raze/source/core/sectorgeometry.cpp

574 lines
16 KiB
C++
Raw Normal View History

/*
/*
** sectorgeometry.cpp
**
** caches the triangle meshes used for rendering sector planes.
**
**---------------------------------------------------------------------------
** Copyright 2021 Christoph Oelckers
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
**
*/
#include "sectorgeometry.h"
#include "build.h"
#include "gamefuncs.h"
#include "texturemanager.h"
#include "earcut.hpp"
#include "hw_sections2.h"
#include "tesselator.h"
#include "nodebuilder/nodebuild.h"
SectorGeometry sectorGeometry;
SectionGeometry sectionGeometry;
//==========================================================================
//
// CalcPlane fixme - this should be stored in the sector, not be recalculated each frame.
//
//==========================================================================
static FVector3 CalcNormal(sectortype* sector, int plane)
{
FVector3 pt[3];
auto wal = sector->firstWall();
auto wal2 = wal->point2Wall();
pt[0] = { (float)WallStartX(wal), (float)WallStartY(wal), 0 };
pt[1] = { (float)WallEndX(wal), (float)WallEndY(wal), 0 };
PlanesAtPoint(sector, wal->x, wal->y, plane ? &pt[0].Z : nullptr, plane? nullptr : &pt[0].Z);
PlanesAtPoint(sector, wal2->x, wal2->y, plane ? &pt[1].Z : nullptr, plane ? nullptr : &pt[1].Z);
if (pt[0].X == pt[1].X)
{
if (pt[0].Y == pt[1].Y) return { 0.f, 0.f, plane ? -1.f : 1.f };
pt[2].X = pt[0].X + 4;
pt[2].Y = pt[0].Y;
}
else
{
pt[2].X = pt[0].X;
pt[2].Y = pt[0].Y + 4;
}
PlanesAtPoint(sector, pt[2].X * 16, pt[2].Y * 16, plane ? &pt[2].Z : nullptr, plane ? nullptr : &pt[2].Z);
auto normal = (pt[2] - pt[0]) ^ (pt[1] - pt[0]);
if ((pt[2].Z < 0 && !plane) || (pt[2].Z > 0 && plane)) return -pt[2];
return pt[2];
}
//==========================================================================
//
// The math used here to calculate texture positioning was derived from
// Polymer but required several fixes for correctness.
//
//==========================================================================
class UVCalculator
{
sectortype* sect;
int myplane;
int stat;
float z1;
int ix1;
int iy1;
int ix2;
int iy2;
float sinalign, cosalign;
FGameTexture* tex;
float xpanning, ypanning;
float xscaled, yscaled;
FVector2 offset;
public:
UVCalculator(sectortype* sec, int plane, FGameTexture* tx, const FVector2& off)
{
float xpan, ypan;
sect = sec;
tex = tx;
myplane = plane;
offset = off;
auto firstwall = sec->firstWall();
ix1 = firstwall->x;
iy1 = firstwall->y;
2021-12-01 23:54:11 +00:00
ix2 = firstwall->point2Wall()->x;
iy2 = firstwall->point2Wall()->y;
if (plane == 0)
{
stat = sec->floorstat;
xpan = sec->floorxpan_;
ypan = sec->floorypan_;
PlanesAtPoint(sec, ix1, iy1, nullptr, &z1);
}
else
{
stat = sec->ceilingstat;
xpan = sec->ceilingxpan_;
ypan = sec->ceilingypan_;
PlanesAtPoint(sec, ix1, iy1, &z1, nullptr);
}
DVector2 dv = { double(ix2 - ix1), -double(iy2 - iy1) };
auto vang = dv.Angle() - 90.;
cosalign = float(vang.Cos());
sinalign = float(vang.Sin());
int pow2width = 1 << sizeToBits((int)tx->GetDisplayWidth());
int pow2height = 1 << sizeToBits((int)tx->GetDisplayHeight());
xpanning = xpan / 256.f;
ypanning = ypan / 256.f;
float scalefactor = (stat & CSTAT_SECTOR_TEXHALF) ? 8.0f : 16.0f;
if ((stat & (CSTAT_SECTOR_SLOPE | CSTAT_SECTOR_ALIGN)) == (CSTAT_SECTOR_ALIGN))
{
// This is necessary to adjust for some imprecisions in the math.
// To calculate the inverse Build performs an integer division with significant loss of precision
// that can cause the texture to be shifted by multiple pixels.
// The code below calculates the amount of this deviation so that it can be added back to the formula.
int len = ksqrt(uhypsq(ix2 - ix1, iy2 - iy1));
if (len != 0)
{
int i = 1048576 / len;
scalefactor *= 1048576.f / (i * len);
}
}
xscaled = scalefactor * pow2width;
yscaled = scalefactor * pow2height;
}
FVector2 GetUV(int x, int y, float z)
{
float tv, tu;
if (stat & CSTAT_SECTOR_ALIGN)
{
float dx = (float)(x - ix1);
float dy = (float)(y - iy1);
tu = -(dx * sinalign + dy * cosalign);
tv = (dx * cosalign - dy * sinalign);
if (stat & CSTAT_SECTOR_SLOPE)
{
float dz = (z - z1) * 16;
float newtv = sqrt(tv * tv + dz * dz);
tv = tv < 0 ? -newtv : newtv;
}
}
else
{
tu = x - offset.X;
tv = -y - offset.Y;
}
if (stat & CSTAT_SECTOR_SWAPXY)
std::swap(tu, tv);
if (stat & CSTAT_SECTOR_XFLIP) tu = -tu;
if (stat & CSTAT_SECTOR_YFLIP) tv = -tv;
return { tu / xscaled + xpanning, tv / yscaled + ypanning };
}
};
enum class ETriangulateResult
{
Ok = 0,
Failed = 1, // unable to triangulate
Invalid = 2, // input data invalid.
};
//==========================================================================
//
// Convert the outline to render coordinates.
//
//==========================================================================
static int OutlineToFloat(Outline& outl, FOutline& polygon)
{
polygon.resize(outl.Size());
unsigned count = 0;
for (unsigned i = 0; i < outl.Size(); i++)
{
polygon[i].resize(outl[i].Size());
count += outl[i].Size();
for (unsigned j = 0; j < outl[i].Size(); j++)
{
float X = RenderX(outl[i][j].x);
float Y = RenderX(outl[i][j].y);
if (fabs(X) > 32768.f || fabs(Y) > 32768.f)
{
// If we get here there's some fuckery going around with the coordinates. Let's better abort and wait for things to realign.
// Do not try alternative methods if this happens.
return -1;
}
polygon[i][j] = { X, Y };
}
}
return count;
}
//==========================================================================
//
// Try to triangulate a given outline with Earcut.
//
//==========================================================================
ETriangulateResult TriangulateOutlineEarcut(const FOutline& polygon, int count, TArray<FVector2>& points, TArray<int>& indicesOut)
{
// Sections are already validated so we can assume that the data is well defined here.
auto indices = mapbox::earcut(polygon);
if (indices.size() < 3 * count)
{
// this means that full triangulation failed.
return ETriangulateResult::Failed;
}
points.Resize(count);
int p = 0;
for (size_t a = 0; a < polygon.size(); a++)
{
for (auto& pt : polygon[a])
{
points[p++] = { pt.first, pt.second };
}
}
indicesOut.Resize(count * 3);
for (unsigned i = 0; i < indices.size(); i++)
{
indicesOut[i] = indices[i];
}
return ETriangulateResult::Ok;
}
//==========================================================================
//
// Try to triangulate a given outline with libtess2.
//
//==========================================================================
ETriangulateResult TriangulateOutlineLibtess(const FOutline& polygon, int count, TArray<FVector2>& points, TArray<int>& indicesOut)
{
FMemArena tessArena(100000);
auto poolAlloc = [](void* userData, unsigned int size) -> void*
{
FMemArena* pool = (FMemArena*)userData;
return pool->Alloc(size);
};
auto poolFree = [](void*, void*)
{
};
TESSalloc ma{};
ma.memalloc = poolAlloc;
ma.memfree = poolFree;
ma.userData = (void*)&tessArena;
ma.extraVertices = 256; // realloc not provided, allow 256 extra vertices.
auto tess = tessNewTess(&ma);
if (!tess)
return ETriangulateResult::Failed;
//tessSetOption(tess, TESS_CONSTRAINED_DELAUNAY_TRIANGULATION, 1);
// Add contours.
for (auto& loop : polygon)
tessAddContour(tess, 2, &loop.data()->first, (int)sizeof(*loop.data()), loop.size());
int result = tessTesselate(tess, TESS_WINDING_POSITIVE, TESS_POLYGONS, 3, 2, 0);
if (!result)
{
tessDeleteTess(tess);
return ETriangulateResult::Failed;
}
const float* verts = tessGetVertices(tess);
const int* vinds = tessGetVertexIndices(tess);
const int* elems = tessGetElements(tess);
const int nverts = tessGetVertexCount(tess);
const int nelems = tessGetElementCount(tess);
points.Resize(nverts);
indicesOut.Resize(nelems);
for (int i = 0; i < nverts; i++)
{
points[i] = { verts[i * 2], verts[i * 2 + 1] };
}
for (int i = 0; i < nelems; i++)
{
indicesOut[i] = elems[i];
}
return ETriangulateResult::Ok;
}
//==========================================================================
//
// Try to triangulate a given outline with the ZDoom node builder.
//
//==========================================================================
ETriangulateResult TriangulateOutlineNodeBuild(const FOutline& polygon, int count, TArray<FVector2>& points, TArray<int>& indicesOut)
{
TArray<vertex_t> vertexes(count, true);
TArray<line_t> lines(count, true);
TArray<side_t> sides(count, true);
sectortype dummy;
int n = 0;
for (size_t i = 0; i < polygon.size(); i++)
{
int firstn = n;
for (size_t j = 0; j < polygon[i].size(); i++)
{
vertexes[n].set(polygon[i][j].first, polygon[i][j].second);
lines[n].backsector = nullptr;
lines[n].frontsector = &dummy;
lines[n].linenum = (int)j;
lines[n].wallnum = n;
lines[n].sidedef[0] = &sides[n];
lines[n].sidedef[1] = nullptr;
lines[n].v1 = &vertexes[n];
lines[n].v2 = j == polygon[i].size() ? &vertexes[firstn] : &vertexes[n + 1];
sides[n].sidenum = n;
sides[n].sector = &dummy;
}
}
FNodeBuilder::FLevel leveldata =
{
&vertexes[0], count,
&sides[0], count,
&lines[0], count,
0, 0, 0, 0
};
leveldata.FindMapBounds();
FNodeBuilder builder(leveldata);
FLevelLocals Level;
builder.Extract(Level);
points.Resize(Level.vertexes.Size());
for (unsigned i = 0; i < Level.vertexes.Size(); i++)
{
points[i] = { (float)Level.vertexes[i].fX(), (float)Level.vertexes[i].fY() };
}
indicesOut.Clear();
for (auto& sub : Level.subsectors)
{
if (sub.numlines <= 2) continue;
auto v0 = Level.vertexes.IndexOf(sub.firstline->v1);
for (unsigned i = 1; i < sub.numlines - 1; i++)
{
auto v1 = Level.vertexes.IndexOf(sub.firstline->v1);
auto v2 = Level.vertexes.IndexOf(sub.firstline->v2);
indicesOut.Push(v0);
indicesOut.Push(v1);
indicesOut.Push(v2);
}
}
return ETriangulateResult::Ok;
}
//==========================================================================
//
//
//
//==========================================================================
bool SectionGeometry::ValidateSection(Section2* section, int plane)
{
auto sec = section->sector;
auto& sdata = data[section->index];
auto compare = &sdata.compare[plane];
if (plane == 0)
{
if (sec->floorheinum == compare->floorheinum &&
sec->floorpicnum == compare->floorpicnum &&
((sec->floorstat ^ compare->floorstat) & (CSTAT_SECTOR_ALIGN | CSTAT_SECTOR_YFLIP | CSTAT_SECTOR_XFLIP | CSTAT_SECTOR_TEXHALF | CSTAT_SECTOR_SWAPXY)) == 0 &&
sec->floorxpan_ == compare->floorxpan_ &&
sec->floorypan_ == compare->floorypan_ &&
sec->firstWall()->pos == sdata.poscompare[0] &&
sec->firstWall()->point2Wall()->pos == sdata.poscompare2[0] &&
!(sdata.dirty & EDirty::FloorDirty) && sdata.planes[plane].vertices.Size() ) return true;
sdata.dirty &= EDirty::FloorDirty;
}
else
{
if (sec->ceilingheinum == compare->ceilingheinum &&
sec->ceilingpicnum == compare->ceilingpicnum &&
((sec->ceilingstat ^ compare->ceilingstat) & (CSTAT_SECTOR_ALIGN | CSTAT_SECTOR_YFLIP | CSTAT_SECTOR_XFLIP | CSTAT_SECTOR_TEXHALF | CSTAT_SECTOR_SWAPXY)) == 0 &&
sec->ceilingxpan_ == compare->ceilingxpan_ &&
sec->ceilingypan_ == compare->ceilingypan_ &&
sec->firstWall()->pos == sdata.poscompare[1] &&
sec->firstWall()->point2Wall()->pos == sdata.poscompare2[1] &&
!(sdata.dirty & EDirty::CeilingDirty) && sdata.planes[1].vertices.Size()) return true;
sdata.dirty &= ~EDirty::CeilingDirty;
}
*compare = *sec;
sdata.poscompare[plane] = sec->firstWall()->pos;
sdata.poscompare2[plane] = sec->firstWall()->point2Wall()->pos;
return false;
}
//==========================================================================
//
//
//
//==========================================================================
bool SectionGeometry::CreateMesh(Section2* section)
{
auto outline = BuildOutline(section);
FOutline foutline;
int count = OutlineToFloat(outline, foutline);
if (count == -1) return false; // gotta wait...
TArray<FVector2> meshVertices;
TArray<int> meshIndices;
ETriangulateResult result = ETriangulateResult::Failed;
auto& sdata = data[section->index];
if (!(section->flags & NoEarcut))
{
result = TriangulateOutlineEarcut(foutline, count, sdata.meshVertices, sdata.meshIndices);
}
if (result == ETriangulateResult::Failed && !(section->flags & NoLibtess))
{
section->flags |= NoEarcut;
result = TriangulateOutlineLibtess(foutline, count, sdata.meshVertices, sdata.meshIndices);
}
if (result == ETriangulateResult::Failed)
{
section->flags |= NoLibtess;
result = TriangulateOutlineNodeBuild(foutline, count, sdata.meshVertices, meshIndices);
}
section->flags &= ~EDirty::GeometryDirty;
return true;
}
//==========================================================================
//
// assumes that the geometry has already been validated.
//
//==========================================================================
void SectionGeometry::CreatePlaneMesh(Section2* section, int plane, const FVector2& offset)
{
auto sectorp = section->sector;
// calculate the rest.
auto texture = tileGetTexture(plane ? sectorp->ceilingpicnum : sectorp->floorpicnum);
auto& sdata = data[section->index];
auto& entry = sdata.planes[plane];
int fz = sectorp->floorz, cz = sectorp->ceilingz;
sectorp->floorz = sectorp->ceilingz = 0;
UVCalculator uvcalc(sectorp, plane, texture, offset);
entry.vertices.Resize(sdata.meshVertices.Size());
entry.texcoords.Resize(entry.vertices.Size());
for (unsigned i = 0; i < entry.vertices.Size(); i++)
{
auto& org = sdata.meshVertices[i];
auto& pt = entry.vertices[i];
auto& tc = entry.texcoords[i];
pt.XY() = org;
PlanesAtPoint(sectorp, (pt.X * 16), (pt.Y * -16), plane ? &pt.Z : nullptr, !plane ? &pt.Z : nullptr);
tc = uvcalc.GetUV(int(pt.X * 16.), int(pt.Y * -16.), pt.Z);
}
entry.normal = CalcNormal(sectorp, plane);
sectorp->floorz = fz;
sectorp->ceilingz = cz;
}
//==========================================================================
//
//
//
//==========================================================================
void SectionGeometry::MarkDirty(sectortype* sector)
{
for (auto section : sections2PerSector[sectnum(sector)])
{
data[section->index].dirty = sector->dirty;
}
sector->dirty = 0;
}
//==========================================================================
//
//
//
//==========================================================================
SectionGeometryPlane* SectionGeometry::get(Section2* section, int plane, const FVector2& offset, TArray<int>** pIndices)
{
if (!section || section->index >= data.Size()) return nullptr;
auto sectp = section->sector;
if (sectp->dirty) MarkDirty(sectp);
if (section->flags & EDirty::GeometryDirty)
{
bool res = CreateMesh(section);
if (!res)
{
section->flags &= ~EDirty::GeometryDirty; // sector is in an invalid state, so pretend the old setup is still valid. Happens in some SW maps.
}
}
if (!ValidateSection(section, plane))
{
CreatePlaneMesh(section, plane, offset);
}
*pIndices = &data[section->index].meshIndices;
return &data[section->index].planes[plane];
}