& XY() const
{
return *reinterpret_cast<const Vector2*>(this);
}
Vector2& XY()
{
return *reinterpret_cast<Vector2*>(this);
}
// returns the XY fields as a 2D-vector.
const Vector3& XYZ() const
{
return *reinterpret_cast<const Vector3*>(this);
}
Vector3& XYZ()
{
return *reinterpret_cast<Vector3*>(this);
}
// Test for approximate equality
bool ApproximatelyEquals(const TQuaternion &other) const
{
return fabs(X - other.X) < EQUAL_EPSILON && fabs(Y - other.Y) < EQUAL_EPSILON && fabs(Z - other.Z) < EQUAL_EPSILON && fabs(W - other.W) < EQUAL_EPSILON;
}
// Test for approximate inequality
bool DoesNotApproximatelyEqual(const TQuaternion &other) const
{
return fabs(X - other.X) >= EQUAL_EPSILON || fabs(Y - other.Y) >= EQUAL_EPSILON || fabs(Z - other.Z) >= EQUAL_EPSILON || fabs(W - other.W) >= EQUAL_EPSILON;
}
// Unary negation
TQuaternion operator- () const
{
return TQuaternion(-X, -Y, -Z, -W);
}
// Scalar addition
TQuaternion &operator+= (vec_t scalar)
{
X += scalar, Y += scalar, Z += scalar; W += scalar;
return *this;
}
friend TQuaternion operator+ (const TQuaternion &v, vec_t scalar)
{
return TQuaternion(v.X + scalar, v.Y + scalar, v.Z + scalar, v.W + scalar);
}
friend TQuaternion operator+ (vec_t scalar, const TQuaternion &v)
{
return TQuaternion(v.X + scalar, v.Y + scalar, v.Z + scalar, v.W + scalar);
}
// Scalar subtraction
TQuaternion &operator-= (vec_t scalar)
{
X -= scalar, Y -= scalar, Z -= scalar, W -= scalar;
return *this;
}
TQuaternion operator- (vec_t scalar) const
{
return TQuaternion(X - scalar, Y - scalar, Z - scalar, W - scalar);
}
// Scalar multiplication
TQuaternion &operator*= (vec_t scalar)
{
X = vec_t(X *scalar), Y = vec_t(Y * scalar), Z = vec_t(Z * scalar), W = vec_t(W * scalar);
return *this;
}
friend TQuaternion operator* (const TQuaternion &v, vec_t scalar)
{
return TQuaternion(v.X * scalar, v.Y * scalar, v.Z * scalar, v.W * scalar);
}
friend TQuaternion operator* (vec_t scalar, const TQuaternion &v)
{
return TQuaternion(v.X * scalar, v.Y * scalar, v.Z * scalar, v.W * scalar);
}
// Scalar division
TQuaternion &operator/= (vec_t scalar)
{
scalar = 1 / scalar, X = vec_t(X * scalar), Y = vec_t(Y * scalar), Z = vec_t(Z * scalar), W = vec_t(W * scalar);
return *this;
}
TQuaternion operator/ (vec_t scalar) const
{
scalar = 1 / scalar;
return TQuaternion(X * scalar, Y * scalar, Z * scalar, W * scalar);
}
// Vector addition
TQuaternion &operator+= (const TQuaternion &other)
{
X += other.X, Y += other.Y, Z += other.Z, W += other.W;
return *this;
}
TQuaternion operator+ (const TQuaternion &other) const
{
return TQuaternion(X + other.X, Y + other.Y, Z + other.Z, W + other.W);
}
// Vector subtraction
TQuaternion &operator-= (const TQuaternion &other)
{
X -= other.X, Y -= other.Y, Z -= other.Z, W -= other.W;
return *this;
}
TQuaternion operator- (const TQuaternion &other) const
{
return TQuaternion(X - other.X, Y - other.Y, Z - other.Z, W - other.W);
}
// Quaternion length
double Length() const
{
return g_sqrt(X*X + Y*Y + Z*Z + W*W);
}
double LengthSquared() const
{
return X*X + Y*Y + Z*Z + W*W;
}
double Sum() const
{
return abs(X) + abs(Y) + abs(Z) + abs(W);
}
// Return a unit vector facing the same direction as this one
TQuaternion Unit() const
{
double len = Length();
if (len != 0) len = 1 / len;
return *this * (vec_t)len;
}
// Scales this vector into a unit vector
void MakeUnit()
{
double len = Length();
if (len != 0) len = 1 / len;
*this *= (vec_t)len;
}
// Resizes this vector to be the specified length (if it is not 0)
TQuaternion &MakeResize(double len)
{
double vlen = Length();
if (vlen != 0.)
{
double scale = len / vlen;
X = vec_t(X * scale);
Y = vec_t(Y * scale);
Z = vec_t(Z * scale);
W = vec_t(W * scale);
}
return *this;
}
TQuaternion Resized(double len) const
{
double vlen = Length();
if (vlen != 0.)
{
double scale = len / vlen;
return{ vec_t(X * scale), vec_t(Y * scale), vec_t(Z * scale), vec_t(W * scale) };
}
else
{
return *this;
}
}
// Dot product
vec_t operator | (const TQuaternion &other) const
{
return X*other.X + Y*other.Y + Z*other.Z + W*other.W;
}
vec_t dot(const TQuaternion &other) const
{
return X*other.X + Y*other.Y + Z*other.Z + W*other.W;
}
TQuaternion& operator*= (const TQuaternion& q)
{
*this = *this * q;
return *this;
}
friend TQuaternion<vec_t> operator* (const TQuaternion<vec_t>& q1, const TQuaternion<vec_t>& q2)
{
return TQuaternion(
q1.W * q2.X + q1.X * q2.W + q1.Y * q2.Z - q1.Z * q2.Y,
q1.W * q2.Y - q1.X * q2.Z + q1.Y * q2.W + q1.Z * q2.X,
q1.W * q2.Z + q1.X * q2.Y - q1.Y * q2.X + q1.Z * q2.W,
q1.W * q2.W - q1.X * q2.X - q1.Y * q2.Y - q1.Z * q2.Z
);
}
// Rotate Vector3 by Quaternion q
friend TVector3<vec_t> operator* (const TQuaternion<vec_t>& q, const TVector3<vec_t>& v)
{
auto r = TQuaternion({ v.X, v.Y, v.Z, 0 }) * TQuaternion({ -q.X, -q.Y, -q.Z, q.W });
r = q * r;
return TVector3(r.X, r.Y, r.Z);
}
TQuaternion<vec_t> Conjugate()
{
return TQuaternion(-X, -Y, -Z, +W);
}
TQuaternion<vec_t> Inverse()
{
return Conjugate() / LengthSquared();
}
static TQuaternion<vec_t> AxisAngle(TVector3<vec_t> axis, TAngle<vec_t> angle)
{
auto lengthSquared = axis.LengthSquared();
auto halfAngle = angle * 0.5;
auto sinTheta = halfAngle.Sin();
auto cosTheta = halfAngle.Cos();
auto factor = sinTheta / g_sqrt(lengthSquared);
TQuaternion<vec_t> ret;
ret.W = cosTheta;
ret.XYZ() = factor * axis;
return ret;
}
static TQuaternion<vec_t> FromAngles(TAngle<vec_t> yaw, TAngle<vec_t> pitch, TAngle<vec_t> roll)
{
auto zRotation = TQuaternion::AxisAngle(Vector3(vec_t{0.0}, vec_t{0.0}, vec_t{1.0}), yaw);
auto yRotation = TQuaternion::AxisAngle(Vector3(vec_t{0.0}, vec_t{1.0}, vec_t{0.0}), pitch);
auto xRotation = TQuaternion::AxisAngle(Vector3(vec_t{1.0}, vec_t{0.0}, vec_t{0.0}), roll);
return zRotation * yRotation * xRotation;
}
static TQuaternion<vec_t> NLerp(TQuaternion<vec_t> from, TQuaternion<vec_t> to, vec_t t)
{
return (from * (vec_t{1.0} - t) + to * t).Unit();
}
static TQuaternion<vec_t> SLerp(TQuaternion<vec_t> from, TQuaternion<vec_t> to, vec_t t)
{
auto dot = from.dot(to);
const auto dotThreshold = vec_t{0.9995};
if (dot < vec_t{0.0})
{
to = -to;
dot = -dot;
}
if (dot > dotThreshold)
{
return NLerp(from, to, t);
}
else
{
auto robustDot = clamp(dot, vec_t{-1.0}, vec_t{1.0});
auto theta = TAngle<vec_t>::fromRad(g_acos(robustDot));
auto scale0 = (theta * (vec_t{1.0} - t)).Sin();
auto scale1 = (theta * t).Sin();
return (from * scale0 + to * scale1).Unit();
}
}
};
typedef TQuaternion<float> FQuaternion;
typedef TQuaternion<double> DQuaternion;