raze/source/core/rendering/hw_vertexmap.cpp

188 lines
5.8 KiB
C++
Raw Normal View History

/*
** gl_vertexmap.cpp
** Vertex management for precise wall rendering.
**
**---------------------------------------------------------------------------
** Copyright 2021-2022 Christoph Oelckers
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
**
*/
#include "maptypes.h"
#include "memarena.h"
#include "gamefuncs.h"
#include "hw_vertexmap.h"
extern FMemArena sectionArena; // allocate from the same arena as the sections as the data here has the same lifetime.
TArray<int> vertexMap; // maps walls to the vertex data.
TArray<vertex_t> vertices;
TArray<TArrayView<int>> verticespersector;
void CreateVertexMap()
{
BitArray processed(wall.Size());
processed.Zero();
TArray<int> walls;
TArray<int> sectors;
TArray<int> countpersector(sector.Size(), true);
vertices.Clear();
vertexMap.Resize(wall.Size());
verticespersector.Resize(sector.Size());
for (auto& c : countpersector) c = 0;
for (auto& c : vertexMap) c = -1;
for (unsigned i = 0; i < wall.Size(); i++)
{
if (processed[i]) continue;
walls.Clear();
sectors.Clear();
vertexscan(&wall[i], [&](walltype* wal)
{
int w = wallindex(wal);
if (processed[w]) return; // broken wall setups can trigger this.
walls.Push(w);
processed.Set(w);
if ((unsigned)wal->sector < sector.Size() && !sectors.Contains(wal->sector))
{
sectors.Push(wal->sector);
countpersector[wal->sector]++;
}
});
unsigned index = vertices.Reserve(1);
auto newvert = &vertices.Last();
newvert->masterwall = walls[0];
newvert->viewangle = 0;
newvert->angletime = 0;
newvert->dirty = true;
newvert->numheights = 0;
for (auto w : walls)
{
vertexMap[w] = index;
}
// allocate all data within this struct from the arena to simplify memory management.
auto sect = (int*)sectionArena.Alloc(sectors.Size() * sizeof(int));
newvert->sectors.Set(sect, sectors.Size());
memcpy(sect, sectors.Data(), sectors.Size() * sizeof(int));
auto wals = (int*)sectionArena.Alloc(walls.Size() * sizeof(int));
newvert->walls.Set(wals, walls.Size());
memcpy(wals, walls.Data(), walls.Size() * sizeof(int));
// 2x number of sectors is currently the upper bound for the number of associated heights.
newvert->heightlist = (float*)sectionArena.Alloc(sectors.Size() * sizeof(float));
// create the inverse map to assign vertices to sectors. This is needed by the dirty marking code.
for (unsigned ii = 0; ii < sector.Size(); ii++)
{
auto sdata = (int*)sectionArena.Alloc(countpersector[ii] * sizeof(int));
verticespersector[ii].Set(sdata, countpersector[ii]);
countpersector[ii] = 0;
}
for (unsigned ii = 0; ii < vertices.Size(); ii++)
{
for (auto sec : vertices[ii].sectors)
{
verticespersector[sec][countpersector[sec]++] = ii;
}
}
}
#if 0
for (unsigned i = 0; i < vertices.Size(); i++)
{
Printf("Vertex %d at (%2.3f, %2.3f)\n", i, wall[vertices[i].masterwall].pos.X / 16., wall[vertices[i].masterwall].pos.Y / -16.);
Printf(" Walls: ");
for (auto wal : vertices[i].walls) Printf("%d ", wal);
Printf("\n");
Printf(" Sectors: ");
for (auto wal : vertices[i].sectors) Printf("%d ", wal);
Printf("\n");
}
#endif
}
//==========================================================================
//
//
//
//==========================================================================
void MarkVerticesForSector(int sector)
{
for (auto vert : verticespersector[sector])
{
vertices[vert].dirty = true;
}
}
//==========================================================================
//
// Recalculate all heights affecting this vertex.
//
//==========================================================================
void vertex_t::RecalcVertexHeights()
{
numheights = 0;
dirty = false;
if (sectors.Size() == 1) return; // no need to bother
for (auto& sect : sectors)
{
float heights[2];
auto point = wall[masterwall].pos;
PlanesAtPoint(&sector[sect], (float)point.X, (float)point.Y, &heights[0], &heights[1]);
for(auto height : heights)
{
int k;
for ( k = 0; k < numheights; k++)
{
if (height == heightlist[k]) break;
if (height < heightlist[k])
{
memmove(&heightlist[k + 1], &heightlist[k], sizeof(float) * (numheights - k));
heightlist[k] = height;
numheights++;
break;
}
}
if (k == numheights) heightlist[numheights++] = height;
}
}
if (numheights <= 2) numheights = 0; // is not in need of any special attention
}