qvr/app/jni/mod_skeletal_animatevertices_generic.c
2016-01-29 22:43:55 +00:00

136 lines
4.8 KiB
C

#include "mod_skeletal_animatevertices_generic.h"
void Mod_Skeletal_AnimateVertices_Generic(const dp_model_t * RESTRICT model, const frameblend_t * RESTRICT frameblend, const skeleton_t *skeleton, float * RESTRICT vertex3f, float * RESTRICT normal3f, float * RESTRICT svector3f, float * RESTRICT tvector3f)
{
// vertex weighted skeletal
int i, k;
float *bonepose;
float *boneposerelative;
const blendweights_t * RESTRICT weights;
//unsigned long long ts = rdtsc();
bonepose = (float *) Mod_Skeletal_AnimateVertices_AllocBuffers(sizeof(float[12]) * (model->num_bones*2 + model->surfmesh.num_blends));
boneposerelative = bonepose + model->num_bones * 12;
Mod_Skeletal_BuildTransforms(model, frameblend, skeleton, bonepose, boneposerelative);
// generate matrices for all blend combinations
weights = model->surfmesh.data_blendweights;
for (i = 0;i < model->surfmesh.num_blends;i++, weights++)
{
float * RESTRICT b = boneposerelative + 12 * (model->num_bones + i);
const float * RESTRICT m = boneposerelative + 12 * (unsigned int)weights->index[0];
float f = weights->influence[0] * (1.0f / 255.0f);
b[ 0] = f*m[ 0]; b[ 1] = f*m[ 1]; b[ 2] = f*m[ 2]; b[ 3] = f*m[ 3];
b[ 4] = f*m[ 4]; b[ 5] = f*m[ 5]; b[ 6] = f*m[ 6]; b[ 7] = f*m[ 7];
b[ 8] = f*m[ 8]; b[ 9] = f*m[ 9]; b[10] = f*m[10]; b[11] = f*m[11];
for (k = 1;k < 4 && weights->influence[k];k++)
{
m = boneposerelative + 12 * (unsigned int)weights->index[k];
f = weights->influence[k] * (1.0f / 255.0f);
b[ 0] += f*m[ 0]; b[ 1] += f*m[ 1]; b[ 2] += f*m[ 2]; b[ 3] += f*m[ 3];
b[ 4] += f*m[ 4]; b[ 5] += f*m[ 5]; b[ 6] += f*m[ 6]; b[ 7] += f*m[ 7];
b[ 8] += f*m[ 8]; b[ 9] += f*m[ 9]; b[10] += f*m[10]; b[11] += f*m[11];
}
}
#define LOAD_MATRIX_SCALAR() const float * RESTRICT m = boneposerelative + 12 * (unsigned int)*b
#define LOAD_MATRIX3() \
LOAD_MATRIX_SCALAR()
#define LOAD_MATRIX4() \
LOAD_MATRIX_SCALAR()
#define TRANSFORM_POSITION_SCALAR(in, out) \
(out)[0] = ((in)[0] * m[0] + (in)[1] * m[1] + (in)[2] * m[ 2] + m[3]); \
(out)[1] = ((in)[0] * m[4] + (in)[1] * m[5] + (in)[2] * m[ 6] + m[7]); \
(out)[2] = ((in)[0] * m[8] + (in)[1] * m[9] + (in)[2] * m[10] + m[11]);
#define TRANSFORM_VECTOR_SCALAR(in, out) \
(out)[0] = ((in)[0] * m[0] + (in)[1] * m[1] + (in)[2] * m[ 2]); \
(out)[1] = ((in)[0] * m[4] + (in)[1] * m[5] + (in)[2] * m[ 6]); \
(out)[2] = ((in)[0] * m[8] + (in)[1] * m[9] + (in)[2] * m[10]);
#define TRANSFORM_POSITION(in, out) \
TRANSFORM_POSITION_SCALAR(in, out)
#define TRANSFORM_VECTOR(in, out) \
TRANSFORM_VECTOR_SCALAR(in, out)
// transform vertex attributes by blended matrices
if (vertex3f)
{
const float * RESTRICT v = model->surfmesh.data_vertex3f;
const unsigned short * RESTRICT b = model->surfmesh.blends;
// special case common combinations of attributes to avoid repeated loading of matrices
if (normal3f)
{
const float * RESTRICT n = model->surfmesh.data_normal3f;
if (svector3f && tvector3f)
{
const float * RESTRICT sv = model->surfmesh.data_svector3f;
const float * RESTRICT tv = model->surfmesh.data_tvector3f;
// Note that for SSE each iteration stores one element past end, so we break one vertex short
// and handle that with scalars in that case
for (i = 0; i < model->surfmesh.num_vertices; i++, v += 3, n += 3, sv += 3, tv += 3, b++,
vertex3f += 3, normal3f += 3, svector3f += 3, tvector3f += 3)
{
LOAD_MATRIX4();
TRANSFORM_POSITION(v, vertex3f);
TRANSFORM_VECTOR(n, normal3f);
TRANSFORM_VECTOR(sv, svector3f);
TRANSFORM_VECTOR(tv, tvector3f);
}
return;
}
for (i = 0;i < model->surfmesh.num_vertices; i++, v += 3, n += 3, b++, vertex3f += 3, normal3f += 3)
{
LOAD_MATRIX4();
TRANSFORM_POSITION(v, vertex3f);
TRANSFORM_VECTOR(n, normal3f);
}
}
else
{
for (i = 0;i < model->surfmesh.num_vertices; i++, v += 3, b++, vertex3f += 3)
{
LOAD_MATRIX4();
TRANSFORM_POSITION(v, vertex3f);
}
}
}
else if (normal3f)
{
const float * RESTRICT n = model->surfmesh.data_normal3f;
const unsigned short * RESTRICT b = model->surfmesh.blends;
for (i = 0; i < model->surfmesh.num_vertices; i++, n += 3, b++, normal3f += 3)
{
LOAD_MATRIX3();
TRANSFORM_VECTOR(n, normal3f);
}
}
if (svector3f)
{
const float * RESTRICT sv = model->surfmesh.data_svector3f;
const unsigned short * RESTRICT b = model->surfmesh.blends;
for (i = 0; i < model->surfmesh.num_vertices; i++, sv += 3, b++, svector3f += 3)
{
LOAD_MATRIX3();
TRANSFORM_VECTOR(sv, svector3f);
}
}
if (tvector3f)
{
const float * RESTRICT tv = model->surfmesh.data_tvector3f;
const unsigned short * RESTRICT b = model->surfmesh.blends;
for (i = 0; i < model->surfmesh.num_vertices; i++, tv += 3, b++, tvector3f += 3)
{
LOAD_MATRIX3();
TRANSFORM_VECTOR(tv, tvector3f);
}
}
}